
20th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Education, Research and Leadership in Post-pandemic

Engineering: Resilient, Inclusive and Sustainable Actions”, Hybrid Event, Boca Raton, Florida- USA, July 18 - 22, 2022. 1

A Python Library for Forensic File System Analysis
Bruno Constanzo, Engineer,12, Ana Di Iorio12, Engineer, Enzo Nogueira1, Engineering Student

1InFo-Lab, Laboratorio de Investigación y Desarrollo de Tecnología en Informática Forense
2Universidad FASTA, Argentina, {bconstanzo, diana}@ufasta.edu.ar

Abstract– The search and recovery of information is a basic

and foundational part of any digital investigation. In cases where

the digital forensics experts work against storage media, filesystem

analysis is a cornerstone upon which they will build their

investigation. In this work, we present a Python library that lets
programmers and examiners interact with the low-level structures

and data from a filesystem in a simple, yet powerful manner. We

also give a brief discussion on the use of this library in academic

environments, to teach and show examples of operating systems

concepts, and in specific digital forensics courses.

Keywords—Digital Forensics; Filesystems; Python; Operating

Systems; Digital Evidence.

I. INTRODUCTION

Almost every digital forensic analysis involves the
analysis of storage media, and consequently a filesystem of

some kind. Filesystem forensic analysis requires searching fo r
information, files, metadata, or remnants of these in the
content of blocks, or the relevant structures [1, 2].

Operating systems manage user information through
filesystems, sets of logic rules and data structures that

organize data in a storage medium in an understandable
abstraction, both for human users and other programs, while
keeping the monopoly over the access to the underlying

resources [3, 4]. This guarantees that programs can only
access and/or modify the stored information through the
abstractions and mechanisms that the OS provides, thus

keeping integrity and security.
While these abstractions and mechanisms are useful for

everyday use of a computer, digital forensic experts benefit
from having a lower-level access to the underlying
information and metadata. To begin with, digital forensics

experts usually work over image files and not directly over the
storage device [7]. Whereas it is possible to mount the image
files as a device (either through Linux loop devices [8, 9] o r

Windows virtual device mounting [5]) and access them as just
another file system on the examiners computer, that level o f

access may hide details, metadata and information which
could be relevant to the investigation.

Modified-Access-Change/Creation (MAC) timestamps ,

the filesystems journal, a files block/cluster/extent allocations,
owner and permissions metadata, amongst others, are
important bits of information that can only be accessed by

tools that work on the same level as the operating system.
Usually, this information can be read from an image file using

filesystem parsers: programs or libraries that can read the
structures raw bytes and represent that information in a
meaningful way to the examiner.

In this paper we present a python library that implements
parsers for partition tables, a few filesystems, and basic

support for VHD files. Through it, users can access forensic
images of storage devices to examine them and perform
complex analysis with python. As this library only uses the

languages standard library, it is portable to different operating
systems and has been tested on Windows, Linux and Android.

The development of this library started as a tool that

would be used in class to help students of an Operating
Systems course better understand real world file systems. It

was promptly found, however, that the low-level access it
provided could be useful beyond, and that forensic file system
analysis could be performed with it.

The following section gives a brief description of
theoretical concepts needed for the rest of the paper. Section
III discusses the design of the library. Section IV goes into

details and examples of its usage. Finally, Section V covers
conclusions and future work.

II. CONCEPTS AND THEORY

From an operating systems perspective, most storage
media can be thought of as block-oriented devices which read
and write data on a per-block basis, and thus they operate only

one whole block at a time 1 . Since storing and retrieving
information this way would be cumbersome, file systems

provide abstractions that give a simpler mental model for
users, programs, and software developers.

When we speak of a filesystem, it can be interpreted in
two ways:

 In a broad sense, it is the set of rules, data
structures, and conventions that define how to
store, retrieve, and manage data for persistent

storage. As such, we can speak of FAT, NTFS,
or Ext4 as filesystems.

 In a narrow sense, in which we refer to a
particular filesystem in a specific storage device:
the FAT file system on a thumb drive, or the

Ext4 file system on an SSD, to give a few
examples.

Modern operating systems work with a layered approach,

with the lowest level abstractions (device drivers) s ending
instructions to a specific device or class of devices, and
higher-level abstractions handling different file systems (in the

broad sense). This allows to support filesystems over a range
of different physical storage mediums, through the same file

1 Blocks, or sectors in this case, are usually 512 bytes long, though

newer drives work with 4096 bytes blocks. These are hardware

details that should be hidden from higher abstraction levels, but over

the years this has been a leaky abstraction.

