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Abstract– The design of building control strategies that 

maintain occupant comfort and improve energy efficiency relies on 

a thermal model to predict indoor temperature. The model should 

represent the building envelope and its systems. Other than 

controller design, the thermal model is useful for the evaluation and 

simulation of energy optimization strategies. In this paper a 

methodology to identify building thermal models, based on a 

thermal-electrical analogy, is proposed. The methodology can be 

applied to residential case studies, located in tropical climates. It 

consists of determining which candidate model best describes the 

building thermal dynamics. The models are trained multiple times to 

study parameter estimate dispersion, and if the estimates converge to 

a single value regardless of their initial value, the models are 

validated. The model with the lowest root-mean-square error (RMSE) 

is selected as the best model. When the methodology is tested in a 

residential case study located in Panama, the best network has a 

validation RMSE of 0.36°C, which is satisfactory for controller 

design purposes. The model is then used to tune a proportional 

integral derivative (PID) controller which is then successfully 

employed to maintain a desired indoor temperature. Tuning the 

controller with the identified model avoids the need for tedious trial 

and error controller tuning. 

Keywords—Building energy modeling, RC thermal network, 

System identification 

I. INTRODUCTION

Buildings represent over one third of final energy 

consumption and nearly 40% of CO2 emissions in the world [1]. 

Heating, ventilation and air conditioning (HVAC) systems 

consume around 40% of total energy in buildings [2]. In 

Panama, with its hot and humid tropical climate, air 

conditioning is among the systems with considerable 

consumption in commercial and residential sectors [3]. 

The Department of Energy of the United States (DOE) 

shows that between 4 and 20% of energy used in HVAC 

systems and lighting is wasted due to operative problems [4], 

revealing the energy efficiency issues present in buildings. 

Keeping in line with both international [5] and national [3] 

energy efficiency goals, it is imperative to take action to reduce 

energy consumption while maintaining occupant comfort and 

performance, and at the same time reduce operating costs. The 

deployment of control strategies is an effective way of 

improving building energy efficiency. This is proven by studies 

such as the DOE’s, which estimates that it is possible to save up 

to 29% of actual consumption through the deployment of 

controllers, fault elimination and better sensor feedback in 

commercial buildings [6]. 

Control actions must maintain occupant comfort, which 

depends on the indoor temperature, among other factors. The 

design of such control strategies relies on a thermal model to 

predict indoor temperature, representing the building envelope 

and its systems. The thermal model is also useful to evaluate, 

simulate and implement energy optimization strategies [2], [7]. 

The model must represent the building accurately while 

remaining simple enough to maintain the computational 

efficiency necessary for good controller performance [8].  

A. Modeling techniques

The thermal model can be obtained through three main

modeling techniques: white-box, black-box and gray-box [4], 

[9]–[11]. White box models are built from physical equations, 

such as energy balances, that describe the heat transfer behavior 

of the building [12]. To formulate these models, it is necessary 

to know building thermal properties and time constants a priori, 

information that is difficult to obtain or unavailable. This, added 

to the fact that detailed heat transfer equations result in a high 

order model that is time consuming to solve, makes white box 

models unsuitable for the design and optimization of control 

strategies [4], [11].  The main use for white box models in 

building energy models is through energy simulation softwares, 

such as EnergyPlus (EP) and TRNSYS. In these softwares, a 

reference model of the building is built, and is simulated to 

generate the input-output data that will be used to train and 

validate black-box and grey box models, as is done in [8], [13], 

[14]. 

