Lean Manufacturing tools in the Productivity of a poultry processing company

Herramientas del Lean Manufacturing en la Productividad de una empresa de beneficio de aves

Jorge Luis Alfaro-Rosas, Magíster¹, Elizabeth Kristina Bravo-Huivin, Magíster¹, Cesia Elizabeth, Boñón-Silva, Magíster¹, Juan Miguel, Deza-Castillo, Magíster¹, Erick Edward Pérez-Alcántara, Ingeniero¹, María Estefany Vásquez-Jáuregui, Ingeniero¹

1Universidad Privada del Norte, Perú, jorge.alfaro@upn.edu.pe, kristina.bravo@upn.edu.pe, cesia.bonon@upn.edu.pe, juan.deza@upn.edu.pe

Resumen- El presente trabajo de investigación determinó el impacto de la aplicación de herramientas Lean Manufacturing en la productividad de una empresa de beneficio de aves; cabe mencionar que los resultados forman parte de una Tesis de Grado. El diseño es preexperimental, donde se aplicó un cuestionario confiable (Alfa de Cronbach de 0.794) a 10 colaboradores del proceso productivo. También, se tomó como instrumentos de recolección de datos: una guía de entrevista, un cuestionario y una ficha de recolección documental. La estructura del modelo se dividió en 4 etapas fundamentales: Diagnóstico de la empresa, Aplicación de herramientas Lean Manufacturing, Evaluación de la propuesta y Análisis económica. Se concluye que la aplicación tiene un impacto positivo del 5% (V. inicial: 0.89 – V. final: 0.94) en la productividad promedio de la organización. Asimismo, con el diagnóstico, se determinó las múltiples causas raíz que ocasionaron la baja productividad, siendo el 80%: falta de entrenamiento del personal, fallas en proceso y falta de procedimientos estandarizados. Finalmente, el impacto económico de la aplicación generó una cantidad recuperada de S/ 485 514, un periodo de retorno de 0.32 años y al cabo del segundo año se obtendría un monto de S/70 323.75.

Palabras Clave— Productividad, Lean Manufacturing, Eficacia, Eficiencia, Causa Raíz.

Abstract- This research work determined the impact of the application of Lean Manufacturing tools on the productivity of a poultry processing company; It is worth mentioning that the results are part of a Degree Thesis. The design is pre-experimental, where a reliable questionnaire (Cronbach's Alpha of 0.794) was applied to 10 employees of the production process. Also, it was taken as data collection instruments: an interview guide, a questionnaire and a document collection sheet. The structure of the model was divided into 4 fundamental stages: Diagnosis of the company, Application of Lean Manufacturing tools, Evaluation of the proposal and Economic analysis. It is concluded that the application has a positive impact of 5% (initial V.: 0.89 - final V.: 0.94) on the average productivity of the organization. Likewise, with the diagnosis, the multiple root causes that caused low productivity were determined, being 80%: lack of staff training, process failures and lack of standardized procedures. Finally, the economic impact of the application generated a recovered amount of S/ 485,514, a return period of 0.32 years and at the end of the second year an amount of S/70,323.75 would be obtained.

Keywords-- Productivity, Lean Manufacturing, Effectiveness, Efficiency, Root Cause.

I. INTRODUCIÓN

En los últimos años, la producción mundial de carne de pollo aumenta, en promedio, solo 2% por año. Aproximadamente, el 1% del aumento es por el crecimiento

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2022.1.1.317 ISBN: 978-628-95207-0-5 ISSN: 2414-6390 se encuentre en Asia, América Latina y África. En caso de, América Latina se espera un mejoramiento económico de un aumento de 6 millones de toneladas en la producción de carne de pollo. [1].

En Perú, según, el ministro de Agricultura y Riego, Jorge Montenegro, señaló que la avicultura representa el 25% del valor bruto de la actividad agropecuaria. El Ministerio de Agricultura y Riego (MINAGRI) informó que la producción de pollo se incrementó en 3,5% en el año 2019, con respecto al periodo del 2018. Según cifras de la Asociación Peruana de

Avicultura (APA), la producción de pollo aumentó en 20

millones 32.000 unidades en lo que va del año 2019,

considerando que entre enero y setiembre del 2018 se alcanzó 570 millones 750.488 unidades, mientras que el año 2019 fue

de la población y el otro 1% es debido al mejor ingreso de la

población global. En América Latina se tiene un ritmo de

crecimiento más alto, 2,5% por año en promedio. Es probable

que el 85% de todo el crecimiento mundial en carne de pollo

de 590 millones 782.219 unidades, es decir, 3,5% más. [2]. Entre los departamentos representantes de este rubro se tiene a: Lima como líder del ranking a nivel nacional con una participación de 53.5 % (1.1 millones toneladas de aves en pie), seguido de La Libertad con 17.7 %, ocupando el segundo lugar (365 mil toneladas en peso vivo de ave) y en tercer puesto Arequipa con 9.8 % (202 mil toneladas de aves en pie).

Este bajo crecimiento, obliga a las empresas pecuarias, a ser más competitivas y especialmente productivas, es decir, esforzarse por lograr la máxima eficiencia y eficacia en cada uno de los procesos llevados a cabo dentro de esta; para así asegurar la rentabilidad y permanencia dentro del mercado.

La empresa seleccionada para el estudio es una de las principales organizaciones pecuarias distribuidoras de carcasas de pollo de la zona norte del Perú, la cual cuenta con un sistema de producción tecnificado que facilita el beneficio de aves en forma rápida e higiénica. Pero hoy en día, esta organización presenta problemas de desperdicios: elevadas mermas por deterioro de producto (carcasa de pollo), el cual representa un 52.86% del total de eliminaciones, problemas de selección de producto, tiempos perdidos entre otros. Los efectos de esta situación se traducen en: improductividad y pérdidas monetarias por los desperdicios que se mencionan; estas mermas se cuantifican en S/ 31 728.105 (año 2019).

A raíz de esto, se plantea el objetivo general del proyecto de investigación, el cual consiste en determinar el impacto de la aplicación de herramientas de Lean Manufacturing, en la productividad de una empresa de beneficio de aves.

II. ESTADO DEL ARTE

A. Lean Manufacturing

Lean Manufacturing es una filosofía de trabajo que busca la mejora continua y la eliminación de actividades que no aportan valor o despilfarros, involucrando a todo el personal para lograrlo. Según [4], estas herramientas son técnicas de perfeccionamiento y optimización de un sistema de producción focalizándose en identificar y eliminar todo tipo de "desperdicios", los cuales son todos aquellos procesos o actividades que usan más recurso de los estrictamente necesarios.

B. Productividad

[5], señala que productividad se mide por el cociente formado por los resultados logrados y los recursos empleados. Donde los resultados se meden en unidades producidas, en piezas vendidas o en utilidades, mientras que los resultados empleados suelen cuantificarse por número de trabajadores, tiempo total empleado, horas máquina, etc. Asimismo, relacionó términos como eficiencia y eficacia con productividad:

III. OBJETIVOS

A. Objetivo General

Determinar el impacto de la aplicación de herramientas de Lean Manufacturing, en la productividad de una empresa de beneficio de aves - Trujillo.

B. Objetivos Específicos

- Realizar un diagnóstico de la situación actual de la empresa.
- Identificar los problemas y las causas principales que afectan la productividad.
- Aplicar herramientas de Lean Manufacturing, para mejorar la productividad de la empresa.
- Realizar un análisis comparativo de la productividad, antes y después de la aplicación.
- Determinar el impacto económico de la aplicación.

IV. MATERIAL Y MÉTODOS

La presente investigación es de carácter Experimental de grado Pre-Experimental, donde la muestra poblacional fue constituida por todos los procesos del área de producción de pollo y 10 trabajadores que laboran en ella. Para la recolección de datos se empleó el instrumento del cuestionario, guía de entrevista y ficha de análisis documental.

V. METODOLOGÍA PARA LA APLICACIÓN DE HERRAMIENTAS DE LEAN MANUFACTURING

Luego de haber investigado varias metodologías para la aplicación de Lean Manufacturing, se optó por realizar una propuesta la cual está conformada por 4 etapas Diagnostico de la empresa, Aplicación de herramientas Lean Manufacturing, Evaluación de la propuesta y Análisis económico.

A continuación, se muestra la Tabla 1, donde se aprecia dichas etapas con las principales actividades.

TABLA 1.