 Digital Object Identifier (DOI):
 http://dx.doi.org/10.18687/LACCEI2022.1.1.336
 ISBN: 978-628-95207-0-5 ISSN: 2414-6390

20th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Education, Research and Leadership in Post-pandemic

Engineering: Resilient, Inclusive and Sustainable Actions”, Hybrid Event, Boca Raton, Florida- USA, July 18 - 22, 2022. 2

system driver. Depending on the operating system, file system
support can be implemented through different mechanisms:

 On Windows there are File System Drivers [5, 6],

that sit on top of mass storage or local or
network drivers.

 Linux can both load kernel modules for specific

file systems or use the Filesystem in USErspace
(FUSE) interface to allow a user-mode process
to handle the implementation details [6], such as

opening and closing files, reading and writing
data, etc.

In a very broad sense, commonly used file systems have a

root directory, some sort of mapping (table, indexes, trees),
and a metadata structure for individual files. Directories are

objects that store files inside them. It is commonplace for them
to be implemented as a special kind of file that stores file
records, the structure that is finally responsible for storing the

files metadata and uniquely identifying information.
Additional metadata can be derived from hierarchies and
supplementary metadata structures when needed.

Most filesystems will have some header structure in the
first sector where they store metadata, bootloader code, and

important information to parse the rest of the filesystem.
Microsoft file systems usually work with file tables and
allocating fixed-sized clusters for files, while Linux

filesystems are based on inodes and directories simply hold
the files name and inode number to reference the file, with the
inode containing the rest of the files metadata.

Journals are a particular kind of file that modern
filesystems use, which logs an entry for every metadata

change that is about to be made to the filesystem, and then
another entry when that change is effectively written to disk.
This allows operating systems to quickly verify the integrity of

a file system, without having to scan all its structures,
speeding up integrity checks for large volumes.

A. Windows File Systems
The File Allocation Table filesystem, or FAT, was

developed by Microsoft during the 80’s and 90’s for their MS-
DOS and Windows operating systems. During those years,
different versions were released, with each new revision

including improvements and new features.

The latest version, called FAT32, had support for up to 2
TiB volume sizes, 4 GiB (-1 byte) maximum file sizes and,
through the VFAT extension, could handle long file names2.

The three main structures that describe the filesystem in

its entirety are the Volume Boot Record (VBR), the File
Allocation Table (FAT), and the Directory Entries.

The VBR works as the filesystem’s header, and stores

metadata, values and pointers that guide the OS into loading
the rest of the filesystem. The FAT is an array that, for every

cluster in the filesystem, tells whether it is free or allocated,

2 Though without it , it only supports 8.3 file names.

and if allocated, which is the following cluster that makes up
the file that it is part of.

Directory Entries are 32-byte sized structures that hold the

name, MAC times, size, first cluster and attributes for a file .
By reading this structure, the OS can read the entirety of the
file by following the FAT cluster chain. Directories are simply

files that hold Directory Entries inside them and are stored
alongside regular files.

On FAT variants file timestamps are limited to 2-, 4- and
5-byte structures. The last access field is only a date, without
time information (2 bytes). The modified field does have a

time component (4 bytes) however its time resolution is
limited to 2 second intervals. The created field is the only full-
sized (5 bytes) timestamp, comprised of a data, and time with

a granularity of 10 milliseconds.
Through its simplicity, FAT32 has been made a de-facto

standard able to interoperate between various operating
systems, devices and storage media [10]. While a bit aged, it is
still relevant for these uses, and as the filesystem of choice fo r

EFI Boot Partition [11, 12].
The New Technology File System (NTFS) was the

filesystem that became integral part of the NT series of

operating systems. While still having a file table and being
cluster-oriented, it added a host of features and improvements

that make it superior to FAT32 as a system-oriented
filesystem.

NTFS supports much larger volumes and file sizes than

FAT32, Unicode file names, native compression and
encryption, sparse files, object permissions, alternate data
streams, and journaling, to name the most prominent features.