On the other hand, black box models make little to no use 

of the physical knowledge of the system to derive a model. The 
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mathematical relations that describe the building are regressed 

from input and output data [15]. Autoregressive models are 

black models used in building energy modeling. An 

autoregressive integrated moving average with exogenous 

variables (ARIMAX) model is used in [16] to predict indoor 

temperature of a conference room using as inputs heat supplied 

or rejected by radiators and fancoils, outdoor temperature and 

radiative heat gains. In [8] the authors incorporate knowledge 

of the building’s heat transfer processes, to make educated 

guesses on the structure of a fractional order autoregressive 

model with exogenous inputs (FARX) model to predict indoor 

temperature. Other popular black-box models are artificial 

neural networks, which derive nonlinear input-output relations 

through connections between neurons [17]. In [18], neural 

networks are used to design a predictive control scheme to 

optimize demand flexibility in a house in Holland. Similarly in 

[19] a house’s HVAC subsystems are modeled with neural 

networks. The lack of physical insight in black box models 

facilitates the modelling process, as less expert knowledge is 

required. However, this makes the models highly dependent on 

the quality of the training data, often requiring large and 

informative datasets, which is the main shortcoming of black-

box models [4], [20]. 

Grey box models aim to overcome the shortcomings of 

white box and black box techniques. As with white box models, 

the model structure is derived from physical equations, which 

can be simplified to obtain a lower order, more computationally 

efficient model. However, model parameters and coefficients 

do not need to be known beforehand and are estimated from 

input-output data, much like in black box models. Therefore, it 

is possible to incorporate the available physical knowledge of 

the building into the structure and optimization constraints and 

estimate the missing information through input and output data 

[20]. RC thermal networks are the most popular gray box 

modelling techniques used to represent buildings. These are 

based in a thermal-electrical analogy, where materials 

properties, climate conditions and building subsystems are 

modeled as electrical components, in the form of capacitances, 

resistances, current and voltage sources [21], [22]. Several 

network topologies have been proposed in the literature to 

characterize building thermal dynamics. In [23], a 3R2C 

network is selected as the best model to represent a house with 

large glazing area and considerable envelope thermal inertia. In 

[24] a 6R5C network is simplified to a 2R1C network and able 

to successfully model a residence equipped with air conditioner, 

with an absolute error of 0.72°C when the model is trained with 

20 days of data. In [25] a methodology was developed to 

identify thermal models based on RC networks for a passive 

residence located in Panama. As a hybrid modelling technique, 

grey-box models are also able to couple different model 

structures to improve or complement model estimation. In [13], 

a gaussian process (GP) model (black-box model) is used to 

correct the error in temperature estimation when obtained from 

a 4R4C model. The model performance was superior when 

incorporating GP than with the standalone RC network, 

especially when the occupant schedule was varied. In [26], a 

machine learning algorithm and a 6R4C network are coupled to 

predict the temperature difference, and the mean temperature, 

respectively, of two stories of a house. In [27] heat gains 

through the envelope are modeled by several RC networks, 

which are coupled with humidity and predicted mean vote 

(PMV) models. The integrated model is then used to develop a 

model predictive control (MPC) scheme which achieves up to 

19.4% energy savings. 

 

B. Parameter estimation 

While grey-box and parametric black-box modelling 

techniques define the model structure, it remains necessary to 

estimate model parameters and coefficients through some 

parameter estimation method. The prediction error method 

defines an estimation problem as presented by (1), where the 

estimated parameters θ̂N  are the parameter values that 

minimize a cost function V(θ, ZN ), within a search space  ZN, 

which corresponds to the training dataset, according to some 

criteria. Cases of PEM arise depending on how the cost function 

is defined, such as the least squares estimator where V(θ, ZN ) 

is defined as the quadratic norm of the prediction error and the 

maximum likelihood estimator where it is a likelihood function 

[28]. PEM is used by several authors [13], [24], [26], [29] to 

estimate model parameters. 

 

 θ̂N = minimize V(θ, ZN ) (1) 

Once the cost function is defined, the optimization 

algorithm finds the parameters that minimizes it. In [18], [29] 

the Levenberg-Marquardt algorithm is used to minimize the 

cost function, while in [26] it is done through particle swarm 

optimization. 

