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Abstract– The purpose of this paper is to describe the 

combination of an E-nose and E-tongue that were evaluated for 

the E. coli detection at different concentrations, as well as their 

ability to discriminate this bacterium from others, such as 

Klebsiella pneumoniae and Salmonella enterica in pasteurized 

milk. In this study, gold and carbon electrodes were tested in the E-

tongue. For data processing, multivariate analysis techniques were 

used to discriminate the measurements, where the Principal 

Components Analysis (PCA) and Linear Discriminant Analysis 

(LDA) methods were applied. Likewise, for the data classification, 

the Vector Support Machines (SVM) through the linear kernel and 

Radial Basis Function (RBF) algorithms were used, and the same 

way as the k-Nearest Neighbor (k-NN) method. When evaluating 

the capacity of the proposed methodologies to detect and classify E. 

coli, S. enterica, and K. pneumoniae in pasteurized milk, it was 

observed that both the E-nose (TGS 826 sensor) and the E-tongue 

(gold electrode) obtained comparable results with 94.7% and 92.5% 

success rate respectively. Both devices successfully detected and 

classified the three bacteria tested, clearly differentiating them 

from the sterile milk samples. On the other hand, the electronic 

tongue with a gold electrode achieved a 98.7% success rate in the 

discrimination of decreasing concentrations of E. coli, from 1x 06 

CFU/ml to 1x10-2 CFU/ml, in pasteurized milk. 

Keywords-- E-nose; E-tongue, bacteria, pasteurized milk, PCA, 

LDA, SVM, k-NN. 

 

I.  INTRODUCTION  

Foodborne diseases remain an important cause of 

morbidity and mortality, therefore are a public health problem 

worldwide [1] [2]. Consequently, the detection and monitoring 

of pathogenic bacteria are one of the priorities for the dairy 

industry, since its food products are consumed by a wide 

sector of the population, including children [3]. Currently, the 

main strategy for monitoring hygienic conditions in milk 

production and its derivatives is the use of indicator 

microorganisms. Thus, the dairy industry has long since used 

coliforms for this purpose [4]. Of this group stands out 

Escherichia coli as this species of coliform bacteria is the best 

indicator of fecal pollution and the possible presence of 

pathogens [5]. This bacterium is not only characterized by its 

use as an indicator microorganism but also includes strains that 

are pathogenic for humans, and on numerous occasions have 

been isolated from milk and/or its derivatives as responsible 

for infective processes resulting from its consumption [2], [6], 

[7] [8]. Indeed, of the Enterobacteriaceae family, E. coli is 

usually the most frequently isolated species from milk [9]. 

Additionally, the presence of E. coli in milk acquires greater 

importance at a public health level since strains with resistance 

properties against antibiotics have been reported [10]. 

Although pasteurization is considered an effective method for 

the elimination of pathogenic bacteria from milk [11], in 

developing countries, there are still reports on the detection of 

these bacteria in pasteurized milk and in ready-to-eat milk 

products, which suggests important underlying food security 

problems [12].  

Traditional methods for the bacteria detection in food are 

based on the growth of bacteria strains in solid culture media, 

which demands in addition to inputs and a specific 

infrastructure, time that can vary from 1 to 3 days for obtaining 

the initial results, and may even be longer to confirm specific 

pathogens. Therefore, to prevent the spread of infectious 

diseases, ensure the safety of dairy products, and protect 

public health, there is an increasing demand for the 

development and implementation of rapid bacterial detection 

methods, ideally culture-independent, to have the information 

in a more immediate way [13]. In recent years, work has been 

carried out to search for alternative methodologies. At present, 

this set of methodological strategies can be grouped into three 

categories: immunological methods, those based on nucleic 

acids, and those based on chemical sensors or biosensors [14]. 

Of these categories, the most emerging and promising 

corresponds to the biosensors that have been used for the 

construction of artificial systems of smell and taste, called E-

nose and E-tongue systems. These systems have demonstrated 

their ability to detect bacteria in a shorter time, with good 

sensitivity and selectivity comparable to conventional 

methods; furthermore, compared to the other categories, and 

they do not require specialized laboratories with qualified 

equipment and personnel, or complicated steps for sample 

preparation [15]. 

E-noses and E-tongues attempt to mimic the sense of 

smell and taste, and their communication with the human 

brain.  Besides, E-noses are measuring instruments based on a 

series of semi-selective gas sensors that interact with volatile 

molecules that generate physical or chemical reactions that 

send a signal towards a computational device that uses pattern 

recognition methods [16]. In the food industry, volatile organic 

compounds (VOCs) are diverse and can be generated during 

production, maturation, and storage, causing each product to 

have a characteristic profile. Similarly, food spoilage will 
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result in a different but still characteristic profile in the same 

product [17]. For example, bacterial growth in milk generates 

VOCs such as ethyl butyrate, acetaldehyde, acetic acid, 

ethanol, etc., which can be used as markers for the early 

detection of milk spoilage [18]. In recent years the E-nose has 

become an instrument with great potential for monitoring, 

control, and evaluation of food safety, as it helps to quickly 

and early detect contaminants and/or adulterations in the food 

production chain [19]–[21], such is the case of meat [4], fish 

[5], milk and dairy products[22], [23] fruits and 

vegetables[24], [25], bakery products[26], and drinking 

water[27], among others[28]. In the dairy sector, the E-noses 

have been studied for the detection of characteristic volatile 

and non-volatile compounds related to the growth of bacteria 

such as Pseudomonas fragi or Escherichia coli [29]. 

Moreover, it has been shown that E-noses can have 

applications in aspects such as: classification of milk by 

trademark and type, determination of unpleasant taste in UHT 

milk, prediction of milk shelf life, freshness control and 

differentiation of microbial species that cause spoilage, and 

adulterations in skimmed milk, among others [6], [16], [20], 

[23], [30]–[33].  

E-tongues use a variety of non-specific chemical sensors, 

with high stability, cross-sensitivity, which together with 

pattern recognition or multivariate analysis tools, allow the 

classification of samples [34]–[36]. Besides, E-tongues have 

their most important applications in the food industry, 

especially in beverages [37]–[41], a sector in which it has been 

shown that this device has great potential in quality 

assurance[2] detection of chemical contaminants. It has been 

reported that, in the dairy industry, E-tongues may have 

important applications in activities related to spoilage control 

and quality assurance of dairy products [42], [43]. Its use has 

been focused mainly on the detection of adulterated milk [5], 

[44] and they have also been used to evaluate the flavor and 

freshness of the product [45], and to discriminate between 

different types of milk[6], [7]. Regarding the fermented 

products, its use has been described in monitoring the 

fermentation, post-maturity, and storage processes of yogurt 

[9]. 

According to the above, both the E-nose and the E-tongue 

are very promising tools to assess quality and monitor 

deterioration in the food industry [19]; nevertheless, few 

studies have explored the ability of these instruments to detect 

and discriminate important bacteria in food. This study 

presents a comparative analysis of the use of an E-nose and an 

E-tongue to differentiate between three of the most important 

bacterial species of the Enterobacteriaceae family, as well as 

an evaluation of their ability to discriminate different 

concentrations of E. coli in pasteurized milk. 

 

II. MATERIALS AND METHODS 

A. Bacterial Strains 

 

The following bacterial strains were used in this study: 

Escherichia coli (ATCC® 25922™), Klebsiella pneumoniae 

(ATCC® 27736™), and Salmonella enterica (ATCC® 

31194™). These strains were supplied and preserved by the 

microbial culture collection center of the University of 

Pamplona. To verify the ability of the devices to detect and 

discriminate between bacteria, a suspension in sterile water 

was obtained from each strain, at a concentration of 3×108 

CFU/ml, using the McFarland standard No. 1, as indicated by 

Isenberg HD 2015. This suspension was diluted 300 times 

(1/300) to a final volume of 300 ml in pasteurized milk 

previously sterilized, to achieve a final concentration of 1×106 

CFU/ml. This procedure was carried out for each of the 

bacterial strains, preparing three erlenmeyers with milk, each 

one inoculated with: E. coli, K. pneumoniae and S. enterica.  

To evaluate the sensitivity of the devices to detect E. coli in 

milk, the procedure was as described below. From a 

suspension of E. coli in sterile water (at a concentration of 

3×108 CFU/ml), nine serial decimal dilutions (1/10) were 

carried out to a final volume of 10 ml in sterile milk, obtaining 

nine tubes (from 3×107 to 3×10-1 CFU/ml). Afterward, each of 

these tubes was diluted 30 times (1/30) to a final volume of 

270 ml of sterile milk. Thus, nine flasks were obtained with 

decreasing concentrations, in an order of magnitude 10, from 

1×106 to 1×10-2 CFU/ml. The above procedure was performed 

by duplicate. Each of the final concentrations of E. coli was 

verified by a conventional microbiological procedure) figures, 

plots, drawings and photos for best printing result. 
 

B. Experimental set-up 

 

-E-nose system 

 

For the development of the E-nose, a matrix of 16 TGS-

type metal oxide sensors from the manufacturer Figaro sensor 

(see Table I) was used and conditioned with 4.7 KΩ load 

resistances and a voltage divider was applied to the acquisition 

of the sensor signal in resistance value (Rs). 

 
TABLE I 

TGS GAS SENSOR 

# Sensor Target Gas 

1 TGS 826 Ammoniate and amine 

2 TGS 831 R-22 Monoclorodifluoromethane 

3 TGS 821 Hydrogen 

4 TGS 826 Ammoniate and amines 

5 TGS 842 Methane and natural gas 

6 TGS 880 Smoke of the food 

(Alcohol, odour) 

7 TGS 825 Hydrogen sulphide 

8 TGS 813 Hydrocarbons in general 

9 TGS 800 Air pollutants in general 

10 TGS 880 Smoke of the food 

(Alcohol, odour) 

11 TG0S Alcohol and organic solvents 
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12 TGS 821 Hydrogen 

13 TGS 832 R-134ª 

1,1,1,2-Tetrafluoroethane 

14 TGS 842 Methane and natural gas 

15 TGS 831 R-22 Monoclorodifluoromethane 

16 TGS 830 R-22 Monoclorodifluoromethane 

 

The measurement chamber was developed in methacrylate 

material, with a 30 ml volume capacity and two orifices for the 

entry and exit of volatile compounds. A connector was used 

for the 5 VDC voltage input and the 16 analog channel output 

where the sensor signals were acquired by a National 

Instruments Model 6218 DAQ 16-Bit, 250 kS/s data 

acquisition card. At the inlet of the measurement chamber, a 

1/4-inch 30-cm long hose was placed to connect the volatiles 

extraction system employing connectors. For heating and 

subsequent measurement with the sensors, 10 minutes were 

required. Once the compounds were measured by the E-nose, 5 

minutes was set for cleaning the sensor chamber to avoid the 

memory effect in the next measurement. The time to obtain 

results with the electronic nose was 20 minutes respectively. 

To extract the VOCs from the milk samples for their 

analysis by the E-nose, 20 ml volume vials were used in which 

10 ml of sample were added. Moreover, to generate a 

headspace sample, a “home-made” volatile extraction system 

was used, which consists of a heating or resistance unit that 

allows increasing the temperature from 20°C to 250°C, which 

allows the extraction of the emitted compounds. by heating the 

sample. Once the sample was heated to a temperature of 50°C 

for 10 minutes, the gas was extracted from the headspace of 

the vial employing a needle and the activation of a 12 VDC 

electrical pump to draw the compounds towards the sensor 

chamber. During the warm-up time, the temperature control 

was carried out with a low-cost data acquisition card “Arduino 

UNO”. 

 

E-tongue system 

 

For the operation of the E-tongue, a two-channel 

potentiostat (Reference “μStat200”) from Dropsens Company 

was used, which consists of a portable Bi-potentiostat that is 

used for amperometric and voltammetric measurements. This 

small device operates with six current levels from 2 nA to 200 

µA and with a resolution of 1 pA in the minimum current 

range. 

For the analysis of the samples, two types of screen-

printed electrodes from the Dropsens company were used, a 

carbon electrode (C110) and a gold electrode (220AT). For 

the acquisition of the signals, the parameters were configured 

through cyclic voltammetry with the following values: Ebegin: 

0, which indicates the scan start potential, Evtx1: -2, scan 

inversion potential, Evtx2: + 2, voltage with the scan stops, 

and the number of scans = 1. For the acquisition of 

measurements in a repetitive way, the potentiostat was set in 

automatic mode for a time of 1 min, enough to obtain results in 

5 minutes. 

 

 

- Sample conditioning 

 

Each of the three bacterial suspensions (at a final 

concentration of 1×106 CFU/ml) described above, was tested. 

From each flask, 10 ml were taken in a vial to be analyzed by 

the E-nose, and 50 μl to be analyzed by the E-tongue. The 

measurements were repeated ten times for each bacteria. 

Regarding the E-tongue system, the carbon (C110) and gold 

(220AT) electrodes were also tested. 

Furthermore, from each of the nine flasks with different 

concentrations of E.coli (from 1×106  to 1×10-2 CFU/ml), the 

same quantities already mentioned were taken to be processed 

by both the E-nose and the E-tongue. In this test, the 

performance of the carbon (C110) and gold (220AT) 

electrodes was also verified and compared. In each case, the 

analyzes were repeated ten times for each concentration. The 

microbiological analysis to verify the concentration of the 

samples contaminated with E. coli was carried out according 

to the procedure defined by the AOAC 17.3.08 (983.25).  

In both cases, sterilized pasteurized milk was used as a 

negative control. Fig. 1 illustrates each of the stages developed 

in this work, as well as the materials that were used for the 

development of the tests with the devices based on gas sensors 

and screen-printed electrodes. The preparation of the samples 

and the tests with the E-nose and E-tongue were carried out in 

the microbiology research laboratories of the University of 

Pamplona (Colombia). 

 

 
Fig. 1 Overall scheme of the procedure for bacteria detection. 

 

C. Data pre-processing 

 

To obtain the maximum information from the data 

generated by the devices, a data pre-processing stage was 

applied to avoid loss of the information or the noise generated 

during the sample acquisition. In the case of the E-nose, the 
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static parameter ∆R=Rmax- Rmin was used, in which Rmax   

corresponds to the value of the maximum resistance reached 

by the sensors, and Rmin to the minimum value of the resistance 

response of the gas sensors [46]. 

Likewise, the measurements obtained by the E-tongue by 

means of the screen-printing electrodes, were pre-processed 

through the current values (µA), where two parameters were 

extracted from the data set. One of them was ⩟U1=Umax- Umin, 

which extracts the relevant information from the response of 

the voltammetric signal during the oxidation-reduction 

process, and on the other hand the parameter ⩟U2=Ufinal- Uinitial 

was acquired in order to extract the behavior of the 

voltammetric signal during the entire measurement period of 

the compound. 

After extracting the static parameters, two normalization 

methods were applied in order to reduce the magnitude of the 

variables, these are normally called “Meancentring” and 

“Autoscaling”, where “Meancentring” extracts the mean value 

of each of the data, it is used in order to center a subset of 

vector space to a centroid of the original data set for a better 

grouping and visualization of the information. On the other 

hand, "Autoscaling" divides each variable by the standard 

deviation such as normalization per column, therefore it is a 

useful method when there are variables with data of different 

scales. Additionally, “Autoscaling” can be defined as a 

composition between both methods. 

 

D. Data processing 

 

For processing and data analysis, different Pattern 

Recognition (PARC) methods and classification techniques 

were used, such as Principal Component Analysis (PCA), 

Linear Discriminant Analysis (LDA), Support Vector Machine 

(SVM) by using linear kernel and Radial Basis Function 

(RBF); finally, the k-Nearest Neighbor (k-NN) algorithm was 

used as classification method. 

PCA creates a dimensional graph in 2D or 3D using the 

previously normalized data matrix, thus reducing the number 

of initial variables (sensors) and obtaining a set of principal 

components, which are the new variables built from the 

originals ones [47]. It is the most widely used method in E-

noses and E-tongues since it performs discrimination 

employing a linear transformation that converts a number of 

observations of correlated variables into uncorrelated variables 

that correspond to the principal components [48]. Therefore, 

most of the information of the original variables is distributed 

in the first two components (PC1 and PC2) [45] [49]. In the 

analysis of the milk samples, both for the bacteria 

discrimination and the concentrations of E.coli, the matrix was 

reduced to 2 variables from the original 16, maintaining the 

information of the data set. 

Additionally, through the LDA multivariate analysis 

method the first two factors are used, and unlike PCA, it is 

more used in data classification, where the main objective is to 

obtain information from the two factors and project the set of 

measures in a two-dimensional space through adequate 

separation between classes and good repeatability between the 

same class [49]. LDA is a supervised method that calculates 

directions through the use of linear discriminant functions that 

represent the axes or coordinates that maximize the separation 

in different classes depending of the variance [50]. This means 

that with a single discriminant factor it could be determined 

whether the set of measures can be classified [51].  

SVM allows in most cases to solve different classification 

problems since the algorithm offers an excellent reliable 

predictor and with the characteristic of having a good 

performance because it performs minimum overfitting to the 

data set [52].  SVM algorithm is optimized by the polynomial, 

linear and radial basis function (RBF) Kernel function. In this 

study, several tests were carried out with the milk samples, 

both linear and RBF Kernels to find the best percentage of 

success rate in the classification of milk measurements [53], 

[54]. 

Another classification method widely used in solving 

classification problems is the k-NN algorithm owing to its 

simplicity and low error rate. This method is also known as k-

nearest neighbors, which works using an input vector with the 

determined number of closest training samples in the space to 

which each category belongs. k-NN also requires training to 

define the neighbors as a function of the distance from the test 

sample to another sample, and thus determine the class to 

which the test sample belongs [55].  Due to the ease of 

implementation and because it is a non-parametric classifier 

method, its error probability is limited by the Bayesian error 

[56]. For the classification of bacteria and milk samples with 

concentrations, the “Fine” k-NN classifier was used, which 

makes detailed distinctions between classes with the number of 

neighbors set to one [57]. 

III. RESULTS AND DISCUSSION 

A. Bacteria discrimination in milk 

 

This analysis was carried out by means of a controlled 

contamination of sterilized pasteurized milk with each of the 

following bacteria E. coli, K. pneumoniae, and S. enterica, at a 

final concentration of 1×106 CFU/ml. These are three of the 

species of the Enterobacteriaceae family with the greatest 

relevance in milk and dairy products owing to their 

prevalence, pathogenicity, and their involvement in foodborne 

outbreaks [58]. 

 

B. E-nose 

 

Fig.2 shows the result obtained through the PCA analysis, 

in which a total variance between the first two components 

reached 86.69%. In the PC1 a greater representation of the 

samples was obtained, where the clusters of S. enterica and E. 

coli are discriminated very close to each other, coming to infer 
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similarities between the two classes; however, these categories 

are clearly distinguished. The proximity between these two 

clusters has biological bases since these are species are known 

to be evolutionarily closely related based on a high level of 

similarity between their housekeeping genes, and the two 

species are considered to have diverged from a common 

ancestor [59].  

 

. 

 

 

 
Fig. 2 PCA Plot for the bacteria discrimination by using the E-nose 

 

Besides, it is observed that the samples contaminated with 

K. penumoniae have a greater dispersion than the rest of the 

categories. This may be because the bacteria had a memory 

effect on the sensors and the recovery was very slow. 

Furthermore, it is important to clarify that two outliers were 

discarded from the group of 40 measurements due to problems 

in the acquisition process. 

 

Fig. 3 illustrates the behavior of the classes for the 

variable (V1) or sensor 1 (TGS 826) applying the Boxplot 

graph, which presented a better performance, and clearly 

shows the differences between the contaminated samples with 

bacteria and the sterile milk. The classes are represented as: 1) 

Sterile water, 2) K. pneumoniae, 3) E. coli, and 4) S. enterica. 

additionally, for the classification of the measures, the SVM 

classifier with the Gaussian mean function was used, which 

obtained a success rate of 94.7% in the classification of the 

measures and the cross-validation method was applied with a 

k-fold = 5 (see Figure 4). Although a very good classification 

was obtained, there were two errors in categories 1 and 4, 

since some measurements of class 3 (E. coli) generated 

overlaps between sterile water and S. enterica. 

 

 
 

Fig. 3 Boxplot for samples analysis by using TGS 826 sensor. 1) Sterile 

water, 2) K. pneumoniae, 3) E. coli, and 4) S. enterica. 

 

 
Fig. 4 Confusion matrix obtained from SVM classifier for bacteria 

classification through the E-nose. 

 

In general terms, the E-nose showed a high discrimination 

capacity between the bacteria tested; not only because of the 

clear separation between them and with regards to sterile milk 

but also because the results of the PCA and SVM allow to 

show a closer relationship between the strains of E. coli and S. 

enterica than with regards to K. pneumoniae. This result is 

very interesting because the data generated by the E-nose are 

consistent with the results obtained by phylogenetic inference 

based on nucleic acid sequences (16S ribosomal RNA and 

housekeeping genes), which have been carried out in the 

Enterobacteriaceae family. Analysis by DNA markers has 

clearly shown an evolutionary closeness between the genera 

Escherichia and Salmonella, while the genus Klebsiella has a 

greater genetic distance. 

 

C. E-tongue 

 

The processing with the E-nose was carried out taking into 

account two characteristics of the voltammetric signal obtained 

by the screen-printing electrodes of both carbon (C110) and 

gold (220AT). The characteristics correspond to the maximum 

and minimum value extracted from the signal together with the 

final and initial value of the voltagram. The values of the two 

characteristics were acquired to obtain relevant information 

from the data set. 
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- Gold sensor 

The score graph of PCA analysis for this sensor (Fig. 5) 

shows how the sterile milk and the samples contaminated with 

E. coli and S. enterica were grouped and discriminated 

appropriately, with very good repeatability and selectivity 

among categories. 100% of the total variance in the two PCs 

was obtained. Similar to what was observed with the carbon 

sensor, the category corresponding to K. pneumoniae showed 

dispersion among the samples. These observations are 

supported by the data of the distribution of the classes shown 

in the Boxplot graph (Fig. 6). This graph shows how class 2 

(K. penumoniae) presents higher outliers, which explains the 

dispersion of the samples. 

 

 
Fig. 5 PCA analysis using the gold electrode. 

 

 
 

Fig. 6 Boxplot for the samples analysis through the gold electrode. 

 

For the classification of the measures, the LDA classifier 

was used, which obtained a success rate of 92.5% with the 

cross-validation method and a k-fold = 5. It should be noted 

that the classification carried out in this case obtained 3 errors 

that can be seen in Fig. 7, and it can be compared to the carbon 

electrode that obtained 5 samples misclassified (see Fig. 10). 

 

 
Fig. 7 Confusion matrix obtained from LDA algorithm through the gold 

sensor (220AT) for the bacteria classification in milk. 

 

Carbon sensor 

Fig. 8 shows the discrimination of the different categories 

of bacteria and the sterile milk samples. With 99.66% of the 

total variance in PC1, E. coli and S. enterica bacteria can be 

discriminated with good repeatability between samples and 

selectivity between categories. However, the category 

corresponding to the bacterium K. pneumoniae showed a 

significant dispersion among the samples, even some of them 

were located close to the cluster of samples with E. coli. 

 

 
Fig. 8 PCA analysis using the carbon electrode 

 

Fig. 9 illustrates the Boxplot graph that represents the 

class distribution using the carbon electrode (C110). The 

graph shows the differences between the classes of bacteria 

and sterile milk. In class 2 (K. pneumoniae) higher atypical 

values are observed, which leads to the dispersion of the 

samples. 

 

 
Fig. 9 Boxplot for the samples analysis through the carbon electrode. 
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The confusion matrix (Fig. 10) presents the result of the 

classification of the measurements using the LDA and K-NN 

classifiers with fine adjustment, which obtained success rates 

of 87.5% with the cross-validation method with k-fold = 5 and 

10. It should be noted that the classification obtained for this 

case had 5 errors compared to the E-nose where only 2 

unclassified samples were obtained. In this case, the E.coli 

bacteria also overlapped with the other two bacteria. 

 

 
Fig. 10 Confusion matrix obtained from LDA and k-NN algorithms by 

using the C110 electrode for the bacteria classification in milk. 
 

Finally, we can mention that the use of the E-tongue 

produced satisfactory results, with both the carbon and gold 

sensors despite the dispersion observed in the samples 

contaminated with K. pneumoniae; if we compare the two 

sensors, the use of the gold sensor produced slightly more 

consistent results and with a distribution more in line with 

what was observed when using the E-nose. 

 

D. Discrimination of the E.coli concentration in milk 

 

Taking into account the use of E. coli as an indicator 

microorganism of food quality, the ability of E-nose and E-

tongue to discriminate different levels of E. coli contamination 

in pasteurized milk was verified. The results obtained from the 

measurements acquired and the different data processing 

methods that were applied for the discrimination and 

classification of contaminated samples and sterilized milk, are 

described below.  

 

-E-nose  

 

The measurement discrimination using the PCA analysis 

and the pre-processing method "autoscaling" with the data 

obtained by the E-nose, are shown in Fig. 11. Each of the 

concentrations was labeled with a letter from A to I. The letter 

A indicates the lowest concentration (1x10-2 CFU/ml) and the 

letter I the highest (1x106 CFU/ml). The graph shows that all 

the concentration clusters are correctly separable by the 

algorithm, obtaining a variance in PC1 of 88.22%. 

The results clearly show that all concentrations were 

recognized and separated without overlaps, they follow a 

sequential order depending on the contamination level. For 

instance, cluster I with a concentration of 1x106 CFU/ml is at 

the top of the PCA graph; likewise, cluster J, which 

corresponds to sterile milk, is projected towards the right side 

of the graph, which makes it easily identifiable (Fig. 11). The 

organization of the graph makes it easier to discriminate 

between the concentrations of E. coli and sterile milk. It 

should be clarified that an “outlier” was detected in the H 

concentration (1x105 CFU/ml), therefore this measurement 

was eliminated from this group of measurements since during 

the sample collection process there were failures in the data 

acquisition. 

 
Fig. 11 Scores plot of PCA analysis for E. coli concentrations and sterile 

milk by using the E-nose. 

 

Analyzing the distances projected in PC1, it can be 

observed that from cluster D to J there are greater differences 

when compared with the distances projected in PC2. In 

clusters E, F, G, H, I the behavior is inverse; however, the 

repeatability was better than that shown by the samples with 

low concentrations. 

Once the original variables were analyzed with the PCA, 

it was observed that the TGS 831 sensor obtained the best 

information from the measurements and was able to 

differentiate all the groups of measurements. The boxplot 

graph (Fig. 12) shows the behavior of sensor 15 (TGS 831) in 

detecting samples with different concentrations of E. coli and 

sterile milk. It is observed that the group of samples J (Sterile 

milk) labeled as class 10 has a significant difference for the 

rest of the milk samples contaminated with E. coli since the 

distribution of the data is more atypical than the rest. 

 

 
Fig. 12 Boxplot of contaminated milk concentrations with E. coli and 

sterile milk. 
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Fig. 13 shows the confusion matrix obtained with the 

SVM classifier with the Gaussian mean function, with which a 

percentage of success of 82.3% was obtained in the 

classification of the data set based on k-fold cross-validation 

(k = 5), which was applied to determine the accuracy of the 

classification method. The PCA scores were used as input to 

the algorithm, observing that the confusion matrix identified 

14 measures that were not well classified. In the analysis of the 

confusion matrix, it is seen that four measures of class 6 

(1x103 CFU/ml) were categorized as measures of class 7 

(1x104 CFU/ml). This error in the classification may be owing 

to the similarity between the data of some samples and the 

variations in the spatial distribution of the bacteria in the 

suspension at the time of homogenizing and taking the volume 

to be analyzed. 

 
Fig. 13 Confusion matrix of contaminated milk concentrations with 

E.coli and sterile milk by using SMV classifier. 

 

E-tongue  

 

Gold sensor  

Fig. 14 shows the projection of the measurements in the 

PCA graph in which the different concentrations were 

discriminated through the response of the gold electrode used 

for the detection of the samples and analysis with the device. 

Once the voltammetric (cyclic) signals were acquired through 

the potentiostat, they were normalized through the 

“Autoscaling” function, and later they were discriminated by 

the PCA method, obtaining a variance in PC1 of 92.2%. 

Therefore, between the first two main components, they added 

a total of 100% of the variance captured by the first two 

“scores”, reaching a clear separation of the concentrations 

projected in PC1. Furthermore, it is observed that the 

concentrations do not overlap and follow a sequential order 

depending on the level of contamination. For instance, cluster I 

that represents the highest concentration was located at the 

opposite end of cluster A, which in turn corresponds to the 

lowest concentration. Likewise, cluster J that corresponds to 

sterilized milk is projected in the lower part of the PCA graph, 

which is easily identifiable. In this way, all the categories 

tested were clearly and correctly discriminated. 

 

 
Fig. 14 Scores plot of PCA analysis for E. coli concentrations and sterile 

milk by using E-tongue (gold electrode). 

 

The corresponding confusion matrix was performed to 

verify the accuracy of the k-NN algorithm since it obtained the 

best classification of 98.7% of the data set. For the validation 

of the responses of the k-NN classifier, the cross-validation 

with k-fold (k = 5) with fine adjustment was used, which was 

applied to determine the response of the classification method. 

The PCA scores were used as input to the algorithm and as a 

result, the confusion matrix identified only 2 misclassified 

measurements (J1 and J4) which were projected very close to 

categories C and E respectively (Fig. 15). 

 

 
Fig. 15 Confusion matrix of contaminated milk concentrations with E. 

coli and sterile milk by using k-NN classifier. E-tongue (gold electrode). 

 

Carbon sensor 

The result of the PCA analysis obtained a variance 

between the two scores of 100%. In the PC1 score, a better 

representation of the different concentrations was obtained and 

it can be observed how cluster J (sterile milk) is projected 

from PC2, providing a greater difference with the rest of the 

categories (Fig. 16). However, it is observed that at low 

concentrations (clusters A, B, and C) the ability of the sensor 

to discriminate is not as good as the gold sensor.  
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Fig. 16 Scores plot of PCA analysis for E.coli concentrations and sterile 

milk by using E-tongue (carbon electrode). 

 

To verify the above analysis, a confusion matrix was made 

in which the k-NN algorithm was applied with fine adjustment 

and a percentage of the success rate of 89.9% was obtained in 

the classification of the measurements. For the validation of 

the response of the k-NN classifier, the cross-validation with 

k-fold (k = 5) was used, which was applied to determine the 

response of the classification method. The PCA scores were 

used as inputs to the algorithm and the confusion matrix 

identified 8 misclassified measurements, 5 of which 

correspond to the lowest concentrations (Fig. 17). 

 

 
Fig. 17 Confusion matrix of contaminated milk concentrations with 

E.coli and sterile milk by using k-NN classifier and PCA scores. 

 

When comparing the results obtained with both 

electrodes, it can be observed that the gold electrode offered a 

better response for the discrimination between the different 

concentrations of E.coli in pasteurized milk. This electrode 

showed an even better capacity than that observed for the E-

nose since it allowed to classify and separate clearly and 

effectively all the categories tested. These results make it 

possible to project the use of these devices, not only for the 

detection of bacteria in milk but also for their quantification. 

 

IV. CONCLUSIONS 

Of the differentiation tests between bacteria of the 

Enterobacteriaceae family, promising results were obtained 

with the E-nose and the behavior of the TGS 826 sensor, since 

it was able to achieve 94.7% success in classifying the data set 

using the SVM algorithm with Gaussian mean. On the other 

hand, the electronic tongue with the gold sensor achieved a 

similar result, reaching a 92.5% success rate in the 

classification of bacteria. Although the carbon sensor did not 

present the best response, its application can be postulated in 

this type of analysis since the result of 87.5% of data 

classification promises that it can be used for other 

applications.  

The best results to classify and discriminate milk samples 

contaminated with different concentrations of E. coli were 

achieved with the gold electrode of the E-tongue. The data 

processing carried out on the sample signals allowed 

classification of 98.7% of success through the k-NN algorithm 

with fine adjustment. These results show the great potential of 

this device for use in the detection and quantification of E. coli 

in pasteurized milk. Notwithstanding the above, the E-nose 

and the E-tongue with carbon electrode also produced good 

results, with 82.3% and 89.9% success respectively, for the 

classification of the different concentrations of E. coli. 

Taking into account the usual limits required by the 

regulations on the presence of E. coli in milk, and despite the 

differences that may present between them, both the E-nose 

and the E-tongue showed high sensitivity to detect this bacteria 

in pasteurized milk. Both methodologies were able to classify 

and separate from the sterile milk, those samples whose 

concentrations were even lower than 0 CFU/ml. These results 

support the possibility of using this type of device for 

microbiological quality control since added to its sensitivity, 

they are quick response methods that would allow real-time 

monitoring of the product. 

These promising results allow us to consider its possible 

use for the detection and quantification of E. coli in 

pasteurized milk. The performance shown by the tested 

devices was high, according to the requirements of the 

microbiological quality regulations of dairy products. The 

results obtained showed the potential that both multisensory 

systems have to be used as microbiological control tools in the 

dairy industry and with the potential to quantify the presence 

of different kinds of bacteria such as E.coli. 

On the other hand, the next steps and future work would 

be to create a product to be applied to the market. 
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