The Master File Table (MFT) is a metafile that stores
instances of FileRecord, the structure responsible for holding

each files metadata (analogous to the DirectoryEntry structure
of FAT, but larger and more flexible). On NTFS there are no
separate structures for administrative data, but metafiles are

special files within the file system that hold metadata about it
and are identified with a $ at the start of their name. So, fo r
example, there are $MFT and $MFTMirr files for the MFT

and its mirror, a $Boot file that holds boot code and filesystem
header information, to name a few.

From a forensic point-of-view, one of the most significant
changes is that the timestamps in NTFS are stored using a 64-

bit integer with an epoch of Jan 1st 1601, with 100ns
resolution [13]. Also, in addition to the standard MAC
timestamps, there is a Record timestamp that stores the last
time the File Record was modified.

B. Linux File Systems
The Ext family of filesystems have been the standard on

Linux operating systems for almost three decades, with some
incremental improvements leading all the way up to Ext4, the
currently used version. An important detail about Ext3 and

Ext4 is that they have been backwards and forwards
compatible with the previous version [14, 23], and Ext4

drivers can mount both Ext3 and Ext2 file systems. This is a
helpful feature for forensic filesystem parsers as it allows

20th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Education, Research and Leadership in Post-pandemic

Engineering: Resilient, Inclusive and Sustainable Actions”, Hybrid Event, Boca Raton, Florida- USA, July 18 - 22, 2022. 3

previous parsers to keep working on newer versions, and
usually requires little work to add the new features.
Conversely, it is possible to read older filesystems with newer

parsers.
Ext4 supports large file volumes, large files (optimized

using extents), implements journaling, is backwards

compatible, improved timestamp resolution and range, can use
transparent encryption, and implemented a host of
performance-related improvements over previous versions.

From a forensics perspective, Ext file systems have their
own particularities that must be taken into consideration.

Ext2/3 both have modified, last access, and inode change
timestamps, with a time resolution of one second, stored in a
32-bit signed integer that follows the UNIX time format. Ext4

adds 32 bits more to the timestamps and adds a file creation
timestamp (crtime). Both the extended timestamp bits and the
file crtime are stored in the extended part of the inode, to keep

compatibility with previous versions [21, 22]. Through these
extended bits, Ext4 timestamps attain nanosecond granularity,

and have an extended range of dates (roughly 500 years more
than the previous version).

C. Forensic File System Analysis
Forensic file system analysis involves processing the low-

level data found in a storage medium in search of information

that is relevant to an investigation. Based on Ref. [1], it can be
split into several categories, depending on what is the object of
study in which the examiner focuses:

 File system category, that tries to identify a
filesystem uniquely, describing its layout and
features. This means identifying all the relevant

data structures for a filesystem to be parsed
correctly.

 Content category, focused on the data units that

store file information themselves (clusters,
blocks, etc), analyzing the unused space on these
units, or the units that have been marked as

defective or unusable.

 Metadata category focuses on the descrip tive
information about files that is stored, such as

timestamps and file locations.

 File name category, as a distinct category from
metadata. The focus is placed on the file name

and its path, which usually must be constructed
from other files metadata (parent directories,

recursively).

 Application category focuses on nonessential
data, e.g.: journals, and other application specific

file types a filesystem might define as important,
though not required for the file system to work.

The Sleuth Kit [15, 16] is a library and set of command
line tools that implements these categories over a large
number of file systems. While it is a standard in the field, in

class students found it a bit too complex, and they had to go
through a steeper learning curve than expected.

III. DESIGN AND DEVELOPMENT

Haruspex was developed initially as a teaching tool, to be
used in a special assignment on an Operating Systems course,
in which students are expected to apply basic concepts of file

systems. As development went on, its capabilities and
potential became evident, and it was extended beyond its
initial goals to accommodate file system exploration and

forensic analysis.
In developing the library, we had a few clear design goals

from the beginning: it had to be portable across operating
systems, easy to install, simple to use, and its code had to be
readable, while retaining flexibility and extensibility.

Portability and an easy installation were needed to
simplify the environment set up and configuration. When
using other programs and libraries, from time-to-time students

would find difficulties which interfered with the expected
learning process. Having a complex install process,

unfortunately, is a not-so-rare trait among open source digital
forensic tools and was something we wanted to avoid at all
costs.