 

C. Contribution 

 In this paper a methodology is proposed to identify RC 

thermal networks and determine the model that best represents 

building thermal dynamics while maintaining the 

computational efficiency needed for control purposes. The 

methodology is developed for application in residential 

buildings situated in tropical climates. To formulate the 

methodology, a candidate model selection procedure is carried 

out which consists of an evaluation of the networks’ parameter 

dispersion. Additionally, several datasets are evaluated to 

determine the characteristics of the training dataset that 

generalize best. The methodology is designed to by applied to 

residential case studies situated in tropical climates, where 

important non-linear phenomena such as solar radiation and 

humidity are prominent factors.  

The paper is outlines as follows: section II outlines the case 

studies considered as well as the procedures employed to 

develop the methodology. Section III details the results and 

some important insights from them. Conclusions and further 

works are discussed in Section IV.  
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II. METHODOLOGY 

A. Case Studies 

The case studies, one-story houses situated in Panama, are 

built in DesignBuilder (DB), a graphical interface for EP. Two 

case studies are used to develop and test the methodology, Case 

1, and Case 2, respectively. Geometrically they are exactly alike 

(see Fig. 1) but differ in the materials used for construction. The 

characteristics of each case study are summarized in TABLE I. 

In any case, the house is occupied by one person all day. There 

are no elements surrounding the house that might mitigate solar 

radiation. The house is equipped with a fancoil air conditioning 

(AC) system, where the supply air mass flow rate is kept 

constant to maintain linearity in (2). The air conditioner is 

turned on and off according to an operating schedule shown in 

TABLE II. The meteorological data used in DB consist of a 

typical year in Panama City. 

 

 
Fig. 1 3D model used for the Case studies in Designbuilder. 

TABLE I 

THERMAL PROPERTIES FOR CASE STUDIES 

U: Heat transfer coefficient 
SHGC: Solar Heat Gain Coefficient 

  Case 1  Case 2  
U wall (W/m2-K) 3.767 2.174 

U roof (W/m2-K) 2.941 2.326 

U floor (W/m2-K) 0.25 

SHGC windows 0.72 

U windows (W/m2-K) 3.772 

Window-wall ratio 30% 

Floor area (m2) 47.858 

 
TABLE II 

AIR CONDITIONER OPERATING SCHEDULE AND SETPOINTS 

12:00 A.M - 8:00 A.M. 22°C 

8:00 A.M - 12:00 P.M. Off 

12:00 P.M. - 3:00 P.M. 24°C 

3:00 P.M. - 6:00 P.M. Off 

6:00 P.M. - 12:00 A.M. 18°C 

 

B. Training datasets 

A dynamic simulation is run in DB to obtain the input and 

output data used for model training and validation. Four months 

are simulated: February (typically the driest month of the year), 

November (typically the rainiest), April and December (two 

months with intermediate climate conditions). These months 

are divided in twelve possible training datasets, varying in 

length, detailed in TABLE III. All data is sampled at a 1 min 

interval.  
TABLE III 

TRAINING DATASETS 

  February  April  November  December  

10 days D1  D4  D7  D10  

20 days D2  D5  D8  D11  

Full month  D3  D6  D9  D12  

 

C. Workflow 

To develop the methodology, the workflow detailed in Fig. 

2 was followed. The procedures “evaluation and selection of 

candidate models” and “evaluation and selection of training 

dataset”, detailed in the homonymous sections, where applied 

to case study 1. The main results from these procedures, the 

candidate models, and the best training dataset, as shown in the 

gray squares of Fig. 2, are used to formulate the final 

methodology, which will then be tested on Case 2. 

 

 
Fig. 2 Workflow followed in this work. 

D. Model formulation 

The candidate models are proposed in order of increasing 

complexity, starting from the simplest network (1R1C) to the 

most complex one (4R3C). In total, 10 networks are initially 

proposed, shown in Fig. 3. 

The nodes in the network include indoor temperature (Ti) 

for all networks, and roof-wall (Tw) and floor (Tf) temperatures 

for some networks. The inputs considered are outdoor 

temperature (Tout), internal gains (Qint), global horizontal 

irradiation (ϕ), AC supply temperature (Ts) and mean radiant 

temperature (Tmr). Ts and ϕ are related to the heat flows Qac 

and Qsol, respectively. These heat flows are given by (1) and 

(2), where Fj and G are estimated parameters and ṁ and Cp are 

known constants.  
 

 Qsolj = Fj ∙ ϕ (1) 

 Qac = G ∙ ṁ ∙ Cp(Ts − Ti) (2) 
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For each model, the thermal dynamics are described by the 

ordinary differential equations obtained when applying 

Kirchhoff’s Laws to the thermal networks. These are rearranged 

in state-space representation, which clearly defines model 

inputs, outputs, states, and parameters.   
 

 

E. Parameter estimation 

Model parameter estimation is implemented in 

MATLAB’s System Identification Toolbox. For the estimation 

problem, the initial values of the parameters are chosen 

randomly within 50% and 150% of an approximated physical 

value. All parameters are restricted to be positive, since 

negative resistances and capacitances have no physical meaning, 

and resistances have an upper constraint of 1 since these are 

physically smaller than 1.  

 

F. Evaluation and selection of candidate models 

 

The networks proposed in Fig. 3 are selected or discarded 

according to a parameter dispersion criterion. We are only 

interested in identifiable models, meaning that there exists a 

unique parameter vector that produces a global minimum in the 

cost function. Therefore, the model’s parameter estimates must 

converge to a unique value regardless of its initial value.  

To study parameter estimates convergence, the following 

procedure is followed: 

1. Train model ten times with dataset D1, using a 

different initial value for parameters in each 

identification.  

2. Calculate de coefficient of variation (CV) for the 10 

parameter estimates.  

3. Repeat steps 1 and 2 for datasets D2-D12. 

4. Average the CV obtained for all datasets.  

5. If the average CV is smaller or equal than 10%, the 

model is selected. Otherwise, it is discarded for its 

non-identifiability. 

6. Repeat steps 1-6 for all models in Fig. 3.  

 

G. Evaluation and selection of training dataset 

To determine the best training dataset for the model 

identification methodology, it is of interest to study the length 

of the training dataset and the month most appropriate to 

recollect data.  

The models that were selected from the previous procedure 

each have twelve different identified versions, corresponding to 

estimates obtained from each of the twelve training datasets. 

Fig. 3 Networks proposed 
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Each of these versions is validated using the three months not 

used for training. The validation RMSE is averaged and the 

training dataset that produced the lowest value is selected as the 

best training dataset for the methodology. 

 

III. RESULTS AND DISCUSSION 

A. Evaluation and selection of candidate models (applied to 

Case 1) 

The candidate models for the methodology are obtained 

from applying the “evaluation and selection of candidate 

models” procedure to Case 1. The results to applying this 

procedure to the network 1R1C when training with dataset D1 

is graphically shown in the scatter plot of Fig. 4 for parameter 

Ci. Here, the 10 random initial values for each parameter (which 

correspond to the data points that produce a higher RMSE, since 

the parameter is not chose to be optimal) are matched to their 

corresponding estimated value, which was reached when the 

optimization was completed. The parameter’s coefficient of 

variation is higher than 10% for this dataset, with the estimated 

parameters seemingly not converging to a single value. 

However, when repeating this procedure through the remaining 

eleven datasets, the CV is nearly zero. For example, in Fig. 5 

the dispersion of parameter Ci is shown for training with D2. 

Here, the parameter clearly reaches the same value regardless 

of its initial value. Calculating the average CV over all datasets, 

the dispersion criterion is met. These results are summarized in 

TABLE IV. Therefore, network 1R1C is selected as a candidate 

model for the final methodology.  

 

 
Fig. 4 Initial vs estimated values of parameter Ci when training with D1 in 

network 1R1C 

 

 
Fig. 5 Initial vs estimated value of parameter Ci when training with D2 in 

network 1R1C 

TABLE IV 
PARAMETER DISPERSION IN NETWORK 1R1C 

Training 
dataset 

CV (%) 

Ci R1 F1 G 

D1 18.24 17.33 18.23 18.20 

D2 0.04 0.00 0.00 0.00 

D3 9.08 8.47 9.10 9.05 

D4 6.27 5.90 6.28 6.27 

D5 0.52 0.52 0.52 0.52 

D6 0.14 0.04 0.05 0.04 

D7 0.04 0.00 0.00 0.00 

D8 0.02 0.00 0.00 0.00 

D9 0.02 0.00 0.00 0.00 

D10 9.16 9.02 9.16 9.15 

D11 10.19 10.64 10.20 10.18 

D12 0.03 0.01 0.01 0.01 

Avg. 4.48 4.33 4.46 4.45 

 

Fig. 6 shows the dispersion of parameter Ci for network 

2R1C when training with D1. The CV obtained for each dataset 

are summarized in TABLE V. Since the dispersion criterion is 

not met, this network is discarded, and therefore not considered 

for the final methodology. For this network, the estimated value 

of parameter F1 in every training dataset is zero, which is why 

its CV cannot be calculated. This can be due to the nature of the 

mean radiant temperature as it models all radiative exchanges 

between surfaces. Therefore, the model no longer requires any 

additional radiative heat gain sources which translates into a 

zero F1 coefficient.   
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Fig. 6 Initial vs estimated values of parameter Ci when training D1 in network 

2R1C 

TABLE V 
PARAMETER DISPERSION IN NETWORK 2R1C 

Training 
dataset 

 CV (%) 

Ci R1 R2 F1 G 

D1 42.3 29.8 31.0 N/A 41.9 

D2 32.8 33.5 35.1 N/A 32.5 

D3 20.3 21.1 22.7 N/A 20.1 

D4 37.3 26.5 27.4 N/A 37.0 

D5 22.1 25.2 26.3 N/A 21.9 

D6 35.3 30.8 31.8 N/A 35.0 

D7 44.9 42.2 59.1 N/A 44.9 

D8 40.6 33.3 47.4 N/A 40.6 

D9 25.8 22.9 32.5 N/A 26.1 

D10 31.7 34.6 36.8 N/A 31.4 

D11 34.3 34.1 35.7 N/A 33.9 

D12 23.4 24.6 25.5 N/A 23.2 

Avg. 32.6 29.9 34.3 N/A 32.4 

 

A network that required further analysis was network 

2R2Cf. During preliminary analysis, the network did not meet 

the dispersion criterion. However, with closer study, it was 

found that when training with D5 the CV was over 80%, and it 

was the only dataset that produced estimates with a CV higher 

than 10%, which caused the average to be higher than the 

criterion. In Fig. 7, the scatter plot of estimates is shown for 

parameter Ci. It is shown that some estimations converge to a 

value with a higher RMSE than others, indicating that the 

algorithm may have gotten stuck on a local minimum for those 

estimations. Since there is a global minimum (around 0.3°C), 

only the estimations that converged to this value where 

considered. When the CV is recalculated for this dataset, the 

average along all twelve datasets does meet the criterion, and 

therefore this network is selected as a candidate model.  

 

 
Fig. 7 Initial vs estimated value of Ci when training with D5 for network 

2R2Cf 

Among the initially proposed 10 models, only the 1R1C 

and 2R2Cf met the dispersion criterion and where therefore 

selected as final candidates. The resulting candidate models 

have few parameters and can produce consistent estimates. This 

is consistent with the results of [30], by reducing the number of 

degrees of freedom the cost function becomes notably convex, 

and therefore a numerical solver finds a global minima 

regardless of the initial parameter values.   

 

B. Evaluation and selection of training dataset (applied to 

Case 1) 

The result from applying this procedure to Case 1 is shown 

in TABLE VI and TABLE VII for networks 1R1C and 2R2Cf, 

respectively. While the best validation performance is obtained 

with D6, it is not significantly better than when training with 

any of the other eleven datasets. The standard deviation of the 

average RMSE is less than 0.04 °C. It is concluded that in the 

final methodology the training dataset can consist of data from 

any month of the year. Since it is preferable to train with the 

less amount of data to reduce identification time, the training 

dataset is recommended to be 10 days long.  

 
TABLE VI 

VALIDATION RESULTS FOR TRAINED 1R1C NETWORKS 

Training dataset Avg. validation Fit, % 
Avg. Validation 

RMSE, °C 

D1 92.38 0.6160 

D2 92.06 0.6416 

D3 91.95 0.6509 

D4 92.43 0.5985 

D5 92.59 0.5851 

D6 92.66 0.5794 

D7 91.94 0.6539 

D8 92.09 0.6422 

D9 92.10 0.6415 
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D10 92.33 0.6113 

D11 92.38 0.6073 

D12 92.47 0.6004 

Standard deviation 0.24 0.0261 

 
TABLE VII 

VALIDATION RESULTS FOR TRAINED 2R2Cf NETWORKS 

Training dataset 
Avg. validation Fit, 

% 
Avg. Validation 

RMSE, °C 

D1 95.93 0.3293 

D2 95.20 0.3884 

D3 95.18 0.3896 

D4 95.60 0.3476 

D5 95.83 0.3294 

D6 95.87 0.3265 

D7 94.86 0.4162 

D8 95.19 0.3893 

D9 95.23 0.3863 

D10 95.04 0.3959 

D11 95.23 0.3811 

D12 95.55 0.3548 

Standard deviation 0.3526 0.0305 

 

This seemingly low sensitivity to the month in which the 

data is recollected can be due to the use of a principle-based 

model structure. Since the equations already describe the heat 

transfer processes on their own, the model is less reliant on data 

to appropriately describe the system. This is a clear advantage 

of RC networks to black-box techniques, the ability to 

generalize well with limited training data.  

 

C. Final methodology 

The final methodology, now complete with results from the 

previous sections is summarized in Fig. 8. The candidate 

models are trained 10 times with the dataset determined as best 

(which resulted in any dataset 10 days long). The parameters 

estimate dispersion is once again studied, as it is important to 

verify identifiability when applying the methodology to a new 

case study. If the parameters’ CV is greater than 10% the model 

is discarded. Otherwise, it is validated. The models’ 

performance is compared, and the RC network with the lowest 

validation RMSE is selected as the best model, that which best 

represent the case study’s heat transfer dynamics.  

 

 
Fig. 8 Final methodology 

D. Methodology applied to Case 2 

The methodology is now implemented to determine the 

model that best represents Case study 2.  

The dataset used for training is D10 and validation datasets 

are D3, D6 and D9. TABLE VIII and TABLE IX present the 

dispersion criteria that resulted from identifying 10 times 

models 1R1C and 2R2Cf with D10, respectively. For both 

networks, a CV lower than 10% is achieved. Therefore, both 

networks are validated.  

 
TABLE VIII 

PARAMETER DISPERSION IN NETWORK 1R1C (Case 2) 

 
Average 

Standard 

deviation 
CV, % 

Ci 1.19E+04 1.08E+01 0.0908 

R1 2.69E-02 6.58E-06 0.0244 

F1 0.00E+00 N/A N/A 

G 6.46E-02 1.38E-05 0.0213 

 
TABLE IX 

PARAMETER DISPERSION IN NETWORK 2R2Cf (Case 2) 

