
1

Smart meeting room scheduling and management

system for a university campus using Android tablets

with Firebase backend and Headwind MDM

Stuardo Lucho1, Angelo Velarde1, and Mario Ampuero2
1Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Perú, stuardo.lucho@pucp.edu.pe,

angelo.velarde@pucp.pe
2Facultad de Ciencias e Ingeniería, Pontificia Universidad Católica del Perú, Lima, Perú, m.ampuero@pucp.pe

Abstract– The proper use of the rooms on a university campus

has become a priority, not only because of the situation we find

ourselves in, but also because of the need to optimize the use of

educational infrastructure and reduce operating costs. For this

reason, the use of the Internet of Things in the development of

reservation systems and monitoring of space occupancy, including

an adequate management system for mobile devices is essential. In

this work, a system has been developed that allows to visualize the

occupation of the classrooms on a university campus. The

necessary information is obtained from the Google Calendar API

and displayed on an Android tablet located outside the room. The

Android application has been developed using Flutter, and

Firebase Realtime Database and Firebase Storage have been used

for data storage and synchronization. Furthermore, as part of the

system, a web application has been developed to manage the

information stored in Firebase and a mobile device management

system has been implemented to keep track of the tablets used, their

updates and usage restrictions. The system was deployed on a cloud

infrastructure using Google Cloud and Amazon AWS to reduce

investment costs.

Keywords—Smart Meeting Room, Internet of Things,

Firebase, Flutter, Headwind

I. INTRODUCTION

On a university campus there are various spaces that

students can freely use, such as computer laboratories, spaces

in a library or open classrooms. However, there are other

environments that, due to the characteristics of the equipment

they have or for security reasons [1], it is necessary that a

person supervises the students in the use of the equipment or

that the student who uses the environment identifies and

reserves it to be responsible for the correct use of the

equipment.

The people responsible for these specialized laboratories

usually use different tools to manage occupancy, such as

Microsoft Excel, Microsoft Outlook Calendar, Google

Calendar [2], Microsoft 365, Calendly [3] or Doodle [4].

These tools allow the person in charge to organize and

properly distribute the class and research sessions during the

academic semester.

This study is carried out at a university in Lima, Peru,

where in one of its technological careers, there is a laboratory

(identified as v305) which has different telecommunications

equipment such as routers, switches, and firewalls of various

brands (Cisco, Huawei, Fortinet). This laboratory is for the

exclusive use of laboratory sessions and research groups. For

that reason, a person in charge is required to guarantee the

safety and correct use of the equipment. However, if a student

wants to use it, they can reserve the laboratory by sending an

email to the laboratory manager, who receives the request,

checks availability (which is found in a Google Calendar) and

proceeds to make the reservation.

Students are unaware of the availability of the laboratory

in advance and on many occasions, simultaneous requests

must be rejected due to a prior reservation. This situation is

repeated in other laboratories with similar equipment, such as

the v304 where there is radio frequency equipment, or the

v307 where there is electromagnetic simulation equipment.

Even the department meeting room, has its availability in a

Google Calendar but only the department secretary can add or

edit reservations, generating a bottleneck and in the same way,

the working staff (teachers and administrative) cannot see the

availability of the environment. These situations are repeated

in other laboratories and classrooms of the university.

The objective of this research is to develop a solution that

allows students to see the occupation of the laboratory by

integrating various services and applications. First, a mobile

application developed in Flutter that will allow the student to

view the current event that is happening in the classroom, as

well as its daily and weekly availability, which is obtained in

real time from a Google Calendar. This application will be

installed on a tablet that is located outside the classroom,

laboratory, or meeting room. Second, a web application to

manage the Google Calendar of each laboratory and link them

to each tablet. To enable high availability, all system storage

and hosting resources are in the cloud of two service

providers, such as Amazon AWS and Google Cloud.

Likewise, a mobile device management (MDM) system has

been implemented to monitor the tablets and display the

configurations and updates of the operating system and the

proposed application, automatically.

Digital Object Identifier (DOI):
http://dx.doi.org/10.18687/LACCEI2021.1.1.383
ISBN: 978-958-52071-8-9 ISSN: 2414-6390

19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and trends in technology and skills for sustainable
social development" "Leveraging emerging technologies to construct the future", Virtual Edition, July 19 - 23, 2021.

2

The rest of the article is organized as follows. Section 2

briefly describes the work related to systems and tablets for

viewing reserves. Section 3 describes the system architecture

and solution design. Section 4 shows the components for

deployment and deployment. Section 5 shows the results and a

discussion about what was developed, and finally section 6

shows the conclusions.

II. RELATED WORK

In the literature, several proposals have been found that

measure and show room availability called Smart Meeting

Room (SMR) solutions, which use various IoT devices to

provide the room with interactivity and automation. There are

works such as [5],[6] and [7], where the occupancy of the

room is shown based on a set of sensors, such as PIR (Passive

Infrared) sensors, humidity sensors, which determine the

presence or absence of people in the room, in such a way that,

if a meeting had been agreed and the sensors do not detect

presence in a time range, the room is released. Other papers,

such as those presented in [8] and [9] focus on creating a

system to manage room occupancy, through applications

developed for mobile devices (Android and iOS) using (in one

of them) Firebase as a backend to store information. Likewise,

the work of [10] shows the use of Google Calendar to manage

room occupancy through a web application.

In the literature review, it was not possible to find articles

that provide a solution to the problem described in the present

investigation. However, it was found that a widely used

solution for the development of mobile applications in SMR

systems was Flutter and as a backend system to store

information, Firebase.

On the other hand, at a commercial level there are various

solutions that show the availability of the room. Just to

mention some of them: [11], [12], [13] and [14], which have

various features such as:

• Integration with several calendar providers (Microsoft

365, Google Calendar, iCalendar, among others).

• Room reservations on the screen.

• Personalized welcome screen.

• Some of them have proximity sensors that turn off the

screen for power saving.

• 802.1X authentication mechanism supported

• And many others advanced features.

All these solutions meet the requirements of our research

with even more benefits; however, they are more oriented to

the business field, due to their high cost (around $500 to

$1000 per device) and lots of features. In our research many of

these advanced features such as: allowing reservations through

the tablet or supporting the 802.1X authentication mechanism,

are not necessary, and the price per device is remarkably high.

On the university campus where the current research has

been developed, the number of classrooms, laboratories and

meeting rooms is around 400, therefore, buying one of these

existing solutions is not feasible. Rather, it opens the

possibility to create a particular low-cost solution to the

problem posed.

III. SYSTEM DESIGN

In this section, the system components, their constraints,

and their interaction between them are shown. The proposed

solution developed is composed of 5 modules, as shown in

Fig. 1.

Fig. 1 System architecture

A. Google Calendar API

The Calendar API [15] allows the developer to integrate

an application with Google Calendar, to find and view public

calendar events and, if authorize, modify calendars and events.

In this system, it will be used to obtain information about the

event that is currently happening. For a mobile application to

query the Google Calendar API, it is necessary to configure a

project in Google Console, where the number of requests will

be counted and discounted from the free quota provided by

Google Calendar. After configuration, the application needs to

authenticate itself through the oAuth2 protocol, where the

username and password linked to the account are entered.

In this case, as the application that will communicate with

Google Calendar will work in kiosk mode (it will be detailed

in section 3B), there is no user who can log in, the access has

been configured as a service account [16], [17], which allows

authentication without the need to enter credentials,

configuring the access permissions and the account in the

Google console.

B. Mobile Applications

Two applications will be installed on the tablet:

1) SMR Android App: smart meeting room application

developed in flutter, which allows, if required, to port the

application to iOS in the future. This app shows:

• The availability of the room (classroom, laboratory,

meeting room, etc.)

• A logo of the department to which that room belongs

• An announcement to the public if necessary.

19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and trends in technology and skills for sustainable
social development" "Leveraging emerging technologies to construct the future", Virtual Edition, July 19 - 23, 2021.

3

The application gets the calendar ID from module C

(Firebase), from the Firebase Realtime Database. With this ID,

the application sends periodic requests to the Google Calendar

API to obtain event information.

The frequency of updates depends on two factors: the free

quota provided by the Google Calendar API and what is the

maximum tolerable delay to display an event update in the

application. Regarding the first point, the Google Calendar

API has a quota of 1,000,000 daily queries per project within

the Google console in the free version [18].

All tablets will initially be linked to a single project in the

Google console. For this reason, if a 24/7 operation is desired,

there would be 86,400 queries per tablet per day. In this case,

the system would allow to have a maximum of 11 tablets

simultaneously, obtaining the events from Google Calendar.