Ease of use and code readability as goals ensure that
anyone can study and verify how the code works. Inside the
classroom, that means students can follow how a filesystem

works, and develop the functions and tools based on the
library that their assignment requires. Outside the classroom, it

ensures that developers and digital forensic experts can follow
examples and documentation to use Haruspex in a report, o r
implement new filesystems, features, or new tools on top o f

the library that they may require.
The choice of Python as programming language was

simple: the team had extensive experience with it, and it s

ethos of simplicity, the extensive standard library, wide
support across many platforms, and its wide use in the digital

forensics’ community were perfect fits for the project. Since it
is very simple to learn to program in it, a short introduction is
enough to meet the minimum level required for the assignment

for students who are not familiar with Python.
Haruspex has been released under LGPL-2.1, its code is

available on GitHub3, and has been uploaded to the Python

Package Index, so it can be pip-installed.
The library implements classes that know how to parse

binary structures read from storage media or forensic images.

Once the objects are instantiated, the bytes are parsed on
initialization and all the data and metadata is made available
through attributes. Python double-underscore methods and

properties are used extensively to keep parsing code simple,
while the setters and getters of the properties handle type and

range checks. The languages standard library is a great asset
too, in particular the datetime module to handle timestamps,

3 https://github.com/bconstanzo/haruspex.

https://github.com/bconstanzo/haruspex

20th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Education, Research and Leadership in Post-pandemic

Engineering: Resilient, Inclusive and Sustainable Actions”, Hybrid Event, Boca Raton, Florida- USA, July 18 - 22, 2022. 4

and the struct module to handle the packing and unpacking of
binary data.

There is a strong focus on the interactive use of Haruspex,

as it brings a quick and reliable interface for users and allows
developers and forensic experts to test things on the go as they
explore a drive or test code. There is an extensive us e o f

docstrings, repr methods to provide a brief descrip tion o f
the objects, and str to provide a detailed view. This

posture is actually opposite to the standard python practice,
where repr() should give detailed information, and str() a
good-for-presentation string, but through use and tests it was

found that following that convention resulted in a suboptimal
experience on interactive sessions. The development team
constantly tries and tests code and usage patterns on

interactive shells to find these rough patches, or places where
the interfaces can be improved to provide a better experience

for users.
The classes in the library that parse bytes all receive a

bytes object (usually read from a file-like), which is stored as

received and unpacked into the different attributes of the
object the class represents. For example, instantiating an MBR
Partition requires 16 bytes read from the correct location of

the first sector. There are also higher-level constructs, like the
classes for a whole file system (FAT32 and Ext2 currently),

which receive an open file(-like) and an offset into it where
the filesystem starts. Then the class handles reading the
filesystems header, unpacking and parsing the correct

structures, and provides a ready-to-use object.
As of writing, Haruspex provides support for the

following structures and file systems:

 MBR and GPT partition tables.

 VHD fixed-size images [17].

 FAT32, without long-filename support (the extra

directory entries used for LFN are ignored).
 Ext2, as described in [18].

 Parts of NTFS, just enough to parse $I30 files4.
The MBR and GPT modules both provide Partition and

Table classes, each instantiated from a properly sized bytes
buffer. The Table class handles reading the header (if any) on

the bytes that were passed, and then parses the bytes with the
partition list, making them readily available as a list object.

Ext2 and FAT32 modules provide Ext2 and FAT32

classes, that handle the reading of structures and initialization
of attributes for the whole filesystem. Both have specific
attributes, but they share a common open() method that can be

used to open either directories or files as a way to simplify the
exploration of a filesystem.

In both file systems modules, Directory and FileHandle
classes are implemented. The Directory classes read a
directory structure from the filesystem, and exposes a files

attribute, a list of the all the file entries found in the directory

4 For a discussion on their use as forensic artifacts, see [1, 19], some

implementation details are available in Willi Ballenthin’s INDXParse

[20], however documentation for it , as of writing, has gone offline

and only the GitHub repository is available.

(including deleted entries). The FileHandle class is a bit more
complex, as it aims to provide methods compatible with
pythons file-like API. This allows the users to open a file from

the filesystem and use the resulting object just like they would
a file opened with pythons built-in open(). The classes handle
all the details to implement read(), seek(), and tell() methods

consistently with the underlying file system.
Going to a lower level, each filesystem module

implements classes for their specific structures. In Ext2 we

find DirectoryEntry, GroupDescriptor, Inode, and Superblock
classes, whereas FAT32 has simpey has the FileRecord class

to parse the Directory Entry structures.