ETAPAS DE LA APLICACIÓN DE LEAN MANUFACTURING

ITEM	ETAPA					
1	Etapa 1: Diagnostico de la empresa					
	Productividad de la empresa Controles e indicadores					

	1.3. Diagrama de Ishikawa								
	1.4. Identificación de causa raíz								
2	Etapa 2: Aplicación de herramientas Lean Manufacturing								
	2.1. Kaizen (Mejora continua): Implementación de programa de								
	capacitación y entrenamiento de personal.								
	2.2. Ingeniería de métodos y SMED.								
	 2.2.1. Propuesta y validación de cambio de método de desinfección 								
	 2.2.2. SMED aplicando el cambio del método de desinfección 								
	2.3. Estandarización de trabajo.								
	2.3.1. Creación de procedimiento de selección de pollo beneficiado								
	2.3.2. Resultados obtenidos después de la aplicación del nuevo								
	procedimiento.								
	2.4. Mantenimiento preventivo Total.								
	2.5. Análisis ECRS del proceso de corte de patas y cabeza								
3	Etapa 3: Evaluación de la propuesta								
	3.1. Análisis comparativo de productividad antes y después de la								
	aplicación de herramientas de Lean Manufacturing.								
4	Etapa 4: Análisis económico								
	4.1. Cantidad de eliminaciones de producto.								
	4.2. Ventas perdidas.								
	4.3. Costos generados de la implementación de herramientas Lean.								
	4.4. Diferencia de producto sin eliminar.								
	4.5. Valor promedio mensual ahorrado, post aplicación herramientas								
1	Lean.								

Flujo de retorno, post – aplicación de herramienta Lean Elaboración propia

A. Etapa 1: Diagnostico de la empresa

1.1. Productividad de la empresa.

La empresa en estudio se dedica a ofrecer a sus clientes, productos de la mejor calidad posible, proveniente del sacrificio de aves vivas, las cuales siguen un proceso de beneficiado continuo hasta llegar a obtener un producto final (carcasa o pollo beneficiado), con el fin de satisfacer la demanda existente de la población por este alimento.

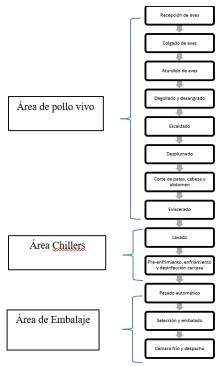


Fig.1. Proceso productivo de pollo beneficiado Fuente: Adaptado de Pérez y Vásquez. [16]

Según la Tabla 2, se observa que la productividad promedio obtenida durante el año 2020 fue de 0.89, el cual es un valor menor al estándar impuesto por la empresa (STD: 0.98), evidenciándose así, que el área de producción de pollo

beneficiado necesita realizar mejoras, con el objetivo de optimizar productividad, así como calidad de producto.

TABLA 2. RESULTADO DE PRODUCTIVIDAD

MESES	EFICIENCIA	EFICACIA	PRODUCTIVIDAD
EN	97.8%	88.2%	0.86
FEB	98.1%	90.8%	0.89
MAR	97.8%	91.3%	0.89
ABR	98.2%	91.5%	0.90
MAY	97.9%	88.7%	0.87
JUN	97.9%	89.2%	0.87
JUL	98.2%	91.8%	0.90
AGO	97.6%	90.8%	0.89
SET	97.5%	88.7%	0.86
OCT	97.1%	89.7%	0.87
NOV	97.6%	91.3%	0.89
DIC	97.4%	94.4%	0.92
	PROMEDIO		0.89

Fuente: Adaptado de Pérez y Vásquez. [16]

1.2. Controles e indicadores.

En cuanto al control de mejoras y desarrollo de habilidades del personal existen programas, pero no se encontró evidencia de que lleve a cabo. Mientras que, en control de indicadores de equipos de producción se recolecto la siguiente información.

TABLA 3.
INDICADORES DE MANTENIMIENTO DE EQUIPOS DE PRODUCCIÓN
DEL AÑO 2020

EQUIPOS	DISPONIBI LIDAD	CONFIAB ILIDAD	MANTENIBILIDAD
Aturdidor	95.0 %	47.5%	100%
Killer	97.8%	82.0%	100%
Escaldador Lincon	98.1%	79.0%	100%
Escalsador Meyn	97.7%	70.8%	100%
Desplumador Lincon	98.5%	55.6 %	100%
Desplumador Meyn	96.9%	53.3 %	100%
Cortador De Patas	94.5 %	40.8%	100%
Cortador De Cabeza	98.0%	62.3%	100%
Lavador Estático	99.2%	85.1%	100%
Pre-Chiller	99.3%	87.7%	100%
Chiller	99.3%	87.%	100%
Balanza Digital Aérea	96.6%	72.2%	100%
Balanza Digital Plataforma	98.1%	79.0%	100%
PROMEDIO	97.6%	69.5%	100%

Fuente: Adaptado de Pérez y Vásquez. [16]

Según la Tabla 3, se deduce que los equipos presentan una probabilidad de 69.5% que estos realicen correctamente su función durante el periodo de trabajo (confiabilidad) y una probabilidad de 97.6% de que estos se encuentren operativos cuando sea requerido (disponibilidad).

1.3. Diagrama de Ishikawa.

Para identificar las causas que están generando la baja productividad de la empresa, se realizó un diagrama de Ishikawa, donde se encontraron 8 causas raíz, las cuales serían las responsables del problema, así como de frenar el desarrollo y crecimiento óptimo de esta.

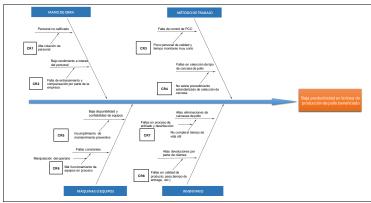


Fig.2. Diagrama de Ishikawa del proceso de pollo beneficiado Fuente: Adaptado de Pérez y Vásquez. [16]

1.4. Identificación de causa raíz.

Posteriormente, a la elaboración del análisis causa raíz (Ishikawa), se procedió con la guía de entrevista al personal de la empresa para determinar el impacto e importancia de cada causa raíz, asimismo se tabuló los datos obtenidos, los cuales fueron validados por el método de Alfa de Cronbach. Los resultados obtenidos se muestran en la Tabla 4.

TABLA 4. RESUMEN DE MATRIZ DE PRIORIZACIÓN

CR	CAUSAS RAIZ	RESUL TADO DE ENTR EVIST AS	% IMPA CTO	% ACUMU LADO
CR1	Falta de entrenamiento y compensación por parte de la empresa	50	15%	15%
CR4	No existe procedimiento estandarizado de selección de carcasa	50	15%	30%
CR3	Poco personal de calidad y tiempo de monitoreo muy corto	46	14%	45%
CR6	Mal funcionamiento de equipos en proceso	46	14%	59%
CR5	Incumplimiento de mantenimiento preventivo	44	13%	72%
CR7	Fallas en proceso (enfriamiento y desinfección)	42	13%	85%
CR8	Fallas en calidad de producto, peso, tiempo de entrega, etc.	26	8%	93%
CR1	Alta rotación de personal	24	7%	100%

Fuente: Adaptado de Pérez y Vásquez. [16]

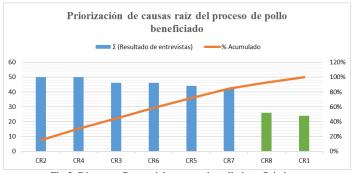


Fig.3. Diagrama Pareto del proceso de pollo beneficiado Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 2 y Figura 5, se observa todas las causas raíz que están generando la baja productividad en la producción de pollo beneficiado de la empresa; siendo el 80% de estas las que generan más problemas, razón por la cual se enfocarán en estas para las mejoras mediante aplicación de herramientas Lean Manufacturing.

- B. Etapa 2: Aplicación de herramientas Lean Manufacturing
- 2.1. Kaizen (Mejora continua): Implementación de programa de capacitación y entrenamiento de personal.

CR2: Falta de entrenamiento del personal.