However, this value can negatively affect the network as

there would be 11 tablets making requests every second, 24

hours a day. To avoid this, this calculation can be adjusted

since the activities at the university are carried out in the range

from 7 am to 11 pm, giving a total of 16 hours (57,600

seconds) of continuous operation. If an interquery time of 5

seconds is defined, the total number of queries is reduced to

11,520 per day and therefore, it allows 86 tablets to work in

real time (with a maximum update delay of 5 seconds) without

exceeding the free quota of the Google Calendar API.

An example of how the screen is displayed when there is

an event is shown in Fig. 2. In the lower right section, there is

a box which is an advertisement created in the web application

(module E), obtained from the Firebase Realtime Database

while the image is obtained from the Firebase Storage. In this

case, updates are not constantly requested. Instead, a

bidirectional WebSocket is opened between the application

and Firebase (Realtime Database and Storage) and using the

observer pattern (through listeners), it allows to receive

notifications only when there is a change in Firebase, avoiding

saturating the network with unnecessary traffic.

Fig. 2 Example of the application screen with the current event

When the "Semanal" (Weekly) button located in the upper

right corner is pressed, a calendar with the room availability

appears as shown in Fig. 3. This calendar is an embedded

iframe and is refreshed only by pressing the "Semanal" or

"Diario" (Daily) button again.

Fig. 3 Embedded calendar with weekly occupancy

If the tablet loses connection to the Internet, a message is

displayed in the event box indicating that the room has no

events and another message with the text "No connection"

appears in the upper left, as shown in Fig. 4.

Fig. 4 Example of the application screen without connection

It is important to mention that the first time the

application runs on the device, the following parameters must

be entered (as shown in Fig. 5):

• The “Activo fijo” code, which is a code used by the

university to identify every IT equipment.

• The location where the tablet is being physically

installed, for example: Classroom 101.

Both parameters are stored in Firebase Realtime Database

(module C), and will be used later by the web application

(module D) to link a calendar to this tablet.

Finally, the android: keepScreenOn parameter has been

configured in the Android Manifest, so that Android does not

turn off the screen due to user inactivity.

Fig. 5 Application initial screen

19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and trends in technology and skills for sustainable
social development" "Leveraging emerging technologies to construct the future", Virtual Edition, July 19 - 23, 2021.

4

2) MDM Agent: for tablet configuration management and

monitoring, there are various solutions on the market, which

are known as Mobile Device Management system (MDM)

[19]. Among the open-source alternatives available such as

Flyve [20] and Headwind [21], the MDM headwind was

selected, since Flyve had more demanding hardware

requirements and had many more options than headwind,

making it heavier and with functionalities not needed for the

current project.

In an MDM architecture [22] there is an MDM agent which is

installed on the device to be monitored and an MDM server,

where the policies to be applied, the configurations and other

security restrictions necessary for the mobile device are

defined [23].

The headwind MDM agent is installed on the tablet, and later

this same agent installs the SMR App (section 3B.1).

Likewise, the MDM Agent is configured to start the SMR App

in kiosk mode, which allows:

• Run as a single application on the device

• Do not allow notifications

• Do not allow closing the application

• Lock the start button

Finally, by using an MDM architecture, we can send new

versions of the SMR application without having to do it

manually on each Tablet.

C. Firebase Realtime Database and Storage

Both Firebase services have been used for the system's

persistence layer, due to their direct integration with Flutter

(module B) and with the web application to manage calendars

(module D).

Firebase Realtime database [24] is a non-relational

database that works under the Platform-As-A-Service schema

and allows storing information in JSON format. Here the list

of devices will be stored, each one identified by its "Activo

Fijo" code. Likewise, for each one it will be saved:

• The physical location of the device

• The calendar ID to display on the device

• The ad, which is optional

• The path of the image to display, which is stored in

Firebase Storage.

The data structure of two devices, in which the "Activo

Fijo" code of the tablet is the node that groups the other

elements is shown in in Fig. 6.

D. Web Application

The web application allows you to manage the devices

registered in the Firebase Realtime Database, linking them

with their respective calendar that will be displayed on the

tablet. Likewise, it allows you to configure the ad per tablet

and the image to be displayed.

Fig. 6 Data structure in Firebase Realtime Database

The system has been developed using Spring Boot 2.1,

with the Spring Web MVC module based on Java 8 and

bootstrap as a CSS framework. The communication between

the web application and Firebase is at JavaScript level, which

provides a single point of persistence, to manage the stored

data. An interface of this system is shown in Fig. 7.

Fig. 7 Web Application interface

E. Mobile Device Management Server

The headwind MDM server allows to have a registry

(inventory) and monitoring of all the tablets deployed on

campus. Likewise, the MDM server is configured to deploy

new versions of the SMR App through the MDM agent

installed on each device. The importance of having a deployed

MDM infrastructure is that it allows you to manage the new

tablets that are added, track and monitor the current ones, and

keep the SMR App updated. Also, it allows to configure the

policies of the kiosk mode described in the section 3B.2.

3
19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and trends in technology and skills for sustainable
social development" "Leveraging emerging technologies to construct the future", Virtual Edition, July 19 - 23, 2021.

5

IV. IMPLEMENTATION

The system has been implemented 100% in the cloud

(except for the tablet application) to reduce investment costs

(CAPEX) and have the elasticity of the cloud (if required). An

architecture of the implementation of the modules with their

respective cloud service is shown in Fig. 8.

Fig. 8 System architecture with cloud deployment

1) Modules A and C: both the Google Calendar API

module and the Firebase Realtime Database and Storage

modules are hosted on Google Cloud. The Google Calendar

API costs are 0, because according to the calculations (shown

in section 3B), the limits provided by the API will not be

exceeded. The free tier plan (Spark Plan) for Google Firebase

is shown in Table 1.

TABLE I
FIREBASE SPARK PLAN [25]

Service Property Spark plan

Realtime Database Simultaneous connections 100

GB stored 1 GB

GB downloaded 10 GB/month

Storage GB stored 5 GB

GB downloaded 1 GB/day

Upload operations 20K/day

Download operations 50K/day

Based on Table I, the tablet only reads from the database

when the application is installed for the first time or at each

restart of the application; while the web application is

configured only once and then it would only be used to read

and write in case it is required to modify the ad, the calendar

ID or the image that is displayed on a tablet. For this reason,

Firebase provides 10 GB of traffic in its free tier, which is an

approximate (according to Firebase) to 200 million messages.

Likewise, according to the calculations made in section 3B,

the number of supported tablets (due to the limitation of

Google Calendar API) is 86, which means that the limit of

simultaneous connections is not exceeded.

Regarding Firebase Storage, in the current version the

image is uploaded at its maximum resolution, considering a

maximum of 1 image per tablet. If the user uploads a new

image, the previous one is deleted and replaced by the one

new. This allows that, even if the image is high definition,

approximately 12 MB, with 86 tablets, a maximum storage of

approximately 1,032 GB would be reached. Therefore, the free

limit is not exceeded either.

2) Modules D and E: both the MDM server and the web

application, both have been deployed in a single AWS EC2

instance. The characteristics are as follows:

• Type: t2.micro [26]

o vCPU: 1

o Memory (GiB): 1

o Storage: gp2 (8GB)

o Network performance: low

o Open ports: 22 (ssh), 8080 (headwind server)

and 80 for the web application

• Region: US East (N. Virginia)

• Operating system: Ubuntu Linux 18.04 (64 bit)

• Elastic IP: to avoid the IP change when restarting the

instance in the event of any update or unforeseen

event.

The reason for selecting AWS for the application

deployment is that the university is an AWS partner through

the AWS Educate program, which provides researchers,

teachers, and students with several annual credits (renewable),

which have been used for this Project. The number of credits

of the account used is $ 200 and the costs associated [27] with

the monthly deployment of the used instance are shown in

Table II.

TABLE II
AWS ASSOCIATED COSTS

Service Price Monthly price (30 days)

t2.micro $0.0116 per Hour $8.352

Storage: 8 GiB $0.10 per GB-month $0.8

elastic IP Address 1 elastic IP at no charge $0

In total, the monthly cost is around $9.1, therefore per

year it would be approximately $109, which would be within

the $ 200 margin provided by the annual AWS Educate

program. Likewise, this referential cost can be used if a paid

account wants to be used.

3) Module C: the application was deployed on two tablets

(due to the current situation of the coronavirus pandemic, it

has not been possible to deploy it in more rooms), using the

MDM agent. The most relevant specifications of the tablets

used are shown in Table III:

TABLE III
TABLETS USE IN THE PROJECT

Property Tablet 1 Table 2

Provider Samsung

Model SM-T820 SM-T590

Screen 9.7’’ 10.5’’

Resolution 2048x1536 1920x1200

Processor 2.15 GHz 1.8 GHz

RAM 4 GB 4 GB

Storage 32 GB 32 GB

Operating system Android 9 Android 9

19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and trends in technology and skills for sustainable
social development" "Leveraging emerging technologies to construct the future", Virtual Edition, July 19 - 23, 2021.

6

V. RESULTS AND DISCUSSION

After completing the development and testing of the

application in conjunction with the MDM, a case had to be

designed that could hold the tablet while hiding the side

buttons (on, off and volume) and the front buttons (Recent,

home, back). These designs are shown in Fig. 9 and Fig. 10.

The case is the height and width of the tablet; However, it

has a depth of 13 cm because, in addition to containing the

tablet, a plug was installed behind it to connect it and keep it

constantly energized. It also had a hinge with a padlock on the

top that allowed only authorized people to open the box and

change the tablet in case of failure.

Fig. 9 Case 3D design – front view

Fig. 10 Case 3D design – rear view

The case was designed by the digital manufacturing

laboratory team and developed with the additive

manufacturing system Fused Deposition Modelling (FDM)

using 3D printing and placed outside two university

laboratories (v306 and v307), located in the Electronics,

Informatics and Telecommunications building, as shown in

Fig. 11.

Fig. 11 Tablet mounted in the wall

An improvement has been proposed for future versions, in

which the tablet automatically shuts down at 11pm and is then

turned on by an external component at 7am. This would save

energy and extend the life of the tablet.

On the other hand, the application works correctly but still

consumes a high rate of traffic, since it is checking every 5

seconds whether there is a new event on the calendar at the

current time, and for now, only for two tablets.

To make this service truly scalable and consume the least

possible bandwidth from the university, an improvement has

been proposed for the next version, using the push notification

functionality of Google Calendar API, which warns when

there is a change in the calendar [28]. Google Calendar push

notifications do not send the content of a new event;

otherwise, it only informs if there is any new, modified, or

deleted event in the calendar. This functionality could be used

to find out if there has been a change in the tablet's calendar, if

so, make a request to the Google Calendar API and request the

current event, thus saving a large amount of traffic.

VI. CONCLUSION

In this article, a Smart Meeting Room Scheduling and

Management system has been developed that allows to

visualize the availability of rooms (classrooms, laboratories,

meeting rooms) of a university campus and whose

configuration management is carried out through MDM

Headwind.

The research project has used two cloud providers,

Amazon AWS and Google Cloud. In Amazon AWS, the EC2

cloud computing service was used with a t2.micro instance for

the deployment of the MDM server and the web application to

manage the calendars and tablets. On the Google side, the

Google Calendar API has been used to obtain the information

of the calendars, whose initial configuration is carried out

through the Google Console, and the Firebase Realtime

Database and Storage, for the storage of data from tablets and

calendars.

19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and trends in technology and skills for sustainable
social development" "Leveraging emerging technologies to construct the future", Virtual Edition, July 19 - 23, 2021.

7

Concerning the cost issue, as all services are in the cloud,

most of the cost is OPEX (operational expenses). The Amazon

AWS service has an operation and maintenance cost (OPEX)

but the use of AWS Educate credits has been considered as an

educational institution with an agreement with Amazon AWS,

which reduces these costs to 0. On Google's side, the cost is

also 0, since the limits are not exceeded in any of the services

used. Even if the entity had an on-premises infrastructure, the

services deployed in Amazon AWS could be mounted on its

own servers, since the requirements for backend operation are

minimal.

Finally, this research presents in the results and discussion

section, various improvement options, which can optimize

bandwidth consumption as well as energy management.

However, the initial proposal meets the research objectives

and the requirements set out.

ACKNOWLEDGMENT

This work has been carried out within the Internet of

Things research group (IoT-PUCP), belonging to the

Pontifical Catholic University of Peru.

REFERENCES

[1] Z. H. Li, “Research on the statistical analyses and countermeasures of 100

laboratory accidents. J,” Exp. Technol. Manag., vol. 31, pp. 210–213,
2014.

[2] Google Inc., “Google Calendar.”
https://support.google.com/a/users/answer/9302892 (accessed Feb. 15,

2021).

[3] Calendly, “Calendly.com.” https://calendly.com/ (accessed Dec. 20,

2020).

[4] Doodle, “Doodle.com.” https://doodle.com/ (accessed Dec. 20, 2020).
[5] M. Saravanan and A. Das, “Smart real-time meeting room,” in 2017 IEEE

Region 10 Symposium (TENSYMP), 2017, pp. 1–5, doi:

10.1109/TENCONSpring.2017.8070069.
[6] L. Duc Tran et al., “A smart meeting room scheduling and management

system with utilization control and ad-hoc support based on real-time
occupancy detection,” in 2016 IEEE Sixth International Conference on

Communications and Electronics (ICCE), 2016, pp. 186–191, doi:

10.1109/CCE.2016.7562634.
[7] L. M. Sánchez, I. Díaz-Oreiro, L. Quesada, L. A. Guerrero, and G. López,

“Smart Meeting Room Management System Based on Real-Time
Occupancy,” in 2019 IV Jornadas Costarricenses de Investigación en

Computación e Informática (JoCICI), 2019, pp. 1–6, doi:

10.1109/JoCICI48395.2019.9105174.
[8] H. Singh and R. R. Shah, “BOOKiiIT - Designing a Venue Booking

System (Technical Demo),” in 2020 IEEE Sixth International Conference
on Multimedia Big Data (BigMM), 2020, pp. 287–291, doi:

10.1109/BigMM50055.2020.00050.

[9] A. Praveen et al., “Conference Room Booking Application using Flutter,”
in 2020 International Conference on Communication and Signal

Processing (ICCSP), 2020, pp. 348–350, doi:
10.1109/ICCSP48568.2020.9182183.

[10] M. Wannous, H. Nakano, and T. Nagai, “Google CalendarTM for

managing and monitoring the utilization of a web-based laboratory’s
resources,” in 2011 IEEE Global Engineering Education Conference

(EDUCON), 2011, pp. 210–213, doi: 10.1109/EDUCON.2011.5773138.
[11] Evoko, “Evoko Naso.” https://evoko.se/ (accessed Feb. 10, 2021).

[12] TouchOne, “TouchOne-12-M.” https://www.touchone.eu/GBR/Product-

detail?productId=049C90152169E61180F55065F38B16F1. (accessed

Feb. 15, 2021).
[13] Steelcase, “RoomWizard.”

https://www.steelcase.com/products/scheduling-systems/roomwizard/

(accessed Feb. 15, 2021).

[14] GoGetCorp, “GoGet.” https://gogetcorp.com/ (accessed Feb. 15, 2021).

[15] Google Inc., “Google Calendar API.”
https://developers.google.com/calendar (accessed Feb. 15, 2021).

[16] Google Inc., “Google Console Service Account.”
https://cloud.google.com/iam/docs/service-accounts (accessed Feb. 15,

2021).

[17] Google Inc., “Using OAuth 2.0 for Server to Server Applications.”
https://developers.google.com/identity/protocols/oauth2/service-account

(accessed Feb. 15, 2021).
[18] Google Inc., “Google Calendar pricing.”

https://developers.google.com/calendar/pricing (accessed Feb. 15, 2021).

[19] M. M. Yamin and B. Katt, “Mobile device management (MDM)
technologies, issues and challenges,” ACM Int. Conf. Proceeding Ser., no.

Mdm, pp. 143–147, 2019, doi: 10.1145/3309074.3309103.
[20] F. Corp., “Flyve MDM.” https://www.flyve-mdm.com/ (accessed Feb. 15,

2021).

[21] H. Corp., “Headwind MDM.” https://h-mdm.com/ (accessed Feb. 15,

2021).

[22] H. Batool and A. Masood, “Enterprise Mobile Device Management
Requirements and Features,” in IEEE INFOCOM 2020 - IEEE

Conference on Computer Communications Workshops (INFOCOM

WKSHPS), 2020, pp. 109–114, doi:
10.1109/INFOCOMWKSHPS50562.2020.9162763.

[23] D. Hayes, F. Cappa, and N. A. Le-Khac, “An effective approach to
mobile device management: Security and privacy issues associated with

mobile applications,” Digit. Bus., vol. 1, no. 1, p. 100001, 2020, doi:

10.1016/j.digbus.2020.100001.
[24] Google Inc., “Firebase Realtime Database.”

https://firebase.google.com/docs/database (accessed Feb. 15, 2021).
[25] Google Inc., “Firebase princing.” https://firebase.google.com/pricing

(accessed Feb. 15, 2021).

[26] Amazon AWS, “AWS instance types.”
https://aws.amazon.com/es/ec2/instance-types/ (accessed Feb. 15, 2021).

[27] Amazon AWS, “Amazon AWS pricing.”
https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls (accessed Feb.

15, 2021).

[28] Google Inc., “Google Calendar push notifications.”
https://developers.google.com/calendar/v3/push (accessed Feb. 15, 2020).

19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and trends in technology and skills for sustainable
social development" "Leveraging emerging technologies to construct the future", Virtual Edition, July 19 - 23, 2021.