IV. EXPERIENCES AND USE

As it was stated, one of the design goals for the library
was ease of use. Through testing and use in undergraduate and
postgraduate courses and digital forensic trainings, we have
found this objective is currently met, though it can probably be

improved upon.
The beginning of an interactive session using Library

name is shown on Fig. 1:

 The image file “virtual.img”, is opened in binary
read mode.

 The first sector of the image is read, and from it,

an MBR partition table is instantiated.

 A single partition of FAT32 LBA type is found at
the 128th sector in the image.

 A FAT32 filesystem is instantiated, at byte-offset
128*512 of the image file.

 Inspecting the root attribute (which is a Directory

object), the files on the filesystems root can be
accessed, and the rest of the filesystem analyzed.

 Directory objects abstract a simple interface for

directories, while still holding a reference to the
underlying filesystem structure (in this case, a
FAT32 Directory Entry).

 FileRecord objects provide the underlying details
of the implementation, with all the metadata and
a copy of the on-disk bytes.

 Printing the information of a directory entry

shows all the metadata of a file (sans the long
file name, should the file have one).

 The time metadata of the file show the limitations

that were discussed with respect to timestamps
on FAT32.

From there on the analysis can be taken to various
directions, depending on what is found or being searched for:

 If deleted files are of interest, FileRecord objects

have a deleted property that is consistent with the
behavior of FAT32 for deleted objects.

 Collections of files can be sorted or filtered by
any of their attributes using pythons sorted() and

filter() built-in function. All metadata for files

20th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Education, Research and Leadership in Post-pandemic

Engineering: Resilient, Inclusive and Sustainable Actions”, Hybrid Event, Boca Raton, Florida- USA, July 18 - 22, 2022. 5

has been implemented through pythons built-in
and standard library types, so their truth values
and comparison behavior are intuitive, following

a principle of least surprise.

 Pythons re module could be used to
match filenames with regular expressions.

 More complex conditions can be tackled
using list-comprehensions, user defined
functions or any other programming construct

the user finds appropriate and is familiar with.

>>> import libname

>>> img_file = open("virtual.img", "rb")

>>> mbr = libname.mbr.Table(img_file.read(512))

>>> mbr

< MBR Partition Table @ 2034950680136 >

< Partition - FAT32 LBA - boot: False @ 128

of 124928 >

>>> fs = libname.fat32.FAT32(img_file, 128 * 512)

>>> fs

< FAT32 @ 65536 of <_io.BufferedReader

name='virtual.img'>>

>>> fs.root.files

[< DirectoryEntry: VIRTUAL.>, < DirectoryEntry:
<DIR> SYSTEM~1>, < DirectoryEntry: TEST.TXT>, <

DirectoryEntry: <DIR> DIR>, < DirectoryEntry:

<DIR> $RECYCLE>]

>>> print(fs.root.files[1])

< DirectoryEntry: <DIR> SYSTEM~1

size : 0

attributes : rHSvDa

cluster : 3

created : 2019-04-25 19:42:25.030000

last_access : 2019-04-25 00:00:00

modified : 2019-04-25 19:42:26

deleted : False

>

Fig. 1 Example of an interactive python shell session using Haruspex to
open a file image parsing its partition table and filesystem and printing a

specific files metadata.

A. Undergraduate courses

In the Operating Systems course where we use the library,
students are tasked with a special assignment where they have

to create a virtual disk, initialize it with a partition table, give
it a FAT32 partition, and perform a series of file operations
over the volume. At each step, they are required to disconnect

the virtual disk, analyze its image file with Haruspex, and take
notes of the changes. They have to turn in a report where they
detail their findings and explain the changes they see with

references to both operating systems bibliography and the

referenced documentation they are given for the filesystem
and the partition schemes.

In a practical annex of the report, they are tasked with

writing a few simple functions using the library, picked form a
pool of different functions of interest. Fig. 2 shows the two
functions a student programmed to figure out if a file was

fragmented, or contiguously allocated.

Fig. 2 A student’s code for an assignment where they had to find out if a

file was fragmented, and how many fragments it had. While it does not
explicitly import functions or classes from Haruspex, it does rely on the

attributes of the FAT32 and FileRecord classes to work.

The experience so far has found that students who work
on this assignment achieve a better understanding of the

theoretical concepts applied in file systems, and they greatly
value the opportunity to relate concepts and theory that is seen
in class with real world scenarios.