Con apoyo de RR.HH, se vienen capacitando a todos los trabajadores que son parte del proceso de producción de pollo beneficiado, para que así puedan poner en práctica los conocimientos adquiridos, disminuyendo así el error humano. A continuación, en la Tabla 5 se presenta el cronograma de capacitaciones para el personal y su porcentaje de ejecución.

a. Planear y Ejecutar:

TABLA 5. CRONOGRAMA DE CAPACITACIÓN, ENTRENAMIENTO DEL PERSONAL Y PORCENTAJE DE EJECUCIÓN

Mess 2020																
TEMAS A CAPACITAR Y ENTRENAR	RESPONSABLE	DIRIGIDO	P/E	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic	META
Lineamientos HACCP	Dr. Harol Santillán	Producción	P													100%
Lineamientos HACCP	Dr., Harol Santilan	Produccion	E													100%
Inocuidad alimentaria	Blgo. Vásquez Jáuregui	Producción	P	_			_									100%
			E	_		_	_									
Proceso productivo de pollo beneficiado	Ing. Alexis Tirado	Producción	P E	⊢	_	-		_	_		_	H	_	_	_	0%
<u> </u>		D 1 1/ 2/		⊢		-	REP.					⊢	_	-	-	
Puntos críticos y de control	Dr Harol Santillán	Producción/M antto.	E	⊢		_	-	REP.				\vdash	-			0%
	P	-		-	_	KLF.			_	-	-	\vdash	_			
Selección e identificación in situ de carcasa de pollo	Blgo. Vásquez Jáuregui	Producción	E	\vdash								\vdash	_	_	Н	100%
		P	t												1000	
Manejo de equipos de producción	Ing. Gutierrez Miranda	Producción	E													100%
Manejo de equipos Linco y Meyn	Ing. Gutierrez Miranda	Producción	P													100%
Manejo de equipos Enico y Meyii	ing. Guierrez Mitanua	Producción	E													
Manejo y programación de balanza digital aérea	Proveedor de equipo	Mantto	P	╙	_	_	_		_		_	\perp	_	_		0%
			E	┞						REP.		_				0,0
Reprogramado: Proceso productivo de pollo benficiado	Ing. Alexis Tirado	Producción	P E	<u> </u>									_	_	-	100%
	-			⊢	_	⊢	-	-	_				_	⊢	_	
Reprogramado: Puntos críticos y de control	Dr., Harol Santillán	Producción/M	P	<u> </u>								_		_	-	100%
		antto.	E	⊢	_	⊢	⊢	⊢	_		_	L		_		
Compromiso laboral y trabajo en equipo (r.r.h.h.)	Lic. Anabel Gaspar	Producción/M	P	⊢		_	_	_				⊢	_		-	
	-	antto.	E													

Fuente: Adaptado de Pérez y Vásquez. [16]

b. Verificar: Este paso se realizó mediante la aplicación de un check- list.

TABLA 6.
CONSOLIDADO DE % DE CUMPLIMIENTO DE CAPACITACIONES Y
ENTRENAMIENTO DE PERSONAL

CONSOLIDADO DE % CUMPLIMIENTO DE CAPACITACIONES							
ITEN	VERIF. 1 (14-05-21)	VERIF. 2 (26-08-21)	VERIF. 2 (07-10-21)				
Resultado	90%	92%	93%				
Interpretación	Bueno	Bueno	Bueno				

Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 6 se evidencia la aplicación del check list teniendo como resultados: un nivel bueno del 90% para el 14 de mayo, un nivel bueno del 92% el 26 de agosto y un nivel bueno del 93% el 07 de octubre.

c. Actuar:

Hasta el momento los resultados obtenidos en las verificaciones son buenos, en caso de obtener un valor menor a 90%, se procederá con una acción inmediata.

2.2. Ingeniería de métodos y SMED.

CR3: Poco personal de calidad y tiempo de monitoreo muy corto.

CR7: Fallas en proceso (enfriamiento y desinfección).

2.2.1. Propuesta y validación de cambio de método de desinfección.

Método actual – Inmersión:

Actualmente, el método de desinfección de carcasa de pollo es por inmersión y se realiza en el pre-chiller y chiller (los cuales deben ser llenado con 5000 litros de agua más hielo

constante), la inyección de desinfectante es mediante bombas ProMinent (2 und) y el monitoreo de concentración (120 – 150 ppm) que ejecuta el inspector de calidad, se realiza una primera verificación al iniciar el proceso y luego cada hora en ambos chillers, al mismo tiempo se encarga de hacer las regulaciones del caudal de las bombas (de acuerdo al resultado de concentración).

Pero dicho método (Inmersión) genera lo siguiente:

TABLA 7.

RESULTADOS DEL USO DEL MÉTODO DE INMERSIÓN EN EL

PROCESO DE POLLO BENEFICIADO
RESULTADOS DEL MÉTODO DE INMERSIÓN
*Elevado consumo de desinfectante (7.5L / Turno)
*Tiempo perdido del personal de calidad al realizar monitores c/h
*Consumo de energía por el uso de 2 bombas de inyección
*Deficiente desinfección de carcasas de pollo, debido a la inestabilidad de la concentración del desinfectante

Fuente: Adaptado de Pérez y Vásquez. [16]

Método propuesto – Aspersión (Aplicado desde Julio – 2021).

El año 2020 - 2021, se ha venido validando el método de aspersión en planta de beneficio, a través de pruebas piloto con mochilas de aspersión en forma de abanico, con una aplicación directa de 35 seg, 45 seg y 60 seg; obteniendo resultados favorables en cuanto a carga microbiana, la cual es el indicador fundamental para asegurar la vida útil del producto, asimismo genera beneficios durante el proceso de beneficiado (Tabla 8).

TABLA 8. COSTO DE MATERIALES Y EQUIPOS EN LA IMPLEMENTACIÓN DEL MÉTODO DE ASPERSIÓN

DEE METODO DE MOTORIO						
COSTO DE IMPLEMENTACIÓN DE MÉTODO ASPERSIÓN						
Materiales y equipos	Unidad	Cantidad	Precio (\$)			
Cabina de aspersión con inyectores	U	2	2500			
Bomba de transpase propia del equipo	u	1	850			
Cilindros de 200 L vacíos (rehusado del desinfectante)	U	5	-			
TOTAL			3350			

Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 9 se evidencia que el costo de mano de obra por el especialista instalador y el ayudante en total es de \$ 64.00 por un total de 16 horas.

TABLA 9. COSTO DE MANO DE OBRA

COSTO DE MILITO DE OBIGIT					
MANO OBRA CANTIDAD HORAS PRECIO/H (\$)		TOTAL (\$)			
Especialista instalador	1	8	5.00	40.00	
Ayudante	1	8	3.00	24.00	
	TOTAL	ı		64.00	

Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 10 se calculó el costo total de la implementación el cual asciende a S/ 3,469.00.

TABLA 10. COSTO DE OTROS SERVICIOS DE LA IMPLEMENTACIÓN

OTROS TRABAJOS	TOTAL (\$)
Tablero eléctrico	30.00
Transporte de equipo	25.00
TOTAL	55.00
COSTO TOTAL	
IMPLEMENTACION (\$)	3,469.00

Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 11 se establecen los resultados obtenidos mediante el método de aspersión durante el periodo de Julio a Diciembre del 2021.

TABLA 11. RESULTADOS DEL USO DEL MÉTODO DE ASPERSIÓN (JULIO – DICIEMBRE – 2021)

DICIEMBRE – 2021)
RESULTADO DEL MÉTODO DE ASPERSIÓN
*Reducción de consumo de desinfectante en un 80% (1.5 L/Turno)
*Ahorro de monitores c/h, solo se realizará la medición inicial de concentración
*Ahorro del 50% energía en uso bombas de inyección dado que solo se usa 1
*Eficiente desinfección el 99.9% de carcasas de pollo se desinfectan con una solución
estable

Fuente: Adaptado de Pérez y Vásquez. [16]

2.2.2. SMED aplicando el cambio del método de desinfección.

En las tablas 12 y 13, se observa que existe una reducción de tiempo de actividades, cuando se cambia el método de desinfección; logrando un ahorro de tiempo para el personal encargado (calidad), llegando a obtener una diferencia de 4 h 43 min.

