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Abstract—The research studies the dynamics of the volatility
of the nominal exchange rate of the Peruvian nuevo sol against
the US dollar, with the aim of identifying signs of dependencies
over long time distances. The existence of persistence in the
increases in yields and the volatility process is explored by
applying two tests based on periodograms, the Hurst exponent is
estimated, its consistency over time and the graphical analysis of
its distributions for the subsequent application of the algorithm
of complex dynamics. For this objective, the time series of
the nominal exchange rate of the nuevo sol against the dollar
from January 3, 2013 to February 11, 2021 is used. A non-
geometric decay was identified in the correlograms in its non-
linear transformation and estimates of the fractional integration
parameter d > 0 together with the empirical and rescaled Hurst
estimates H > 0.5, therefore it is concluded that there is sufficient
evidence of a non-random fractal pattern conducive to the use
of the complex algorithm in process.

Keywords—Exchange rate, Fractal, Hurst exponent, Persis-
tence, Volatility.

I. INTRODUCTION

The exchange rate is one of the most important macroe-
conomic variables, it is a measure relationship between two
currencies, for this reason it is neuralgic in the establishment of
relationships trade between countries with different monetary
systems and takes a regulatory role in the economic cycles
Therefore, the volatility and unpredictability of the exchange
rate has a high potential to cause damage at the macroeco-
nomic and microeconomic levels, deteriorating exports total
and damaging external competitiveness, consequently volatil-
ity is considered as a means of contagion from external crisis
to the internal economy. Currently hybrid models such as in
the investigations of Xinyu Song (2021)[12], which expand
the GARCH-Ito model of Kim and Wang (2016), applied
in financial data based on dissemination processes which
incorporates the GARCH structure. On the other hand, A.
Ratnasari1, Sugiyanto and W Sulandari, (2021)[1], use the
GARCH and Markov switching volatility models to explain
and analyze volatilities and the changing conditions of the real
exchange rate of Indonesia, Thailand, South Korea, with aim
to detect signs of financial crisis, while investigations such
as Xiaofei Wu, Shuzhen Zhu, and Junjie Zhou. (2020)[11],
which show that the MSGARCH models they have a greater
precision in the prognosis compared to the classic GARCH

regimen Unique in terms of value at risk (VAR) in the case
of Renminbi (RMB).

It is defined that a series has long-term dependence accord-
ing to Mcleod and Hippel (1978) [10], when observing and
analyzing the theoretical tendency of autocorrelation of the
series under study. Currently, different tests are used to identify
whether a time series has a long memory. In this study, the
correlogram analysis, the rescaled range of Hurst (1951) [5],
the tests of the local Whittle estimator proposed by Robinson
(1995) [8] and Geweke and Porter-Hudak (1983) [3] to find
evidence of black noise in its volatility and thus in future
research to be able to capture the durability of the persistence
of some shock through some extension of the GARCH model
such as the FIGARCH model proposed by Baillie, Bollerslev
and Mikkelsen (1996) [2].

The research is divided as follows: It begins with the
introduction, a theoretical review is carried out to define series
with long memory derived from persistent processes, its study
through fractional calculation, its relationship with the fractal
dimension and with the different types of noise , then the
statistical-graphic analysis of the exchange rate dynamics is
presented, the application of the different tests to detect the
type of noise, such as those of the correlogram, rescaled,
corrected and empirical Hurst rank, its stability and tests based
on the periodgrams of the local Whittle estimator proposed by
Robinson (1995) and that of Geweke and Porter-Hudak (1983).

II. METHODOLOGY

The first objective is to detect persistence in the latent
process that generates the volatility of the nominal exchange
rate series in its increments, thus evidencing a process with de-
pendent increments. Therefore, a first nonlinear transformation
is performed as a first approximation to the volatility process.
Then it is decided to apply semiparametric methods based on
periodograms such as the Whittle local estimator test(1995)
and the Geweke - Porter and Hudak (1983) or GPH test to
then estimate the Hurst coefficient and analyze its stability
over time. In this way, with sufficient evidence, make the
decision to implement in the second order moment of the
Adam optimization algorithm a parameter that captures the
complex noise (Koop) called an algorithm of a complex nature
in process. As shown in figure 1.
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Fig. 1. Flowchart of the persistence detection process and inclusion of second
order moments in the algorithm

A. Hurst exponent

For the exploration, the Hurst exponent or dependency
index was used, initially investigated by the British hydrologist
Harold Edwin Hurst (1880-1978) with the aim of identifying
long-memory processes or long-distance dependencies. Then
the Polish mathematician Benoit B. Mandelbrot (1924-2010)
generalized the indicator and called it rescaled range (R/S)
used to measure the relative mean reversion tendency of a time
series to persist in one direction.

Be Y1, Y2, Y3, Y4, ....., Yk observations subjects of analysis
; where

• Xt =
∑t
m=1 Ym

• t+ n ≤ k

• R(t, n) = Max
0≤i≤n

{Xt+i − Xt − i
n (Xt+i − Xt)} −

Min
0≤i≤n

{Xt+i −Xt − i
n (Xt+i −Xt)}

• S2(t, n) = 1
n

∑t+n
m=t+1(Ym − Ŷt,n)2

• Ŷt,n = 1
n

∑t+n
m=t+1(Ym)

The Hurst exponent is defined in terms of the rescaled range
of the form limn→∞ E(R(t,n)

S(t,n) ) = CnH , where:

• R(n) is the range of the first n deviations

• S(n) is the sum of the first n deviations

• E(x) is the mathematical expectation

• n is the temporality

• C is the constant.

B. Persistence

According to Hosking (1981) [4] it proves that a process
{yt}t∈N stationary long memory fulfills

ρk ≈ Cρk2d−1, k −→∞ (1)

Where ρk is the autocorrelation function of yt. The sum
of the autocorrelation tends to fall hyperbolically to zero, Cρ
is a positive constant and ”d” is a fractional differentiation
parameter, therefore if

d


∈ (−0, 5; 0) Process stationary antipersistente
= 0 Movimiento Brownian standard
∈ (0; 0.5) Process stationary persistent
∈ (0.5; 1) Process not stationary persistent

∑+∞
k=−∞ |ρk| does not converge. That is to say {yt}t∈N , is

long memory if:

+∞∑
k=−∞

|ρk| =∞ (2)

Where ρk is not absolutely summable. If fractional calculus
is used for the analysis of this phenomenon, the stochastic
process constructed for this theoretical body is defined as
the fractional Brownian motion introduced by Andrei Kol-
mogorov[6].

It defines BH = (BH(t), t ≥ 0) a Gaussian centered
stochastic process with continuous trajectories is a fractional
Brownian motion of parameter H ∈ (0, 1) and with autoco-
variance function

CBH
(s, t) =

1

2
(s2H + t2H − |t− s|2H) (3)

Where H it is called the Hurst parameter. So if H 6= 1
2 ,

it does not comply with the Markov property, signaling a
dependency in the process of its dynamics.

In the case of H > 1
2 points out that the increments of

the fractional Brownian motion tend in the same direction,
generating a persistent process. The mathematical definition
of a stationary sequence exhibiting a dependence over long
distances is presented below.



A stationary sequence of random variables {Xn}n∈N has
long-term dependence, if the sequence of covariances ρ(n) =
Cov(Xk, Xk+n) con n, k ∈ N satisfies

lim
n→∞

ρ(n)

cn−α
= 1 (4)

For some constant c and α ∈ (0, 1).
Then the non-geometric convergence of the function ρ(n)

towards zero is interpreted. There is a fractional Brownian
motion whose increments show long-term dependence with
Hurst parameter the satisfies the following conditions.

Si BH a fractional Brownian motion and let the succession
of increments of {X = BHk −BHk−1} with k ∈ N has long-term
dependency if H > 1

2
Thus

ρH(n) = Cov(BHk −BHk−1, BHk+n −BHk+n−1)

=
1

2
((n+ 1)2H + (n− 1)2H − 2n2H)

=
1

2
(n2H(1 +

1

n
)2H + n2H(1− 1

n
)2H − 2n2H)

=
n2H−2

2
(n2(1 +

1

n
)2H + n2H(1− 1

n
)2H − 2n2)

=
n2H−2

2
(
(1 + 1

n )
2H + (1− 1

n )
2H − 2

1
n2

)

L’Hôpital rule applies and n −→∞ so

(1 + 1
n )

2H + (1− 1
n )

2H − 2
1
n2

−→ 2H(2H − 1)

It concludes

ρH(n) ≈ n2H−2H(2H − 1) −→ 0

∀H ∈ (0, 1)
Therefore the fractional Brownian motion is a long memory

process and

lim
n→∞

ρH(n)

n2H−2H(2H − 1)
= 1 (5)

Be c = (2H − 1)H and −α = 2H − 2 in equation 4,
so when H ∈ ( 12 , 1) fractional Brownian motion has long-
term dependence so it is a persistent process. As shown
in Table I. Analyzing their covariances, it is indicated that
n2H−2H(2H − 1) it is positive, therefore the trajectories of
the process tend to the same direction.

Mandelbrot[9], defines a fractal as a set with the peculiarity
that its Hausdorff dimension is greater than its topological
dimension. In other words, he defined the fractal dimension
as a non-integer number, thus facilitating the description of
the fractal geometry. The relationship between the fractal

dimension and the hurst exponent [5] is denoted through the
following equation developed by Voss[7]:

2H + 1 = 5− 2D (6)

From equation 6 we obtain a relationship between the fractal
dimension (D) and the Hurst exponent (H), then

D = 2−H (7)

Where D is the fractal dimension and H is the Hurst
exponent. Table I presents a brief outline of the concepts
discussed.

TABLE I
SURFACE ROUGHNESS

Parameter Fract. Diff. Characteristic Noise
H ∈ ( 1

2
, 1) d > 0 Decreased fractal dimension Black noise

H ∈ (0, 1
2
) d < 0 Increased fractal dimension Pink noise

H = 1
2

d=0 Randomness White noise

III. RESULTS

The input database consists of 2116 observations on the
nominal exchange rate nuevo sol with respect to the US dollar
on a daily basis, ranging from January 3, 2013 to February
11, 2021 obtained from the central bank database. Reserve of
Peru. The daily yields were expressed as follows:

rt = Ln(Bt/Bt−1), (8)

where Bt is the daily exchange rate in the period t.

Table II shows the main statistics of exchange rate returns (r)
for the period under study. The average return is 0.00016826
%, a standard deviation of 0.0027. On the other hand, a
negative leptocutic and asymmetric distribution of their yields
is observed, which generates that the normality test of Jarque
Bera (1987) rejects the null hypothesis of normality.

TABLE II
MAIN STATISTICS OF EXCHANGE RATE PERFORMANCE

3/01/2013-11/02/2021

Statistics r
Mean 0.000168
Median 0.000293
Variance 0.000007
Deviation 0.002715
Asimetria −0.610124
Ex.Curtosis 5.40072
Jarque Bera 2682.81
Prob. (0.0000)



Figure 2, shows the width of the box compressed by the
presence of a large volume of outliers with a slight bias to
the left. Figure 3, confirms the absence of normality in its
distribution, showing a lack of adjustment of the empirical
observations in relation to the theoretical distribution.

Fig. 2. Box plot of non- linear trasformation

Fig. 3. QQplot. of nonlinear transformations

In Figure 4, the time series of the exchange rate (TC1),
its returns (r) and its non-linear transformations (r2 and abr)
are shown as a proxy for volatility, it is observed that the
price series induces a non-linear behavior. linear. But it would
appear that there is stationarity in the returns at least on
average. On the other hand, to analyze the existence of non-
linear time dependence in yields, transformations are observed,
suggesting a sensitivity of volatility in time and market,
volatility clusters or existence of volatility by groupings are
also observed. If we observe the yields, its dynamics indicate
an unconditional leptocurtic distribution, that is, an excessive
concentration with respect to the mean and a large number
of outliers, confirming that the yields do not follow a normal
distribution.

To find evidence of black noise in the volatility process,
sample correlograms are used for the first 100 lags of the series

Fig. 4. Exchange rate daily series and its transformations from 3/01/2013 to
11/02/2021

of quadratic exchange rate returns (r2), as shown in Figure 5,
it is evidenced a slow decay, consistent with a persistence
behavior in the process of its transformation, which is why
a decrease in the fractal dimension is suggested, that is, a
smoother surface.

In Figure 6, the dynamics of the series of the absolute values
of the yields (abr) is similar to the dynamics of the quadratic
transformation (r2), a hyperbolic drop pattern is shown, which
suggests evidence in favor of black noise .

Fig. 5. Correlograms of quadratic Returns

Fig. 6. Correlograms of absolute value of Returns

A. Hurst exponent

Table III presents the estimates of the Hurst exponent of
the returns (r), the quadratic returns of the exchange rate
(r2) and the absolute value of their returns (abr) using the
following methods, rescaled range method, corrected rescaled
range method, Hurst empirical exponent, corrected empirical
exponent, and Hurst theoretical exponent. The estimates shown
in Table III are reliable and consistent (Arango (2001)). It



is observed that the quadratic returns have rescaled estimates
corrected by Hurst higher than 0.5, with a value of 0.75 and
greater intensity in their absolute values (Apr) with 0, 80.
Estimates of the empirical Hurts exponent greater than 0.5
are observed in the nonlinear transformations, with 0.88 and
0.82 in the absolute value and quadratic returns, respectively.
Therefore, there is evidence of black noise in the exchange
rate volatility process.

Figure 7 shows the changes in the Hurst value over time of
the yields and their non-linear transformations of the exchange
rate. Consistent estimates of H > 0.5 are observed in its trans-
formations, generating evidence that supports the conclusions
of the existence of the José effect in the performance and
volatility processes.

TABLE III
CALCULATION OF THE HURTS COEFFICIENT OF THE TRANSFORMATIONS

Method r Abr r2
Hurts R/S-Simple 0.5834 0.6705 0.6334
Corrected R over S Hurst exponent 0.5899 0.8004 0.7511
Empirical Hurst exponent 0.5158 0.8804 0.8257
Corrected empirical Hurst exponent 0.4846 0.8491 0.7919
Theoretical Hurst exponent 0.5345 0.5345 0.5345

Fig. 7. Hurts stability in time of nonlinear transformations.

B. Semi-parametric tests

In Table IV, the Geweke and Porter-Hudak Estimator test
[3] is shown through a scenario analysis for certain values
of α, a bandwidth m = Tα was used , where T = 2116.
The persistence presented by the quadratic performance is
consistent for all values of α with a d > 0 and statistically
significant (p < 0.05), the presence of long memory is more
intense in the absolute values of the returns (abr). The presence
of sufficient evidence of a non-random fractal pattern in the
dynamics of the volatility process is concluded.

Table V presents the Whittle Local Estimator test proposed
by Robinson (1995) [8], following the same mechanism as
the GPH test in Table IV, there is a bandwidth m = Tα ,
where T = 2116. Black noise is observed in its non-linear
transformations for the values of α, with d > 0, all estimates
are statistically significant (p < 0.05).

TABLE IV
GEWEKE AND PORTER-HUDAK ESTIMATOR TESTS

Variable α = 0.5 α = 0.6 α = 0.75 α = 0.8
r 0.15 0.16 -0.017 -0.002

r2 0.187 0.322 0.187 0.156
Abr 0.284 0.401 0.305 0.260

TABLE V
WHITTLE LOCAL ESTIMATOR TESTS

Variable α = 0.5 α = 0.6 α = 0.75 α = 0.8
r 0.043 -0.041 -0.022 -0.0093

r2 0.373 0.404 0.221 0.196
Abr 0.407 0.428 0.295 0.259
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CONCLUSIONS

A large number of outliers were observed confirming that
exchange rate returns do not follow a Gaussian distribution
and cluster volatility in their transformations. On the other
hand, evidence of high sensitivity in volatility dynamics was
found.

In the analysis of the correlograms, a hyperbolic decay was
identified in their transformations, a black noise signal in the
volatility process.

In the semiparametric tests, the null hypothesis of short
memory was rejected in the volatility of the process and in
the returns, with an estimate of the fractional differentiation
parameter d > 0, all statistically significant (p < 0.05)

The estimates of the Hurst exponents in the quadratic returns
and in absolute value generated H > 0.5 and its variation over
time is consistent with the phenomenon of fractal dimension
decrease, confirming black noise in the volatility of the pro-
cess.

It is concluded that there is sufficient evidence of persistence
in the volatility process of the exchange rate dynamics, there-
fore the objective of the application of the complex dynamics
algorithm under development.
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