B. Postgraduate courses and digital forensics trainings
Haruspex has also been used in courses teaching digital

forensics (usually abbreviated DFIR, for Digital Forensics and
Incident Response) for postgraduate students, and in trainings

for DFIR experts. In these courses, it was found to be even
more positive than on undergraduate level. In Argentina the
digital forensics field is still nascent, despite having had

important developments in that past 10 years. In this scenario,
many DFIR experts are graduate professionals in computer
sciences, software engineering or electronic engineering who

def list_clusters(fs, record):

ncluster = record.cluster

clusters_list = []

while ncluster < 0x0ffffff0:

clusters_list.append(ncluster)

ncluster = fs.fat1[ncluster]

return clusters_list

def number_of_fragments(list_of_clusters):

fragments = 1

iterclusters = iter(list_of_clusters)

prevc = next(iterclusters)

for currc in iterclusters:

if (prevc + 1 != currc):

fragments += 1

prevc = currc

return fragments

usage:

c_list = list_clusters(fs, record)

num = number_of_fragments(c_list)

print(f”The file has {num} fragment(s).”)

20th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Education, Research and Leadership in Post-pandemic

Engineering: Resilient, Inclusive and Sustainable Actions”, Hybrid Event, Boca Raton, Florida- USA, July 18 - 22, 2022. 6

have steered their career into the field, self-taught, and
learning on a need-to-know basis. Historically there has been
no postgraduate education in the field, something that has only

changed recently.
When teaching digital forensics courses, it is usually

needed to give a review of operating systems concepts, and

particularly file systems. Most professionals have not revisited
the concepts involved for years, and a small number have
never taken an operating systems course, and it is their first

time viewing these topics in a formal academic environment.
It is unfortunately common in our region to find so called

experts simply being users of tools, who barely know how to
set up a standard workflow and follow a set of instructions
without understanding the mechanisms at work. In this

context, our library is yet another tool that complements The
Sleuth Kit and hexadecimal editors, giving students the
opportunity to explore and inspect on a deep level the results

that they obtain using other tools, that tend to hide details and
complexity from the user.

Haruspex helps illustrate and analyze scenarios of data
deletion, file and data recovery, anti-forensic techniques, and
file carving, to name a few. It also helps to show specific

behaviors regarding timestamps and how they are updated on
different file systems. In this way, students achieve a better
understanding of data recovery, forensic file system analysis,

and file and data carving.

C. Use as a forensic tool
As development progressed past the early versions and

the library saw more use, it quickly became evident that it was

useful not just for teaching. As it implements many of the
categories defined by Carrier, it can provide valuable data in a

forensics analysis, providing a different interface that can
result easier to use under certain situations.

The higher-level abstractions that allow the user to open

and read from files and directories in a straightforward way,
while still providing access to low-level details and metadata
makes for a very powerful combination. In addition,

Haruspexs seamless integration with Python’s built-in
functions and standard library allows anyone with

programming experience in the language to quickly obtain
information, filter, and perform advanced searches from an
image file.

The library is also a good platform on top of which new
tools can be built, or other file systems implemented.
Haruspexs lack of dependencies other than a Python 3.6 (o r

newer) installation allow it to run practically on any platform.

V. CONCLUSIONS AND FUTURE WORK

The design of a library for forensic file system analysis
has been an interesting experiment, both in software
engineering and in computer science teach ing . The des ign
goals and requirements imposed by the courses where we

planned to use the software were a major influence, and we
think were instrumental in the success that it has achieved so

far. Feedback from students helped tailor and improve code
and interfaces, and further refine the design.

Choosing Python as the programming language to

develop this project gave it the platform portability that we
required: Haruspex has been tested under Windows, Linux and
even Android (using Termux). Not only that, but it also helped

with implementing complex features through the integration
with the language built-in functions and standard library.

Work is currently under way to extend the limited NTFS
support that we have so far, and include other file systems,
such as Ext3 and Ext4 (using the current Ext2 implementation

as a base), exFAT and some custom file systems that are used
in digital video recorders. There are also some prototypes in
the works to build triage and data recovery tools that use

Haruspex to bypass the operating system in accessing the
filesystems.

ACKNOWLEDGMENT

We would like to thank Universidad FASTA, Ministerio
Público Fiscal de la Provincia de Buenos Aires, and Municipio
de General Pueyrredon, for their joint effort in creating and
maintaining InFo-Lab. Without their support this work would

not have been possible.
We also want to thank Ariel Podestá, Roberto Giordano

Lerena, Martín Castellote, and Juan Iturriaga, for the work

we’ve done together and their support and feedback over time,
as it has helped us shape our work and careers.