TABLA 12. SMED – DESINFECCIÓN CON EL MÉTODO DE INMERSIÓN

N°	ACTIVIDAD	TIPO OPERACIÓN	TIEMPO									
	Desinfección con el método de Inmersión											
1	1 Encendido de llenado de agua fría a pre-chiller y chiller E											
2	Traslado de cilindro con desinfectante al lugar de bombas Pro Minent	E	15min									
3	Conexión de manguera de absorción de bomba al depósito con desinfectante	E	5 min									
4	Encendido de 2 bombas ProMinent	I	6min									
4	Encendido de espirales y turbulencia de pre-chiller y chillers	I	10min									
5	Medición inicial de concentración (120 - 150 ppm) de desinfectante (por calidad) tanto en pre-chiller como en chiller	I	10min									
6	Regulación de caudal de bombas	I	10min									
7	Encendido de serpentin de adición de hielo al pre-chiller y chiller	I	5min									
8	Monitoreo de concentración de desinfectante cada hora, por parte de calidad, debido a que la adicción de hielo desestabiliza la concentración. (En 8 horas de trabajo se realizan 7 mediciones).	I	70min									
9	Regulación de cudal de bombas de acuerdo al resultado de concentración (6-5 regulaciones en turno)	I	60min									
	Sumatoria de tiempo											

Fuente: Adaptado de Pérez y Vásquez. [16]

TABLA 13. SMED – DESINFECCIÓN CON EL MÉTODO DE ASPERSIÓN

N°	ACTIVIDAD	TIPO OPERACIÓN	TIEMPO									
	Desinfección con el método de Inmersión											
1	Llenado de 4-5 cilindros de 200 L con agua fria	E	35min									
2	Despacho y traslado de cantidad exacta de desinfectante al lugar de cilindros	E	15min									
3	Adición de dosis de desinfectante a cada cilindro	I	8min									
4	Medición inicial de concentración (120 - 150 ppm) de desinfectante en cada cilindro	I	20min									
4	Encendido de cabinda de aspersión y regulación de velocidad de lina (tiempo de contacto min 40 seg).	I	10min									
5	Llenado de 4-5 cilindros de 200 L con agua fría	E	35min									
	Sumatoria de tiempo											

Fuente: Adaptado de Pérez y Vásquez. [16]

2.3. Estandarización de trabajo.

CR4: No existe procedimiento estandarizado de selección de carcasas.

2.3.1. Creación de procedimiento de selección de pollo beneficiado.

Se procedió con la creación del procedimiento, el cual está conformado por: objetivo, alcance, responsabilidades, definiciones y descripción del procedimiento.

Fig.4. Procedimiento de selección de carcasa Fuente: Adaptado de Pérez y Vásquez. [16]

2.3.2. Resultados obtenidos después de la aplicación del nuevo procedimiento.

Esto se midió con la cantidad de reprocesos de selección o clasificación de carcasas de pollo, post aplicación y capacitación del nuevo procedimiento al personal del área encargada.

TABLA 14. RESULTADOS DE REPROCESO (RE – SELECCIÓN) X DEVOLUCIONES DEL 2021

	CONSOLII	DADO DERE - S	ELECCIÓN DE CAF	RCASAS X DEV	OLUCIONES	3
	MESES	Devolución despacho (kg)	Devolucion cliente / cantidad (kg)	Total mensual (kg)	Total (kg)	(%)
	e Enero	54,990.00	6,500.00	61,490.00		
	Febrero Marzo	44,785.00	13,000.00	57,785.00		
Sin .	Marzo	49,140.00	6,500.00	55,640.00	355,420.00	100%
S.	Abril	51,285.00	9,750.00	361,035.00	333,420.00	100%
	Mayo	54,600.00	7,800.00	62,400.00		
	Junio	47,970.00	9,100.00	57,070.00		
	e Julio	32,630.00	6,500.00	39,130.00		
	Agosto Septiembre Octubre	26,520.00	-	26,520.00		
Sin	Septiembre	19,500.00	5,200.00	24,700.00	137,995.00	39%
S.	Octubre	13,000.00	1,950.00	14,950.00	137,993.00	39%
	Noviembre	12,025.00	1,625.00	13,650.00		
	Diciembre	15,470.00	3,575.00	19,045.00		

Fuente: Adaptado de Pérez y Vásquez. [16]

Según la Tabla 14, se evidencia que post - aplicación del procedimiento solo el 39% de estas fueron reprocesadas; demostrando así que, la creación del documento de selección de carcasa más la capacitación y entrenamiento in situ culminados en junio según cronograma de capacitación (Tabla 5) está teniendo resultados favorables en el re-proceso de pollo beneficiado.

2.4. Mantenimiento preventivo Total.

CR6: Mal funcionamiento de equipos en proceso.

CR5: Incumplimiento de mantenimiento preventivo.

TABLA 15.

POLLO BENEFICIADO

PROCESO	EQUIPOS	CANTIDAD (UND.)
	Aturdidor	1
	Killer	1
	Escaldador Lincon	1
	Ecaldador Meyn	1
	Desplumador Lincon	1
D	Desplumador Meyn	1
Producción de pollo beneficiado	Cortador de patas	1
belleficiado	Cortador de cabeza	1
	Lavador estático	1
	Pre - chiller	1
	Chiller	1
	Balanza digital aérea	1
	Balanza digital plataforma	2

Fuente: Adaptado de Pérez y Vásquez. [16]

TABLA 16. CRONOGRAMA DE MANTENIMIENTO PREVENTIVO PARA LOS EQUIPOS DE PRODUCCIÓN - 2021

															2)	20														T	Minutos	Tie mpo	Tie mpo
Equipo	Actividad	Frecuencia		ero	Fe	bren) A	dara	0	Abr	il	Ma	70	Jı	nio	,	ulio	1	Lgas	to S	Setie	mb.	Oct	abre	Non	dem			P at	TC	por	total /	total/
			1 2	3 -	1 1	3	4 1	2 3	4 1	2	4	1 2	3 4	1 2	3 4	1	2 3	4 1	2 3	4 1	2	3 4	1 2	3 4	1	2 3	4 1	2 3	4		actividad	actividad	Equipo
	Medición de voltaje y frecuencia	Semanal	I	П	П	П			П	П	П	ш	I	ш	Ш	П	П	I	ш	ш	П				П	П			4	18	5	240	
Aturdidor	Medición amperaje	Semanal	Т	П	П	П		Т	П	П	П	П	Ι	П	П	П	П	Т	П	П	П			П	П	П		П	4	18	5	240	600
	Revisión mecanica	Mensual	Т	П	П	П		Т	П	П	П	П	Т	П	Π	П	П	Т	П	П	П			П	Π			П		12	10	120	l
Killer	Afilado de cuchilla	Semanal	Ι	П	П	П		Т	П	П	П	П	Ι	П	П	П	П	Ι	П	П	П			П	П				4	18	5	240	600
A.III.	Cambio de cuchilla	Quincenal	I	П	П	П			П	П	П	ш	1	ш	Ш	П	П	I	ш	ш	П				П	П			2	54	15	360	0.00
	Revisión de tablero eléctrico	Quincenal	Т	П	П	П		Τ	П	П	П	ш	Т	П	П	П	П	Т	П	П	П			П	П	П			2	54	20	480	
Scaldador Lincon	Revisión de inyección de vapor	Semanal	Т	П	П	П		Т	П	П	П	П	Т	П	Π	П	П	Т	П	П	П			П	Π	П		Т	4	18	15	720	1920
	Limpieza química	Trimestral	Ι	П	П	П			П	П	П	П	Т	П	П	П	П	Ι	П	П	П			П	П					4	180	720	
	Revisión de tablero eléctrico	Quincenal	I	П	П	П			П	П	П	ш	1	ш	Ш	П	П	L	ш	ш	П				П	П			2	54	20	480	
Scaldador Meyn	Revisión de inyección de vapor	Semanal	Т	П	П	П		Т	П	П	П	П	Ι	П	П	П	П	Т	П	П	П			П	П	П		П	4	18	15	720	1920
	Limpieza química	Trimestral	Т	П	П	П		Т	П	П	П	П	Т	П	Π	П	П	Т	П	П	П			П	Π	П		П	Τ.	4	180	720	l
	Ajuste de discos	Semanal	Т	П	П	П		Т	П	П	П	П	Т	П	Π	П	П	Т	П	П	П			П	Π			Т	4	18	15	720	1680
Desplamador Lincon	Revisión de motor	Quincenal	Т	П	П	П		Т	П	П	П	П	т	П	Π	П	П	т	П	П	П			П	П	П		П	2	54	20	480	
-	Limpieza y engrase de cabezal de discos	Quincenal	т	П	П	П	П	Т	П	П	П	П	т	П	П	П	П	т	П	П	П	П	П	П	П	П	Т	П	2	24	20	480	1
	Ajuste de discos	Semanal	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	Т	П	П	Т	Т	4	18	15	720	720 480 1680 480
Desplamador Meyn	Revisión de motor	Quincenal	Т	П	П	П		Т	П	П	П	П	Т	П	Π	П	П	Т	П	П	П			П	Π	П		П	2	14	20	480	
	Limpieza y engrase de cabezal de discos	Quincenal	Т	П	П	П		Т	П	П	П	П	т	П	П	П	П	т	П	П	П			П	П	П		П	2	54	20	480	
Cortador de patas	Afilado de disco cortador	Semanal	т	П	П	П	П	Т	П	П	П	П	т	П	П	П	П	т	П	П	П	П	П	П	П	П	П	П	4	18	10	480	840
ortador de patas	Limpieza y engrase de engranaje	Quincenal	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	Т	Т	2	34	15	360	840
"ortador de cabeza	Afflado de disco cortador	Semanal	Т	П	П	П		Т	П	П	П	П	Т	П	Π	П	П	Т	П	П	П			П	Π			Т	4	18	10	480	840
ortador de cateza	Limpieza y engrase de engranaje	Quincenal	Т	П	П	П		Т	П	П	П	П	т	П	Π	П	П	т	П	П	П			П	П	П		П	2	54	15	360	840
avador estático	Cambio de boquillas aspersoras	Mensual	т	П	П	П	П	Т	П	П	П	П	т	П	П	П	П	т	П	П	П	П	П	П	П	П	Т	т		12	30	360	1320
avador estatico	Revisión neumática	Semanal	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	Т	П	П	Т	Т	4	18	20	960	1320
re - chiller	Revisón de tablero	Mensual	Т	П	П	П		Т	Π	П	П	П	Т	П	Π	П	П	Т	П	П	П			П	Π			П	1	12	20	240	960
rie - cimei	Ajuste de velocidad de espiral	Semanal	т	П	П	П		Т	П	П	П	П	т	П	П	П	П	т	П	П	П			П	П	П		П	4	18	15	720	900
Thiller	Revisón de tablero	Mensual	т	П	П	П	П	Т	П	П	П	П	т	П	П	П	П	т	П	П	П	П	П	П	П	П	Т	П		12	20	240	960
niter	Ajuste de velocidad de espiral	Semanal	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	т	П	П	Т	Т	4	18	15	720	900
Balanza digital áerea	Revisión neumática y eléctrica	Mensual	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	Т		1	12	30	360	400
saunza uigitat aerea	Calibración	Trimestral	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	Т		П	П	Т		Π.	4	30	120	480
Balaza digital	Revisión eléctrica	Mensual	т	П	П	П	П	Т	П	П	П	П	Т	П	П	П	П	т	т	П	П	П	Т	т	П	П	Т	т	1	12	20	240	360
lataforma	Calibración	Trimestral	1	П	П	П	т	_	П	П	П	11	1	т	т	П	11	1	т	11	П	т	1	\vdash	П	т	\neg	_	Τ.	4	30	120	360

Fuente: Adaptado de Pérez y Vásquez. [16]

Una vez presentado y aprobado el cronograma de mantenimiento de equipos de producción, se evaluó el porcentaje de cumplimiento, mediante un check – list.

TABLA 17. CONSOLIDADO DE % DE CUMPLIMIENTO DE EJECUCIÓN DE CRONOGRAMA - 2021

	CITOI	10010111111 2021										
CONSOLIDADO DE % CUMPLIMIENTO DE CRONOGRAMA DE MANTENIMIENTO PREVENTIVO												
ITEN	ITEN Verif. 1 (10-03- Verif. 2 (18-06-21) Verif. 3 (10- Verif. 4											
111211	21)	v ei ii. 2 (10-00-21)	09-21)	(13-11-21)								
Resultado	90%	84%	90%	92%								
Interpretacion	Bueno	Necesita atención	Bueno	Bueno								

Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 17 se evidencia la aplicación del check list teniendo como resultados: un nivel bueno del 90% para el 10 de marzo, un nivel de necesita atención del 84% el 18 de junio, un nivel de bueno del 90% el 10 de septiembre y un nivel bueno del 90% el 13 de noviembre.

TABLA 18.

INDICADORES OBTENIDOS POST - APLICACIÓN Y VERIFICACIÓN DEL CUMPLIMIENTO DEL PROGRAMA DE MANTENIMIENTO

Aturdidor

PREVENTIVO – 2021											
OUIPOS	DISPONIVILIDAD	CONFIABILIDAD	MANTENIBILIDAD								
QUITOS	(%)	(%)	(%)								
	98.30%	98.30%	100.00%								

				MESES	HORAS REALES	HORAS PROGRAMADAS	EFICIENCI
Killer	99.00%	96.00%	100.00%				
Escaldador Lincon	99.00%	94.30%	100.00%	Ene	177	195	90.80%
Ecaldador Meyn	99.20%	96.00%	100.00%	Feb	178	195	91.30%
Desplumador Lincon	99.40%	92.40%	100.00%	Mar	182	195	93.30%
Desplumador Meyn	98.20%	82.10%	100.00%	Abr	183	195	93.80%
Cortador de patas	96.90%	75.60%	100.00%	May	185	195	94.90%
Cortador de cabeza	99.10%	91.30%	100.00%	Jun	186	195	95.40%
				Jul	185	195	94.90%
Lavador estático	99.60%	96.80%	100.00%	Ago	187	195	95.90%
Pre - chiller	99.60%	95.20%	100.00%		187	195	95.90%
Chiller	99.60%	95.20%	100.00%	Sep			
Balanza digital aérea	98.10%	90.10%	100.00%	Oct	189	195	96.90%
Balanza digital plataforma	98 90%	92.40%	100.00%	Nov	188	195	96.40%

Fuente: Adaptado de Pérez y Vásquez. [16]

2.5. Análisis ECRS del proceso de corte de patas y cabeza

TABLA 19. ANÁLISIS ECRS DEL PROCESO DE CORTE DE PATAS Y CABEZA

	THATELSIS BEET ROCESO BE CORTE BETTITAL												
		ACTUAL							s ECRS			1	PROPUESTA DE MEJORA
N°	ACTIVIDAD	Tips de activida	Distancia recorrido (m)	Trempo de cielo de la actividad (seg.)	VENTANA DEL VALOR	Tipo de desperdicio	BLIMINAR	COMBINAR	REDUCIR	SIMPLIFICAR	Tiemps prevists en seg.	Distancia de recorrido (m)	Acción mejora ECRS
	Pollo desplumado transportado a cortadora de cabezas	⇔		12	No agrega valor y es necesaria	traslados			x		8		Incremento de la velocidad de la linea
2	Corte de cabeza por maquina	0		4	Si agrega valor y es necesaria				x		2		Cambio de la calidad de las cuchillas (acero inoxidable) del cortador neumático / mantenimiento preventivo
	Pollo transportado a cortadora de patas	Ų		5	No agrega valor y es necesaria	traslados			x		2		Incremento de la velocidad de la linea
4	Corte de patas por maquina	0		5	Si agrega valor y es necesaria				x		3		Cambio de la calidad de las cuchillas (acero inoxidable) de la cortadora de patas / mantenimiento preventivo
	Carcasa cae a mesa receptora y es colgado a la linea de nuevo	0		4	No agrega valor y es necesaria						4		
6	Traslado a linea de eviscerado	Ų		8	No agrega valor y es necesaria	traslados			x		5		Incremento de la velocidad de la linea
Total				38							24		

Fuente: Adaptado de Pérez y Vásquez. [16]

Según la Tabla 24, se evidencia que existe una mejora en la reducción de tiempos en el proceso, claro esto con el cumplimiento del análisis ECRS y el mantenimiento preventivo propuesto.

C. Etapa 3: Evaluación económica

Cálculo de productividad post aplicación de herramientas (2020):

En la Tabla 20 se identificó que el total promedio de la eficiencia durante el periodo de enero a diciembre es de 98.90%.

TABLA 20. RESULTADOS DE EFICIENCIA

MESES	PRODUCCION REAL	PRODUCCION PROGRAMADA	EFICIENCIA
Ene	820000	837200	97.90%
Feb	801000	816400	98.10%
Mar	784250	804000	97.50%
Abr	834660	843700	98.90%
May	803095	812500	98.80%
Jun	804830	814570	98.80%
Jul	807880	814900	99.10%
Ago	799480	804500	99.40%
Sep	821862	827842	99.30%
Oct	787400	802400	99.40%
Nov	811120	814200	99.60%
Dic	830482	834500	99.50%
	PROM	IEDIO	98.90%

Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 21 se identificó que el total promedio de la eficacia durante el periodo de enero a diciembre es de 94.60%.

> TABLA 21. RESULTADOS DE EFICACIA

MESES	HORAS REALES	HORAS PROGRAMADAS	EFICIENCIA
Ene	177	195	90.80%
Feb	178	195	91.30%
Mar	182	195	93.30%
Abr	183	195	93.80%
May	185	195	94.90%
Jun	186	195	95.40%
Jul	185	195	94.90%
Ago	187	195	95.90%
Sep	187	195	95.90%
Oct	189	195	96.90%
 Nov	188	195	96.40%

Dic	187	195	95.90%
	PROM	IEDIO	94.60%

Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 22 se identificó que el total promedio de la productividad durante el periodo de enero a diciembre es de 0.94.

TABLA 22. RESULTADOS DE PRODUCTIVIDAD

MESES	EFICIENCIA	EFICACIA	PRODUCTIVIDAD
Ene	97.90%	91%	0.89
Feb	98.10%	91%	0.90
Mar	97.50%	93%	0.91
Abr	98.90%	94%	0.93
May	98.80%	95%	0.94
Jun	98.80%	95%	0.94
Jul	99.10%	95%	0.94
Ago	99.40%	96%	0.95
Sep	99.30%	96%	0.95
Oct	99.40%	97%	0.96
Nov	99.60%	96%	0.96
Dic	99.50%	96%	0.95
1	PROMEDIO		0.94

Fuente: Adaptado de Pérez y Vásquez. [16]

TABLA 23. COMPARATIVO DE PRODUCTIVIDAD (2020 – 2021)

COMPARATIVO DELICODOCTIVIDAD (2020 - 2021)							
MESES	PRODUCTIVIDAD		IDAD	PRODUCTIVIDAD			
MESES		2020		2021	1		
Ene	Ene	0.86	0.86	0.889	No se incluye		
Feb	Feb	0.89	0.89	0;380]		
Mar	Mar	0.89	0.89	00,991	Aplicación de		
Abr	Abr	0.90	0.90	00993	herramientas		
May	May	0.87	0.87	009944	lean a un 80%		
Jun	Jun	0.87	0.87	00994	J		
Jul	Jul	0.90	0.90	0094]		
Ago	Ago	0.89	0.89	00955	A		
Sep	Set	0.86	0.86	00955	Aplicación al		
Oct	Oct	0.87	0.87	00966	100%		
Nov	Nov	0.89	0.89	0,96			
Dic	Dic	0.92	0.09	095° 0.95			
PROMEDIO 1	Promedio	0.89	0.92	0.93 0 _{0.94}	J		

Fuente: Adaptado de Pérez y Vásquez. [16]

Según la Tabla 23, se observa que la productividad promedio obtenida después de la aplicación de las herramientas Lean es de 0.94, evidenciándose una mejora en comparación al valor del 2021; asimismo se espera que el próximo año la empresa pueda llegar al STD propuesto: 0.98.

D. Etapa 4: Análisis comparativo de productividad antes y después de la aplicación de herramientas de Lean Manufacturing

Para evaluar el impacto económico, primero se calculó las ventas perdidas (2020), en base a las eliminaciones de producto, ya sea por deterioro de producto, fallas humanas y/o equipos.

En la Tabla 24 se obtuvo el promedio de eliminación para el periodo 2020, alcanzando un total de 218051 kg.

TABLA 24.

ELIMINACIONES DE PRODUCTO - 2020

MESES	ELIMINACIONES 2020 (KG)
Ene	18400
Feb	15600
Mar	17800
Abr	14500
May	17482
Jun	16879
Jul	14500

Ago	19400
Sep	19784
Oct	22478
Nov	19741
Dic	21487
PROMEDIO	218051

Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 25 se obtuvo el total de ventas perdidas, el cual fue calculado mediante la multiplicación de los kilos perdidos, resultados obtenidos de la Tabla 24 por el precio por Kg (4.5). El monto total asciende a S/ 981229.5.

TABLA 25. VENTAS PERDIDAS - 2020

VENTASTERDIDAS - 2020							
KILOS PERDIDOS	PRECIO / KILO	TOTAL PERDIDO (S/)					
1 ERDIDOS	KILO	TERDIDO (5/)					
218051	4.5	981229.5					

Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 26 se detallaron los costos generados por la implementación de las herramientas, el monto total asciende a S/13401.5.

TABLA 26. COSTOS GENERADOS DE LA IMPLEMENTACIÓN DE HERRAMIENTAS LEAN

HERRAMIENTA LEAN	COSTO (\$)	COSTO (S/)			
Kai <en< td=""><td>0</td><td>-</td></en<>	0	-			
Ingeniería método	3469	12141.5			
SMED	0	-			
Estandarización trabajo	0	-			
TPM	0	-			
ECRS	360	1260			
TOTAL	TOTAL				

Fuente: Adaptado de Pérez y Vásquez. [16]

Por último, se evaluó el costo beneficio de la aplicación de herramientas en la empresa

TABLA 27. DIFERENCIA DE PRODUCTO SIN ELIMINAR (2020 – 2021)

MESES	ELIMINACIONES	ELIMINACIONES	DIFERENCIA
MESES	2019 (KG)	2020 (KG)	(KG)
Ene	18400	17200	1200
Feb	15600	15400	200
Mar	17800	19750	-1950
Abr	14500	9040	5460
May	17482	9405	8077
Jun	16879	9740	7139
Jul	14500	7020	7480
Ago	19400	5020	14380
Sep	19784	6004	13780
Oct	22478	5000	17478
Nov	19741	2000	17741
Dic	21487	4580	16907
Total (Kg)	218051	110159	107892
Total (S/)	981229.5	495715.5	485514

Fuente: Adaptado de Pérez y Vásquez. [16]

Fig.5. Comparativo de ventas perdidas y cantidad recuperada Fuente: Adaptado de Pérez y Vásquez. [16]

En la Tabla 28 se evaluó el valor promedio mensual ahorrado, este resultado es post aplicación de las herramientas, alcanzando un promedio de S/ 54221.00.

TABLA 28. VALOR PROMEDIO MENSUAL AHORRADO, POST APLICACIÓN HERRAMIENTAS LEAN

PROMEDIO (KG)	PRECIO / KILO	TOTAL PROMEDIO (S/)
12049.1	4.5	54221

Fuente: Adaptado de Pérez y Vásquez. [16]

Para calcular el valor promedio mensual de kg recuperados del 2021, se tomó desde el mes de abril, debido a que la implementación de herramientas Lean era significativa.

TABLA 29.

FLUJO DE RETORNO, POST – APLICACIÓN DE HERRAMIENTA LEAN

T LOJO DE RETORNO, I	FLUJO DE RETORNO, FOST – AFLICACION DE HERRAMIENTA LEAN							
CONCEPTOS / AÑOS	0	1	2	3				
A. INGRESOS TOTALES	S/ -	S/ 54,220.95	S/ 59,643.05	S/ 65,607.35				
Kg recuperados promedio		12049.00	13254.00	14579.00				
Precio Unitario x Kg		S/ 4.50	S/ 4.50	S/ 4.50				
Ingreso Por Ventas Perdidas		S/ 54,220.95	S/ 59,643.05	S/ 65,607.35				
Aporte Propio	S/ -							
B. EGRESOS TOTALES	S/ 13,401.50	S/ 12,245.84	S/ 17,892.91	S/ 19,682.20				
Inversión	S/ 13,401.50							
Gastos pre-operativos								
costo de Producción / compras								
Gastos Administrativos								
Gasto de Ventas								
Impuesto a la Renta		S/ 12,245.84	S/ 17,892.91	S/ 19,682.20				
C. FLUJO DE CAJA ECONÓMICO	-S/ 13,401.50	S/ 41,975.12	S/ 41,750.13	S/ 45,925.14				
Interés								
Amortización								
D. FLUJO DE CAJA FINANCIERO	-S/ 13,401.50	S/ 41,975.12	S/ 41,750.13	S/ 45,925.14				
FLUJO DE CAJA ACUMULADO	-S/ 13,401.50	S/ 28,573.62	S/ 70,323.75	S/ 116,248.89				

VAN =	84,864.23
TIR =	256%
PERIODO DE RECUPERACIÓN	0.32

Fuente: Adaptado de Pérez y Vásquez. [16]

Según la tabla 29, se visualiza que el periodo de recuperación de dinero es a los 0.32 años, y al finalizar el segundo año post implementación de las herramientas Lean se obtendrá un monto de 70 323.75 soles.

VI. RESULTADOS

Los resultados colocados en este artículo provienen de la Tesis denominada "Aplicación de herramientas Lean Manufacturing para mejorar la productividad de una empresa de beneficio de aves", elaborada para obtener el grado de Ingeniero Industrial [16].

A. LEAN MANUFACTURING

I. TPM

Nivel de disponibilidad.

El nivel de disponilidad durante la evaluación post – test es de 98.1% frente a un 97.6% en el pre - test, notándose un incremento de 0.51%.

TABLA 30 NIVEL DE DISPONIBILIDAD

DIMENSIÓN	TPM		SUB DIMENSIÓN	DISPONIBILIDAD	
INDICADOR		FO	RMULA	ANTES	DESPUÉS
Nivel de disponibilida	d	(MTBF) /((MTBF+MTTR)	97.6%	98.1%

Elaboración propia

Nivel de confiabilidad.

El nivel de confiabilidad durante la evaluación post – test es de 91.5% frente a un 69.5% en el pre - test, notándose un incremento de 31.65%.

TABLA 31 NIVEL DE CONFIABILIDAD

DIMENSIÓN	TPM		SUB DIMENSIÓN	CONFIA	BILIDAD
INDICADOR		FO	RMULA	ANTES	DESPUÉS
Nivel de confiabilidad	(a(-\lambda*TT)		P)/100) * 100%	69.5%	91.5%

Elaboración propia

Nivel de mantenibilidad.

El nivel de mantenibilidad durante la evaluación post – test es igual que el pre - test, notándose equilibrio en este indicador.

TABLA 32 NIVEL DE MANTENIBILIDAD

DIMENSIÓN	TPM		SUB DIMENSIÓN	MANTENIBILIDAD	
INDICADOR		FO	RMULA	ANTES DESPUÉS	
Nivel de mantenibilidad $(e^{(-\lambda*TT)})$		(P)/100) * 100%	100%	100%	

Elaboración propia

II. SMED

Tiempo ganado.

Se ha obtenido una reducción de tiempo de 4 horas con 43 minutos para el personal encargado de calidad, esto es generado por el cambio del metodo de desinfección.

TABLA 33 TIEMPO GANADO

DIMENSIÓN	SMED		SUB DIMENSIÓN	TIEMPO	GANADO
INDICADOR		FO	RMULA	ANTES DESPUÉS	
Tiempo ganado (Tiempo inici		ial) /(Tiempo final)	6h 11min	1h 28min	

Elaboración propia

III. ECRS

Tiempo ganado.

Se ha obtenido una reducción de tiempo en el procesode 4 segundos, esto es generado por el analisis ECRS y el ma.ntenimiento preventivo.

TABLA 34 TIEMPO GANADO

TIEMPO GANADO							
DIMENSIÓN		ECRS	SUB DIMENSIÓN	TIEMPO GANADO			
INDICADOR		FC	DRMULA	ANTES DESPU			
Tiempo ganado		(Tiempo inic	ial) /(Tiempo final)	28 seg	24 seg		

Elaboración propia

B. PRODUCTIVIDAD

IV. EFICIENCIA

Nivel de eficiencia.

El nivel de eficiencia durante la evaluación post – test es de 98.9% frente a un 97.8% en el pre - test, notándose un incremento de 1.12%.

TABLA 35

NIVEL DE EFICIENCIA

DIMENSIÓN	PRODUCTIVIDAD		SUB DIMENSIÓN	EFIC	IENCIA
INDICADOR		FO	RMULA	ANTES DESPUÉS	
Nivel de eficiencia		,	real) / (Producción sperada)	97.8%	98.9%

Elaboración propia

V. EFICACIA

Nivel de eficacia.

El nivel de eficacia durante la evaluación post – test es de 94.6% frente a un 90.5% en el pre - test, notándose un incremento de 4.53%.

TABLA 36 NIVEL DE EFICACIA

DIMENSIÓN	PRODUCTIVIDAD		SUB DIMENSIÓN	EFICACIA	
INDICADOR		FO	RMULA	ANTES DESPUÉS	
Nivel de eficacia		,	oajadas) / (Horas gramadas)	90.5%	94.6%

Elaboración propia

VI. PRODUCTIVIDAD

Nivel de productividad.

El nivel de cumplimiento durante la evaluación post – test es de 0.94 frente a 0.89 en el pre - test, notándose un incremento de 5.61%.

TABLA 37 NIVEL DE PRODUCTIVIDAD

THI VEE BETROBEETT VIBILE					
DIMENSIÓN	PRODUCTIVIDAD		SUB DIMENSIÓN	PRODUCTIVIDAD	
INDICADOR		FO	RMULA	ANTES DESPUÉS	
Nivel de productividad		Eficien	cia - Eficacia	0.89	0.94

Elaboración propia

VII. DISCUSIONES

Los resultados obtenidos de la Aplicación de herramientas Lean Manufacturing para mejorar la productividad son parte de la Tesis para obtener el grado de Ingeniero Industrial [16].

En el diagnóstico realizado se determina que las principales causas que afectan la productividad de la empresa (Tabla 4), son: falta de entrenamiento del personal, falta de procedimientos estandarizados, poco personal, mal funcionamiento de equipos, fallas en calidad de producto, etc. Siendo esto, respaldado por los trabajadores de la organización y los datos recopilados.

Ante esta situación, la propuesta de investigación "Aplicación de herramientas Lean Manufacturing"; es avalada por, [6] quién confirma en su investigación "Implementación de Herramientas Lean Manufacturing para mejorar productividad en Planta de Producción de Galletas", que la aplicación de herramientas enfocadas en el ascenso de la eficiencia y productividad de la línea de galletas, basado en un proceso productivo confiable (equipos, personas y procesos), logra varios beneficios en diferentes aristas para la organización en cuanto a productividad, calidad, costos, seguridad; pero principalmente en las personas, dado que permite desarrollar habilidades y conocimientos que hacen sostenible la prosperidad en la organización. Asimismo, [7], en su tesis "Diseño y aplicación piloto de una propuesta de progreso al sistema productivo basado en la herramienta de calidad Lean Manufacturing en la Empresa Cocinas Heck",

concluye que, la aplicación estas permitió mitigar los desperdicios de la compañía en diferentes formas como en este caso; 5S obtuvo un perfeccionamiento de 15.36% y 7.2% en la recuperación de espacio de 2 estaciones de trabajo, las operaciones estándares lograron un 18.8% de progreso en la cadena productiva, es decir de producir 16.53 cocinas ahora producen 20.36 y la auditoría TPM permitió desarrollar controles de mantenimiento y seguridad evitando así accidentes.

De igual forma, [8] en su trabajo "Aplicación de Lean Manufacturing para mejorar la productividad de la línea de moldeado de la empresa chocolates GURE S.A.C", asegura que las implementaciones basadas en dichas herramientas, otorgó perfeccionar la productividad de la cadena productiva en un 48% el cual viene hacer la variación porcentual de los datos de la pre pruebas y post prueba, evidenciando que la media de productividad antes de la aplicación del manufacturing obtuvo un valor de 0.5373 y después un valor de 0.7993, permitiendo así incrementar también, la eficiencia y eficacia en la línea de moldeado de la organización.

En la recopilación de datos, se encontró que la empresa en el año 2020 tenía una productividad de 89%, lo cual evidencia que no se realizó un trabajo eficiente en el proceso, viéndose reflejado en las ventas perdidas (Tabla 25), siendo esta otra razón por la que se procedió a plantar el presente trabajo de investigación, dado que existieron varios autores que respaldan que la aplicación de las herramientas mejoran la productividad, entre ellos se tiene a: [9], quién en su estudio "Propuesta de implementación de herramientas de Lean Manufacturing y su incidencia en la productividad de la piscigranja Trucha Dorada de la ciudad de Chota, Cajamarca"; logró un ascenso del 33.3% de productividad, así como, una eficiencia en el tiempo de 93.3% y en producción de 87.7%. [10], en su trabajo "Propuesta de implementación de las herramientas Lean Manufacturing para incrementar la productividad en el proceso de producción de panela orgánica en la sociedad agroindustrias centurión S.R.L", logró incrementar la productividad en un 28.4% con respecto a la mano de obra. [11], en su investigación "Propuesta de implementación de las herramientas Lean Manufacturing en la organización Maquila Agroindustrial Import & Export S.A.C", obtuvo un adelanto en la productividad, pasando de 82.14% a un 86.75%, así como un beneficio de S/. 147,673.09. [12], en su estudio "Implementación de Herramientas de Lean Manufacturing y su incidencia en la productividad del Área de Corte y Eviscerado de una firma pesquera año 2018" concluyeron que estas tienen una incidencia positiva en la productividad del área de corte y eviscerado de un 22% en la producción. Y [13] en su estudio "Aplicación de Lean Manufacturing para aumentar la productividad de la materia prima en el área de producción de una asociación esparraguera", obtuvieron un resultado positivo, un progreso en eficiencia equipos (79.59%) y un incremento de la productividad de 5%.

En cuanto a los resultados obtenidos después de la aplicación de herramientas Lean en la empresa se tiene: un ahorro de S/ 485 514 (Tabla 27); optimización del trabajo del personal, obteniendo resultados de porcentaje de cumplimiento mayores a 90%, mejoras de tiempos en proceso (Tabla 14 y 15). Asimismo, se logró una disponibilidad promedio de 98.8% y una confiabilidad promedio de 91.5%. Pero lo más resaltante, fue el nuevo valor de productividad

promedio obtenido 94%; siendo este valor, el que responde a la interrogante y confirma la hipótesis: "La aplicación de herramientas de Lean Manufacturing, incrementa la productividad de la compañía en el año 2021".

Del mismo modo, en la evaluación de costo beneficio se logró evidenciar que la aplicación de la propuesta logra un periodo de retorno de 0.32 años y al cabo del segundo año se obtendría un monto de S/ 70 323.75 (Tabla 29). Siendo esto respaldado por, [14], quién en su estudio "Implementación de manufactura esbelta en una empresa de alimenticia", concluye que, la implementación de Lean Manufacturing le costó a la compañía en estudio \$ 5,400, mientras que la ganancia fue de \$ 9,200, por lo tanto, es posible mencionar que por cada dólar que la compañía gastó en implementar la metodología generó un retorno de \$ 0,70; confirmando así, que la implementación de herramientas no es un gasto sino un ahorro.

Con respecto a limitaciones, en el desarrollo de la investigación no se presentaron, debido a que es un tema en pleno auge y existen muchos trabajos previos que permitieron entender el desarrollo de la metodología Lean Manufacturing. Y como implicancia, la ejecución del estudio propuesto permite afirmar que, con la aplicación de herramientas en otras áreas de la empresa en estudio, se logra mejorar aún más la productividad ya obtenida.

VIII. CONCLUSIONES

Se concluye que, la aplicación de herramientas de Lean Manufacturing, tiene un impacto positivo del 5% (V. inicial: 0.89 – V. final: 0.94) en la productividad promedio de la empresa de beneficios de aves.

Con el diagnóstico, se determinó las múltiples causas raíz que ocasionan la baja productividad de la empresa en estudio, siendo el 80% de estas: falta de entrenamiento del personal, fallas en proceso y falta de procedimientos estandarizados.

Se confirmó que, la aplicación de herramientas de Lean Manufacturing, en la empresa logra mejoras de eficiencia de personal, de equipos, tiempo y dinero; representándose todo en un solo indicador "productividad".

Se determinó que, el impacto económico de la aplicación de herramientas de Lean Manufacturing en la empresa, generó una cantidad recuperada de S/ 485 514, un periodo de retorno de 0.32 años y al cabo del segundo año se obtendría un monto de S/ 70 323.75.

IX. REFERENCIAS

- Aho, P. (2015). Situación mundial de la avicultura. Poultry Perspective. Recuperado de: https://www.engormix.com/avicultura/articulos/situacion-mundial-avicultura-t32552.htm
- [2] Asociación Peruana de Avicultura. (2019). Perú: producción de pollo incrementa un 3,5% entre enero y septiembre 2019. Obtenido de:
- [3] Mercados & Regiones. (2019, 3 de mayo). La Libertad: avicultura en la región continúa creciendo y ya se ubica en el segundo puesto. Obtenido de: https://mercadosyregiones.com/2019/05/03/la-libertad-avicultura-enla-region-continua-creciendo-y-ya-se-ubica-en-el-segundo-puesto/
- [4] Hernández, J. y Vizán, A. (2013). Lean Manufacturing conceptos, técnicas e implantación. Madrid, España. Fundación EOI.
- [5] Gutiérrez (2014), calidad y productividad: cuarta edición MC GRAW HILL Education, México.
- [6] Contreras, N., Huertas, J.J. y Portugal, A.A. (2018). Implementación de herramientas Lean Manufacturing para mejorar productividad en planta de producción de galletas. (Tesis de Maestría). Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Perú. Recuperado de: file:///C:/Users/USER/Desktop/Taller%20de%20Tesis/tesis%20antecedentes/Lean%20en%20empresa%20galletas.pdf

- [7] Aro, P. (2017). Diseño y aplicación piloto de una propuesta de mejora al sistema productivo basado en la herramienta de calidad Lean Manufacturing en la Empresa Cocinas Heck. (Tesis de Licenciatura). Universidad Austral de Chile, Puerto Montt. Recuperado de: http://cybertesis.uach.cl/tesis/uach/2017/bpmfcia769d/doc/bpmfcia769d.p df
- [8] Halanocca, E. (2018). Aplicación de Lean Manufacturing para mejorar la productividad de la línea de moldeado de la Empresa Chocolates Gure S.A.C. (Tesis de Titulación). Universidad Cesar Vallejo, Callao, Lima. Recuperada de: https://alicia.concytec.gob.pe/vufind/Record/UCVV_ee8680aea118f4bd7 49a530e64a25848/Description#tabnav
- [9] Galvez, K. (2019). Propuesta de implementación de herramientas de Lean Manufacturing y su incidencia en la productividad de la piscigranja Trucha Dorada de la ciudad de Chota, Cajamarca. (Tesis de Titulación). Universidad Privada del Norte, Cajamarca, Perú. Recuperada de: https://repositorio.upn.edu.pe/bitstream/handle/11537/22320/Galvez%20 Verastegui%20Katterin.pdf?sequence=1&isAllowed=y
- [10]Correa, C. y Huamán, Z (2016). Propuesta de implementación de las herramientas Lean Manufacturing para incrementar la productividad en el proceso de producción de panela orgánica en la empresa agroindustrias centurión S.R.L. (Tesis de Titulación). Universidad Privada del Norte, Cajamarca, Perú. Recuperado de: file:///C:/Users/USER/Downloads/Correa%20Namoc%20Carmen%20Mir ella%20Huam%C3%A1n%20V%C3%A1squez%20Zeyla%20Amalia%20(Tesis%20Parcial).pdf
- [11]Merlo, J. y Ojeda, I. (2017). Propuesta de implementación de las herramientas Lean Manufacturing en la producción de pastas gourmet en la empresa maquila agro industrial Import & Export S.A.C para mejorar su productividad. (Tesis de Titulación). Universidad Privada del Norte, Cajamarca, Perú. Recuperado de: http://repositorio.uss.edu.pe/bitstream/handle/uss/5535/Rodrigo%20Aguil ar%20Over.pdf?sequence=1&isAllowed=y
- [12]Mendoza, J. y Nacarino, L (2018). Implementación de Herramientas de Lean Manufacturing y su incidencia en la productividad del Área de Corte y Eviscerado de una empresa pesquera año 2018. (Tesis de Titulación). Universidad Privada del Norte, La Libertad, Perú. Recuperado de: https://repositorio.upn.edu.pe/bitstream/handle/11537/14980/Mendoza%2 0Ram%c3%adrez%20Jorge%20Manuel%20-%20Nacarino%20R%c3%ados%20Leonel%20Belisario%20-Parcial.pdf?sequence=1&isAllowed=y
- [13] Namuche, V. y Zare, R. (2016). Aplicación de Lean Manufacturing para aumentar la productividad de la materia prima en el área de producción de una empresa esparraguera para el año 2016. (Tesis de Licenciatura). Universidad Nacional de Trujillo, La Libertad. Recuperado de http://dspace.unitru.edu.pe/handle/UNITRU/9990
- [14]Viteri, J., Matute, E., Viteri, C. y Rivera, N. (2016). Implementación de manufactura esbelta en una empresa alimenticia. Enfoque UTE. Vol. 7, n°1. Recuperado de: http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S1390-65422016000100001&lang=es
- [15]Barcia, K., Perero, W. y González, V. (2017). Mejoramiento del Proceso de Fraccionamiento de Agroquímicos Usando Técnicas de Producción Esbelta. Education, and Technology. Global Partnerships for Development and Engineering Education. Recuperado de: http://www.laccei.org/LACCEI2017-BocaRaton/full papers/FP51.pdf
- [16] Pérez, E. y Vásquez, M. (2021). Aplicación de Herramientas Lean Manufacturing, para mejorar la Productividad de una Empresa de beneficio de Aves – Trujillo, 2020". Tesis para obtener el grado de Ingeniero Industrial. Universidad Privada del Norte. Trujillo. Perú.