 
Average 

Standard 
deviation 

CV, % 

Ci 1.57E+04 1.02E+01 0.0650 

Cf 1.62E+06 1.04E+03 0.0641 

R1 9.57E-02 8.70E-05 0.0909 

R2 1.88E-02 1.00E-05 0.0532 

F1 1.47E-02 1.05E-05 0.0713 

F2 1.29E+00 9.14E-04 0.0709 

G 1.24E-01 7.54E-05 0.0609 

 

The average validation performance is summarized in 

TABLE X . The indoor temperature simulated by models 1R1C 

and 2R2Cf is shown in Fig. 9 for two randomly chosen days of 

April. These temperatures are compared to that of the reference 

model built in DB.  
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TABLE X 

VALIDATION PERFORMANCE FOR CASE 2 

Network 
Avg. Validation RMSE, 

°C 
Avg. validation Fit, % 

1R1C 0.5944 88.34 

2R2Cf 0.3573 93.02 

 

 
Fig. 9 Simulated indoor temperature by models 

According to the validation performance results, the best 

model is network 2R2Cf, as it has the lowest RMSE among all 

candidate models. The model performance is satisfactory for 

control purposes, since the RMSE is less than 0.5°C [30]. 

 

E. Controller design 

The thermal models identified have as input the supply 

temperature of the air cooled by an air conditioning system that 

operates at a constant flow rate (e.g., mini-splits). This by itself 

is not a controllable input in real air conditioning systems, 

however, if there is a model that relates the supply temperature 

to some controllable variable (e.g., refrigerant flow) it could be 

feasible to design a controller with the identified model. 

However, this is outside the scope of this research. 

The purpose of this section is to design a controller that 

drives the supply temperature (manipulated variable) in such a 

way that the interior temperature remains close to the setpoint 

value, following the control loop in Fig. 10. 

The controller will be designed taking the 2R2Cf model as 

the control loop plant. The gains of said controller will be 

adjusted with the PID Tuner of the Design and Analysis of 

Control Systems toolbox in MATLAB. 

Once the controller gains have been adjusted, it will be 

inserted into another control loop that uses a state space black 

box model identified with N4SID (reference) as a plant. This 

model is of fifth order and has an average validation RMSE of 

less than 0.316°C, when trained with a full month of data. 

Fig. 11 shows the closed loop response when the desired 

temperature is 18°C, starting from a similar initial condition. 

The response of the 2R2Cf loop stays closest to the desired 

temperature, with a -1.06% overshoot, compared to a 2% 

overshoot for the reference model. The identified model can 

successfully be used to tune a controller that will control 

another plant, avoiding the need for a tedious trial and error 

procedure.  

 

Fig. 10 Control loop implemented in Simulink 
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Fig. 11 Closed loop response 

IV. CONCLUSIONS AND FURTHER WORK 

In this study, a methodology to identify linear grey box 

models to represent home thermal dynamics was developed. 

The procedures through which the methodology was obtained 

were detailed and the resulting methodology may be applied to 

residential, one-zone case studies situated in a tropical climate. 

We show that models with few parameters are generally 

more identifiable models, and the models can successfully 

represent the thermal dynamics of a house. Moreover, a linear 

model can accurately describe a small case study affected by 

prominent nonlinear phenomena, such as solar radiation and a 

high humidity. 

There is also an apparent advantage to RC networks 

regarding the amount of identification data needed. The 

principle-based structure makes the models less reliant on data 

to achieve satisfactory performance, as it was obtained that the 

models performed similarly regardless of the dataset length, or 

the month used for training.  

When the methodology was implemented in a different 

case study, a RMSE of 0.36°C was obtained for the best model, 

a 2R2C network. This model was then used to tune a PID 

controller which was then used to maintain a desired 

temperature in a plant modeled by another technique.  

Further work will investigate the coupling of the thermal 

model with a hygric model since humidity is very important to 

maintain comfort in tropical climates. Also, it is relevant to 

include inputs or parameters that consider variable occupant 

behaviour to predict indoor temperature. It is of interest to 

design more complex control strategies, such as MPC, using the 

developed models and to study their effectiveness.  
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