REFERENCES

[1] B. Carrier, “ File System Forensic Analysis”, Adison Wesley Professional ,
2005.

[2] V. Roussev, “ Digital Forensic Science: Issues, Methods, and Challenges”,
Morgan & Claypool, 2017.

[3] A. Tanenbaum, “ Modern Operating Systems, 3rd edition”, Pearson, 2009.
[4] W. Stallings, “ Operating Systems: Internals and Design Principles, 6th

edition”, Pearson, 2009.

[5] M. Russinovich, D. Solomon, A. Ionescu, “ Windows Internals, 6th

Edition, Part 2”, Microsoft Press, 2012.
[6] Microsoft Corporation, “ File systems driver design guide”, online

documentation, 2022, https://docs.microsoft.com/en-us/windows-
hardware/drivers/ifs/.

[7] Linux FUSE (Filesystem in Userspace) reference implementation, various
authors, https://github.com/libfuse/libfuse.

[8] B. Nikkel, “ Practical Forensic Imaging: Securing Digital Evidence with
Linux Tools”, 2016, No Starch Press.

[9] Linux man pages, losetup (8), online version:
https://linux.die.net/man/8/losetup.

[10]Standard of the Camera & Imaging Products Association, “ Design rule for
Camera File system: DCF Version 2.0”, 2010, online copy:

https://web.archive.org/web/20130930190707/http://www.cipa.jp/english/
hyoujunka/kikaku/pdf/DC-009-2010_E.pdf.

[11]Microsoft Corporation, “ Microsoft Extensible Firmware Initiative FAT32
File System Specification – FAT: General Overview of On-Disk Format”,

2000, online version:
http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-

843a-923143f3456c/fatgen103.doc.
[12]Unified EFI Inc., “ UEFI Specification Version 2.5, Section 12.3 File

System Format”, 2015, online version:
https://uefi.org/sites/default/files/resources/UEFI%202_5.pdf#page=536.

[13]Microsoft Corportation, “ File Times”, online documentation
https://docs.microsoft.com/en-us/windows/win32/sysinfo/file-times.

http://www.cipa.jp/english/
http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-

20th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Education, Research and Leadership in Post-pandemic

Engineering: Resilient, Inclusive and Sustainable Actions”, Hybrid Event, Boca Raton, Florida- USA, July 18 - 22, 2022. 7

[14]M. Jones, “ Anatomy of ext4”, IBM Developer content, 2009, online:
https://developer.ibm.com/tutorials/l-anatomy-ext4/.

[15]The Sleuth Kit, software, http://www.sleuthkit.org/.
[16]The Sleuth Kit, git repository, https://github.com/sleuthkit/sleuthkit.

[17]J. Metz, A. Albertini, “ Virtual Hard Disk (VHD) image format”, online

docum en tatio n for libvhdi, online
https://github.com/libyal/libvhdi/blob/main/documentation/Virtual%20Ha
rd%20Disk%20(VHD)%20image%20format.asciidoc.

[18]D. Bovet, M. Cesati, "Understanding the Linux Kernel, 2nd Ed", O'Reil l y
Media, 2002.

[19]C. Tilbury, “NTFS $I30 Index Attributes: Evidence of Deleted and
Overwritten Files”, blog post for SANS, 2011, online:

https://www.sans.org/blog/ntfs-i30-index-attributes-evidence-of-deleted-
and-overwritten-files/.

[20]W. Ballenthin, “ INDXParse”, software, online repository:
https://github.com/williballenthin/INDXParse .

[21]H. Pomeranz, “ Understanding EXT4 (Part 1): Extents”, blog post for
SANS, 2010, online: https://www.sans.org/blog/understanding-ext4-part -

1-extents/.

[22]H. Pomeranz, “ Understanding EXT4 (Part 2): Timestamps”, blog pos t for
SANS, 2011, online: https://www.sans.org/blog/understanding-ext4-part -
2-timestamps/.

[23]A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, L. Vivier,
“ The new ext4 filesystem: current status and future plans”, Ottawa Linux

Symposium, 2007, online:
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf.

http://www.sleuthkit.org/
http://www.sans.org/blog/ntfs-i30-index-attributes-evidence-of-deleted-
http://www.sans.org/blog/understanding-ext4-part-
http://www.sans.org/blog/understanding-ext4-part-
http://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf

