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Abstract- Computational proteomics uses algorithms 

and models to investigate active predictable proteins. The 

principal research in this area is often focused on the 

rational vaccine design  (RVD) and computer-aided 

medicines. Vital goals for this automatic body counting 

method are the results of a broken immune system where 

"themselves" are unable to distinguish from "unwanted 

ones" and thus lead to attacks on their structures (proteins 

and DNA, in particular) [1]. While we are not aware of the 

primary etiology of autoimmune diseases, there is a range 

of factors suspected to be the triggers of autoimmune 

diseases, including genetic predisposition, natural causes 

like viral infections, including gut microbiota, fungal 

viruses, and gluttonous infections, along with body and 

environmental agents, hormonal characteristics, and 

immune dysregulation [2]. On the other hand, Immune 

hyperactivation and excessive cytokine release, leading to 

multiorgan failure, are associated with severe/fatal 

conditions of COVID-19. It has been proposed that SARS-

CoV-2 may be a factor in the development of acute 

autoimmune disease due to shared pathogenetic 

mechanisms, clinical characteristics, and radiological 

radiation between inflammatory diseases and Covid-19. 

Hence, the understanding of protein-RNA binding can 

provide crucial information on the efficacy and 

modification of mRNA vaccine targets. Therefore, the 

binding affinity and antigenicity of viral RNA and human 

antiRNA should be determined, and viral RNA antibodies 

should be distinguished from human/human antiRNA 

antibodies. In this paper, we are proposing a python-based 

software tool using machine learning approach for testing 

viral RNA-human antiRNA binding affinity and 

antigenicity. 

Keywords- COVID-19, SARS COV2, coronavirus, 

antibodies, antigenicity, RNA vaccines, autoimmunity, 

molecular mimicry. 

I. INTRODUCTION 

Coronaviruses correspond to a broad group of viruses 

that, via zoonotic transmission, primarily affect 

humans. Some patients with respiratory failure and 

often with hyper-ferritinemia and multiorgan 

involvement are affected by a sepsis pneumonia 

leading to acute respiratory depression (ARDS), 

including death-related hematologic, intestinal, nerve 

and heart disease [3][4][5][6]. Cellular mimicry, 

however, has been suggested to contribute to this 

issue, with SARS-CoV-2 spike glycoprotein 

antibodies reacting to a similarly structured 

heptapeptide protein combination and triggering a 

strong (automatic) immune response against them [5]. 

Common pathogenetic mechanisms, clinical features 

and radiation between inflammatory diseases and 

COVID-19 indicate that SARS-CoV-2 could be a 

factor in the development of acute autoimmune 

disease. 

Autoimmune diseases start with the immune 

system losing its ability to tolerate and not 

differentiate between artificial insemination. Thus, the 

immune system fights off its gene (RNA in this case). 

These antibodies are the proteins that bind to RNA and 

make it hydrolyze to form complex structures 

precipitating below the endothelium of blood vessels 

[6].  

The anti-DNA antibody is found in many patients 

associated with autoimmune diseases. However, the 

chemical composition and processes under 

autoantibodies remain poorly understood. Researchers  

[7][8][9] were able to differentiate anti-DNA and only 

a small number of binding sites of anti-DNA 

antibodies. Thus, the understanding of protein-RNA 

binding can provide crucial information on the 

efficacy and modification of mRNA vaccine targets. 

Therefore, viral and human RNA's binding sequence 

and antigenicity should be determined, and viral RNA 

antibodies should be distinguished from 

human/human anti RNA antibodies. Sequencing of 

wet markers and X-ray crystallography require 

expertise in each body because of their cost and 

lengthy time. Computerized methods, which are a 

model of existing data for making novel predictions, 
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can reduce the field of candidates who may be tested 

in the lab. Due to the need for hand-crafted 

functionality, classical machine learning approaches 

frequently face difficulties processing raw data. In 

comparison, deep learning techniques can directly 

extract functional characteristics from the data. 

However, neural networks in ML have never been an 

option for long time, although other alternatives have 

been built up. Combined with many training data, the 

advent of powerful computer hardware and many fast 

processors (such as GPUs) have made deep neural 

networks (DNNs) perform better in many ML systems 

recently. In this paper, we are proposing a python-

based software tool using machine learning approach 

for testing viral RNA-human antiRNA binding affinity 

and antigenicity. 

II. AUTOIMMUNITY AND ITS 

MECHANISMS 

Autoimmunity is often described as a condition in 

which the immune system or T cells respond to 

autoantigens. Autoimmunity promotes autoimmune 

diseases. Recent research reveals that autoantibodies 

or active T cells are present even in healthy 

individuals. The immune system has a variety of 

mechanisms that suppress the body's response to 

behavior, and disruption of these mechanisms causes 

autoimmune diseases [10][11][12]. 

The formation or activation of CD4 T cells 

that react to a particular autoantigen are usually 

thought to result in autoimmunity. Based on different 

facts, it is now proposed that a specific antigenic factor 

is the primary cause of independence. Microbial 

infection can trigger an autoimmune response by 

molecular modification and polyclonal activation and 

release a separate autoantigen. Non-infectious factors 

are also considered to be the beginning of the immune 

system [13]. 

Autoimmune diseases are believed to be 

rooted in a combination of genetic and environmental 

factors, like many other complex diseases. The simple 

hypothesis is that polymorphisms cause incomplete 

control or decrease the limit of lymphocyte activation 

in different genes. Natural factors cause or enhance the 

initiation of self-functioning lymphocytes that have 

escaped control and are ready to respond people. Some 

of these genes and environmental factors have started 

to be recognized [14]. 

 

Figure 1 Genetic vulnerability, environmental provocations, and 

faulty control are accountable for introducing autoimmunity [14]. 

Genetic polymorphisms can decrease active 

T cells' activation rate in body-related genes (as well 

as HLA, cytokines/receptors, and those engaged in 

mild intolerance). An inflammatory environment that 

promotes active lymphocytes' development produces 

natural factors such as inflammation, microbiome, and 

tissue harm. Tregs usually operate to suppress active T 

cells, but these cells may be inactive for disability, 

development, or function and may not control 

functional T responses. These substances may cause to 

the escape, development, and proliferation of 

autoreactive lymphocytes alone or in combination, 

leading to tissue damage and consecutive therapy 

(Figure 1) [14][15][16]. 

III. IMMUNE RESPONSES SIMILARITIES 

BETWEEN SARS-COV-2 INFECTION 

AND AUTOIMMUNE DISEASES 

Autoimmune disorders are characterized by the 

existence of autoantibodies and recurrent 

inflammatory reactions, causing in target organ harm 

and malfunction because of the lack of immune 

tolerance and a dysregulated immune system [17]. 

COVID-19 has immune-mediated injuries as well. The 

SARS-CoV-2 infection triggers immune responses, 

affecting vaccine production against this virus [18]. 

The regulation of SARS-CoV-2 disease relies heavily 

on T cell immunity. SARS-CoV-2 is protected by 

antigen-specific CD4+ and CD8+ T cells and 

neutralizes the response of antibody, while degraded 

adaptive immune responses can result in poor outcome 

conditions such as an absence of naive T cells [19]. 

Lymphopenia is associated in clinical laboratory 

studies with severe illnesses in COVID-19 patients 

and may have been the predictor of serious disease and 

death [20][21][22][23]. Another notable 

hematological transition is neutrophilia and the 

associated excess neutrophil extracellular traps, which 

are parallel in patients with extreme COVID-19 

symptoms [24]. In the COVID-19, the immune 
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response is a two-edged sword with results influenced 

by the degradation of cytokine imbalance and the 

activation of the immune cell. Excessive development 

and release of pro-inflammatory cytokines and 

chemokines, such as in autoimmune diseases, can lead 

to severe organ damage in extreme cases. Liu et al. 

explained  the immunopathogenesis similarities 

between COVID-19 and autoimmune diseases [25]. 

Table I encapsulates immunopathogenesis similarities 

between COVID-19 and autoimmune diseases [25]. 

Items COVID-19 immunological features 

like autoimmune diseases 

Innate immune cells Overactivation of monocytes, 

macrophages, mast cells, and 

neutrophils. Increased proportion of 

mature natural killer (NK) cells. 

Adaptive immune 

cells 

Decreased T-cell numbers, altered B-

cell subsets, dysregulation of T cells 

and B cells. 

Cytokines and 

chemokines 

Increased levels of IL-1, IL-2, IL-6, 

IL-8, IL-10, IL-17, IL-18, CXCL10, 

CCL2. 

Autoantibodies ANA, APL, lupus anticoagulant, cold 

agglutinins, anti-Ro/SSA antibodies, 

anti-Caspr2 antibody, anti GD1b 

antibody, anti-MOG antibody 

Clinical conditions Immune-mediated hemolysis, 

decreased white blood cell counts, 

cytokine storm syndrome, 

macrophage activation syndrome, 

procoagulant condition 

Other 

immunopathogenesis 

Increased levels of DAMPs, 

molecular mimicry 

 

IV. SARS-COV-2 AND MOLECULAR 

MIMICRY 

Autoantibodies are an essential characteristic of 

autoimmune diseases. The underlying mechanisms, on 

the other hand, are complex and not completely 

understood. Infectious pathogens are thought to use 

molecular mimicry as one of the tools [26]. By 

exposing antigen epitopes that elicit cross-reactive 

antibodies, viral infection may disrupt immunologic 

tolerance. Antigenic mimicry between viral and 

human proteins has been recorded in several studies. 

The immune response to Epstein–Barr virus (EBV) in 

lupus patients is perhaps one of the most well-known 

molecular mimicry examples in autoimmunity [27]. 

An abnormal immune response to Epstein–Barr virus 

Nuclear Antigen-1 (EBNA-1) might be responsible for 

an autoimmune reaction against the Sm and Ro 

autoantigen systems [28]. Anti-EBNA-1 antibodies 

and myelin essential protein cross-reactivity have also 

been demonstrated in patients with multiple sclerosis 

[29]. 

Furthermore, EBNA-1 resembled synuclein, 

a brain protein linked to multiple sclerosis, and was 

predicted to bind HLA class II DR2b (HLA-DRB115: 

01) [30]. In silico research revealed that a human 

endogenous retrovirus (HERV) envelope protein has a 

similar sequence to three myelin proteins that have 

been connected to an autoimmune response in multiple 

sclerosis and are predicted to bind to HLA-DRB1: 01. 

Basavalingappa et al. [31] showed that infection with 

Coxsackievirus B3 (CVB3) would result in the 

generation of autoreactive T cells for various antigens. 

V. AUTOANTIBODIES IN COVID-19 

PATIENTS 

Autoantibodies associated with a variety of 

autoimmune disorders have been found in COVID-19 

patients (Table II). Pascolini et al. identifies 

antinuclear antibodies (ANA), anti cytoplasmic 

neutrophil antibodies (ANCA), and antiphospholipid 

(APL) antibodies in 33 COVID-19 patients [32]. 

According to the findings, 45 percent of the patients 

had positive autoantibodies, and patients with positive 

autoantibodies had a poorer prognosis and a slightly 

higher respiratory rate at admission. Antinuclear 

antibodies (IgG and/or IgM) were found in 33% of 

patients, anticardiolipin antibodies (IgG and/or IgM) 

were found in 24%, and anti2-glycoprotein-I 

antibodies (IgG and/or IgM) were found in three 

patients (9 percent). ANCA, on the other hand, was 

negative in all the patients [32]. Coagulopathy is a 

dangerous side effect of SARS-CoV-2 infection. A 

cohort study was recently conducted at Montefiore 

Medical Center to determine lupus anticoagulant 

presence in COVID-19 patients. The researchers 

discovered that COVID-19 patients had a higher rate 

of lupus anticoagulant positivity than controls who 

tested negative for COVID-19 reverse transcriptase–

PCR. 

Furthermore, COVID-19 patients with a 

positive lupus anticoagulant had a higher thrombosis 

rate [33]. Amezcua-Guerra et al. [34] also found that 

patients with severe and essential COVID-19 have a 

higher prevalence of APL antibodies and that the 

presence of APL antibodies is linked to a 

hyperinflammatory state with highly high ferritin, C 

reactive protein, and IL-6, and with pulmonary 

thromboembolism. The findings suggest that SARS-

CoV-2 can cause autoimmune responses, which may 
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explain the hypercoagulable condition seen in extreme 

and critical COVID-19 cases. Liu et al. explained the 

autoantibodies detected in COVID-19 patients and 

their clinical significance [25]. 

Table II describes the autoantibodies detected in 

COVID-19 patients [25]. 

Autoantibodies Clinical significance 

ANA Poor prognosis and a significant 

higher respiratory rate 

APL Poor prognosis and a significant 

higher respiratory rate. Possible 

association with a 

hyperinflammatory state and 

thrombosis and 

thromboembolism 

Lupus anticoagulant A higher rate of thrombosis 

Cold agglutinins Haemolytic 

anaemia.Complicating 

laboratory assessment and renal 

replacement therapy 

Anti-Ro/SSA antibodies Possible association with severe 

pneumonia 

Anti-Caspr2 antibody Unclear 

Anti-GD1b antibody Unclear 

Anti-MOG antibody Unclear 

Red cell bound antibodies Associated with the severity of 

anaemia 

 

VI. LITERATURE REVIEW 

For both researchers and mechanical researchers, the 

key functionalities of protein-RNA binding in many 

biological conditions [35] makes it an essential study 

field. Advanced measuring methods, both in vivo tests 

and in vitro, were used on the experimental side. The 

CLIP method and its findings assess, on a written 

scale, the binding of protein-RNA in vivo 

[36][37][38][39]. Several mobile orthogonal events, 

which have contributed to noise and signal loss, have 

negatively impacted these values. Consequently, these 

measurements are not sufficiently precise to provide 

reliable results for the calculation. Instead, they create 

a twofold effect: yes (existence of bonds) or no. The 

identification of about 100 nuclear substances 

establishes the binding of one of the other viable 

proteins present in vivo in all CLIP studies. In the 

sense of protein binding and technical objects and 

experimental tone, the inherent difficulty of in vivo 

makes reading the binding proteins-RNA from such 

data a difficult task [40][41]. 

RNAcompete, another test form, works in 

vitro [42][43][44]. The binding of a single protein to 

240,000 short RNAs (30-40 nucleotide lengths) is 

calculated for each RNA-compete test. These tests 

display low noise-to-signal levels and are consistent 

enough to generate good measurements of binding 

parameters or strength, as they do not have distracting 

cellular processes. 244 of these tests are in the most 

detailed in vitro database assessed using RNAcompete 

[45] technology (each for a single protein). 

The computer challenges arising from this 

experimental data are to install models of RNA-

binding protein to predict the binding of a given 

protein with a new RNA transcript. To tackle this 

challenge, several approaches have been established. 

All computer systems observe the presence of RNA 

sequences. Others also noticed a secondary RNA 

structure. We note that arithmetical methods predict 

secondary formation based on  the sequence itself.  

Computer-generated predictions are very accurate in 

the short RNA series [46]. In the same cells currently 

available with only two proteins, data sets contain 

RNA-binding and RNA levels [47]. 

MEMERIS, the first computerized method, 

uses a wait-and-add algorithm to detect sequencing 

motifs that may not be abolished in RNA regions and 

are therefore available for binding [48]. The 

RNAcontext, made with RNAcompete technology, is 

a basic model for sequencing and binding preferred 

structures [49]. The sequence preferences are 

represented as the weight of the position, thus 

contributing to the binding in each position 

independently of the other. In each sense of the house, 

the property preferences are displayed as the 

preference vector. The latest method, GraphProt, uses 

RNA graph structure representation to imitate a 

binding sequence and structure to obtain rich local 

graphs [50]. GraphProt takes over seven days to 

conduct a single RNAcompete test [51]. In order to 

read and predict the binding of protein-DNA and 

protein RNA to several data bases, including the 

RNAcompete and CLIP, DeepBind uses a new 

approach based on deep learning. It is based solely on 

the RNA sequence, i.e., without regard to RNA 

formation [52]. RCK, a recent invention, and state-of-

the-art technology, extend RNAcontext through all 

sequences and structure levels using a k-mer-based 

model [51]. Each RNA terminal k provides binding 

points lower than the total of each structure and can 

thus capture the location dependency within the 
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binding site. Depending on several data sources 

reflecting the complexity of mobile space, IDeep faces 

the challenge of predicting vivo binding. As part of the 

input [53], it seeks protein binding preferences and 

solves a different problem. Based on in-depth learning 

and use of both secondary and tertiary RNA structures, 

Deepnet-RBP learns RNA binding preferences but 

was designed to read-only from vivo data [54]. The 

new approach focused on in-depth learning, the 

pysster, explores a single structure of RNA [55], 

respectively. Furthermore, it solves the sequential 

separation problem and, where possible, does not 

predict binding capacity. No studies supporting the 

high-end machine learning mechanism of protein-

RNA sequence learning and the order of binding 

preferences from the highest in vitro data are available 

today [56]. 

In order to predict protein binding in DNA-

binding hydrolyte antibodies, Clair et al. used long-

term, short-term memory (LSTM) models trained 

directly for FASTA primary sequences. They used the 

same dataset with CNN models. Although the model 

of the CNN exceeded the LSTM's primary binding 

prediction task, an analysis of internal representation 

of both models indicated that the models with sub-

sequences were associated more closely with sites 

which were known to be involved in binding. These 

results demonstrate that studying the internal 

processes of recurring neural network models can be a 

powerful primary sequence analysis method [1]. 

Several B-cell epitopes do not produce 

neutralizing antibodies in B epitope databases (and 

therefore do not provide protective immunity). This 

leads to the compilation of well-defined data sets of 

protective B-cell epitopes [57]. B-cell epitopes are an 

important step in the development of peptide vaccines. 

A number of methods have been used to predict 

continuous B-cell epitopes and most of them were 

based on the physical and chemical properties of 

amino acids [58][59]. It is currently hard to say which 

residue property works better than the others, since the 

existing methods are not evaluated independently or 

benchmarked. 

The inherent complexity of the immune and 

recognition processes complicates epitope prediction. 

Several methods have been developed for the 

prediction of B-cell epitopes based on the 

physicochemical properties of the amino acids 

[60][61]. Classic methods for determination of linear 

antigenic sequence B-cell epitopes usually rely on the 

use of susceptibility scales [62][63]. Some methods of 

predicting linear B-cell epitopes were recently 

proposed based on machine learning and statistical 

approaches [64]. The hydrophilic analysis (on 12 

proteins) of Hopps and Woods [65] examined the 

possibility that some antigenic factors may be linked 

to a sequence of amino acids with loaded and polar 

residues and a lack of high levels of hydrophobic 

residues. Parker and others used the modified peptide 

retention time (HPLC) hydrophilic scales on a 

reversed-stage column [66]. The known B temperature 

factors have led to the development of a link between 

the anti-glycemicity and segmental mobility of 

carbons of 31 proteins in the known structure, to 

prevent the mobility of proteins segments. The 

flexibility scale is used to predict the epitopes of B-

cells Methods for predicting epitopes were also 

developed based on amino acid surface accessibility 

[65][66]. In 169 experimentally known epitopes, 

Hopps and Parker derived their own antigenicity scale 

from residue frequency [65]. Based on the occurrence 

of amino acids, Pellequer and others derived turn 

scales at each of the four turning points using a 

structural database composed of 87 proteins [63]. 70 

percent of the known epitopes were correctly predicted 

by the turn. 

Hopp and Woods are most useful in 

determining portions of the protein sequence involved 

in molecular surface interactions [67] with their 

original hydraulicity plotting procedure. When 

determining any method, it is important to choose the 

average group length or window. In the location of 

antigenic protein sites, a window of six residues works 

optimally [65]. The design of vaccines, 

immunodiagnostic testing and antibody production 

plays an important part in mapping B cell epitopes. As 

B-cell epitopes take time and costly to test the 

determination of antigenic cells, computational 

techniques are needed urgently to reliably identify the 

supposed B-cell epitopes [68]. 

The best alternative for reducing the number 

of peptides that can be synthesized for wet laboratory 

experimentation is the bioinformatics approach to 

predict the linear B cell epitope in the protein 

sequence. The prediction of linear B-cell epitopes has 

previously been based on numerous computing 

methods and programs based on the hydrostaticity, 

accessibility, flexibility or secondary structure 

propensity scales from the 20 natural amino acids. 

[69]. In this study results of various residue properties 

commonly used in the B-cell prediction were 

evaluated. The purpose of the study is to develop a 

machine learning based software tool that calculates 

the protein's physiochemical properties from the 

primary protein sequence and predict secondary 

protein elements using python and hence can be used 

as a B-cell epitope from the amino acid sequence 
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identified in the proteins by means of antigens. Later, 

we can calculate the binding affinity of those protein 

sequences. 

VII. PROPOSED METHODOLOGY 

A. Dataset 

Viral proteins are the proteins produced by a virus 

within the host. When viruses hijack many of their 

human's mobile machinery, few of their own genes are 

coded. Consequently, structural parts, such as the viral 

envelope and capsid are usually viral proteins. In one 

study, a single sample of bronchoalveolar lavage fluid 

was sequenced and on 26 December 2019 the virus 

proteins were found in the novel genome of COVID-

19 at the Wuhan Central Hospital. The NCBI (NC 

045512) and GenBank (NC 045512.gb) databases 

contained the coronavirus genome sequence. COVID-

19 genome analysis was carried with Biopython and 

DNA features viewer libraries [70][71]. 

 

 
Figure 2 A Machine Learning Approach for Testing COVID 

RNA-Human AntiRNA Antigenicity and Binding Affinity 

 
B. Classifiers 

In order to guarantee the authenticity of a hypothesis 

unbiased of the choice of machine learning models, we 

utilized two different supervised classification 

systems: a linear Vector Support Machine (SVM) [72] 

and Random Forest Classification (RF) [73]. We used 

vector support machines (SVMs) as interactions or as 

non-interactions to classify human-pathogen protein 

pairs. SVMs have several benefits, including strong 

theory, optimum margin classification and higher 

dimension generalization performance. A Random 

Forest (RF) on the other hand is a machine-learning 

technique based on ensemble using the algorithm of 

decision-making trees [74]. RF samples sub-sets of 

feature spaces are used to train individual decision tree 

randomly. 

C. Feature Extraction 

In this study, we employed K-mer to guarantee the 

authenticity of the hypothesis proposed is unbiased of 

the choice of the representing function. The structure 

of K-mer is obtained by counting occurrences of k-

mers in a protein sequence and is a widely used 

narrative of the protein sequence [75]. Here, by 

combining aminic acids into seven groups based on 

their hydrophobic and electrostatic properties, we have 

extracted this representation [76]. By calculating the 

group occurrences of k-mers, every protein sequence 

is translated to a characteristic illustration of length 7k. 

D. Model Evaluation 

In a fold wise performance evaluation of a predictor, 

there is always possibility of a check between proteins 

used as a training and test dataset. This train and test 

data overlap can provide inflationary performance 

measurements. We have used the classic K-fold cross 

validation method, which is used to randomly separate 

the original data set into K subsets (folds) [77]. K-1 

sets are used to train the predictor from these K subsets 

and the rest of the set is used to test. 

E. B-Cell Epitope Prediction for Antigenicity 

Testing 

We extract various characteristics from the peptide 

sequence and produce several hybrid features with a 

variety of composition combinations, including amino 

acid composition (AAC), amino acid index (AAI), 

dipeptide composition (DPC), chain-transition-

distribution (CTD), and physicochemical properties 

(PCP) [78]. We will then look at six ML algorithms 

including the vector-assisted support-machine (SVM), 

random forest (RF), extremely randomized tree 
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(ERT), AdaBoost (AB), gradient boosting (GB) and k-

nearest (k-NN). Finally, to predict the B-cell epitope, 

we are using our proposed model. 

 

Figure 3 UML Class Diagram for the proposed python-based 

software tool using Machine Learning approach 

VIII. CONCLUSION 

The core biologically important protein interaction 

problems are discussed  in this paper. We have 

highlighted various problems and proposed several 

learning machines to interact with proteins, binding 

affinity, and antigenicity. Issues of human-pathogenic 

interaction prediction (HPI) have been pointed out 

with assessment scheme and proposed new evaluation 

scheme with various biologic centric metrics within 

this area. Several modern sequence-based machine-

learning models for the prediction of protein-binding 

affinities were introduced. We have also established a 

new method of antigenicity prediction using machine 

learning algortihms that uses protein structural 

information and sequence information during training, 

but only requires sequence information during testing. 

According to our best knowledge, this is the first step 

towards combining both antigenicity and binding 

affinity prediction with ML algorithms in a single 

software context. 
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