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I. INTRODUCTION

Particulate matter less than 2.5 micrometers in diameter 

(PM2.5) is an ambient air pollutant that kills more than 4.2 

million people every year around the world, as stated by the 

World Health Organization [1, 2]. PM2.5 consists of organic 

substances, dust, metals, chemicals, and soot, which enters the 

respiratory system and causes different respiratory diseases or 

cancer, asthma, cardiac problems, allergies, and even premature 

death [3]. 

In southern Chile, residential wood combustion from cook 

stoves and heaters is one of the main sources of the emitted 

PM2.5 into the air [4]. In particular, an urgent and critical air 

pollution problem exists in the conurbation of Temuco and 

Padre Las Casas (PLC) that is located in the Region of 

Araucanía and has a total population of 358,541 inhabitants [5]. 

More than 90% of the households in this conurbation have 

woodstoves that yield large amounts of PM2.5 contaminant, 

and thus, in 2015, was declared saturated zone for PM2.5. The 

wood combustion of diesel and gasoline or oil is commonly 

employed in this conurbation, reaching high average PM2.5 

concentration levels of over 400 µg/m3 [6]. As a result, a large 

share of population in Temuco and PLC suffers from acute 

respiratory infections [7, 8]. 

A mobile monitoring campaign of PM2.5 was performed 

during the winter of 2016 to describe and characterize the 

spatial distribution of this air pollutant when woodburning is 

mostly employed in the conurbation of Temuco and PLC. Using 

the measurements from this campaign, we studied the spatial 

variability of PM2.5 in this conurbation with a geostatistical 

tool named Ordinary Kriging. This tool is the most-used kriging 

method and is useful for predicting PM2.5 concentrations in 

those geographic locations without any measurements of 

monitoring data using measured values from neighboring 

locations [9]. This method has proven a higher confidence level 

in the results since it has a lower error range [10]. 

The results of this study will help authorities and 

policymakers in the decision-making process on early warnings 

and prevention of air pollution, particularly in those areas of the 

conurbation that have the highest PM2.5 concentration levels. 

II. LITERATURE REVIEW

Different models have been used to predict PM2.5 

concentrations such as land use regression [11, 12], machine 

learning [13, 14], and geostatistical interpolation methods [9, 

15, 16, 17, 18]. In particular, Kriging is a geostatistical method 

that has been widely employed to generate a surface of PM2.5 

with several measurement points. For example, reference [9] 

used Ordinary Kriging as a space-time interpolation method of 

PM2.5 concentrations to comprehend the behavior of this 

pollutant in Bogotá, Colombia. Reference [15] employed 

Kriging and inverse distance weighting (IDW) to generate a 

surface of PM2.5 contaminant using fixed monitoring stations 

also in Bogotá, Colombia. The authors identified zones with 

high levels of PM2.5 concentrations and reported that Kriging 

presented more satisfactory results compared to IDW. 

Similarly, reference [16] used Kriging and IDW to predict 

PM2.5 at unmonitored locations and to visualize spatial and 

temporal variability of this contaminant. [17] studied the 

concentrations of PM2.5 spatially and temporally in Santiago, 

Chile. The authors identified high PM2.5 pollutant in the west 

part of the city, where population density is higher and income 

levels are lower. In another study, reference [18] implemented 

Kriging with an external drift to predict PM2.5 concentrations 

in Beijing, China. Finally, reference [19] employed Ordinary 

Kriging interpolation and other statistical methods to explore 

spatiotemporal variations of PM2.5 concentrations in Beijing, 

China. 

Although authors have studied the air pollution in Temuco 

[20, 21, 22], none of these authors have employed geostatistical 

interpolation methods such as Kriging. We are not aware of any 

study that employs Ordinary Kriging to identify the variability 

of PM2.5 concentrations over space and time in the conurbation 

of Temuco and PLC. 

III. DATA DESCRIPTION AND PREPARATION

This study employed PM2.5 measurements collected 

during a mobile sampling campaign in June and July of 2016 in 

Temuco and PLC. Since woodsmoke increases during the 

nighttime, the PM2.5 measurements were conducted between 

8pm and midnight using two DustTrak II units and a GPS 
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receiver. While one DustTrak II unit collected mobile PM2.5 

concentrations, the other unit collected PM2.5 concentrations at 

a fixed central site for subsequent calibration and normalization 

with the background concentrations. This study used a total of 

1,290 measurements of PM2.5 collected every 2 minutes (See 

Fig. 1), of which 596 measurements were collected in June and 

694 measurements in July. Therefore, we analyzed the 

complete set of PM2.5 measurements and also separately by 

month. 

The basic descriptive statistics of the PM2.5 measurements 

are shown in Table 1. When comparing with the Chilean 

normative, approximately 12.9%, 11.4%, and 16.4% of the 

PM2.5 measurements with values in the range of 80 µg/m3 to 

109 µg/m3, 110 µg/m3 and 169 µg/m3, and greater than 170 

µg/m3 correspond to environmental alert, pre-emergency, and 

emergency, respectively [23]. This reveals that over 40% of the 

PM2.5 measurements surpass the values established by the 

Chilean normative. 

In order to detect outliers in the measurements of PM2.5, a 

robust measure of dispersion, namely the median absolute 

deviation (MAD) method, was applied to all PM2.5 

measurements, as explained in [24]. Fig. 2 presents the PM2.5 

values for the complete mobile sampling campaign. The 

horizontal red line indicates that PM2.5 concentration values 

greater than the superior limit of 880.1 µg/m³ should be 

neglected. Thus, a total of 18 measurements of PM2.5, 

representing 1.4% of the complete sample, were discarded from 

the PM2.5 measurements. 

Fig. 1 Mobile sampling routes in Temuco and Padre Las Casas 

TABLE I 
DESCRIPTIVE STATISTICS OF THE PM2.5 MEASUREMENTS 

Month 

Number 

of 

Measurement

s 

Mean 

(µg/m3) 

Standard 

Deviation 

(µg/m3) 

Min 

(µg/m3) 

Max 

(µg/m3) 

June 596 162.29 219.75 6.25 1483.30 

July 694 75.92 68.72 6.71 465.66 

Total 1,290 115.82 163.35 6.25 1483.30 

Fig. 2 PM2.5 values for the complete mobile sampling campaign 

An exploratory analysis of the complete data set showed that 

the histogram of the PM2.5 measurements presents a skewness 

of 2.95 and a kurtosis of 13.45. Therefore, a logarithmic 

transformation was applied and the coefficient of skewness was 

reduced to 0.24 and the kurtosis to 2.84. Fig. 3a) and 3b) depict 

the normal QQ plot with and without the transformation, 

respectively, suggesting that the data are lognormally 

distributed. Thus, this log-transformed data is employed in the 

subsequent analyses. 

a) Without transformation

b) With transformation

Fig. 3 Normal QQ plot for all PM2.5 measurements without and with the 

logarithmic transformation 
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Additionally, the PM2.5 measurements are analyzed separately 

per month. A logarithmic transformation was applied to the 

June and July PM2.5 measurements, yielding a coefficient of 

skewness equal to 0.08 and 0.17, and kurtosis of 3.31 and 2.87, 

respectively. The normal QQ plots with the transformation for 

these measurements collected in June and July are shown Fig. 

4 and 5, respectively. 

 

 
Fig. 4 Normal QQ plot for PM2.5 measurements collected in June with the 

logarithmic transformation 

 
Fig. 5 Normal QQ plot for PM2.5 measurements collected in July with the 

logarithmic transformation 

 

IV. METHODOLOGY 

Prior to implementing Kriging, the weights assigned to 

each estimated value are obtained with a semivariogram model. 

This model identifies the distance at which the data are no 

longer autocorrelated (i.e., spatial dependence). Therefore, the 

semivariogram depends on the distance and also the average 

sum of squared differences in the values for all pairs of data 

points that are separated at a certain distance and is computed 

using (1) [25, 26]. 

 

                  (1) 

 

Where (h) is the value of the experimental semivariance at a 

distance or range h, Z(xi) are the measured values at location i, 

Z(xi + h) are the measured values at location i plus a distance h, 

and N(h) is the total number of pairs separated by a distance h.  

The main values of the semivariogram are the nugget, sill, 

and range, as shown in Fig. 6. The nugget is the value at which 

the curve intercepts the Y axis, the sill is the maximum value of 

the curve representing the theorical sample variance, and the 

range h is the value along the X axis at which a certain threshold 

is reached (i.e., a measured point may not contribute to the 

estimation value at an unmeasured location if located beyond 

the distance given by the range) [27]. 

 
Fig. 6 Example of a semivariogram and its components (nugget, sill, and 

range) Source: Reference [28] 

 

Kriging is a geostatistical technique that interpolates values 

at unmeasured locations based on measured locations. This 

technique has the advantage of providing an error estimate for 

unmeasured locations, and uses spatial correlations (i.e., 

semivariogram) to explain variations in the predicted surface 

[24]. The weights associated to each value are computed based 

on the semivariogram model. The ordinary Kriging will be 

employed in this study, as in [26, 29], which assumes that the 

constant mean is unknown. The ordinary Kriging is based on 

the general expression given by (2). 

 

(2) 

 

Where Z*(xo) is the estimated value at predicted location xo, i 

is the weighting coefficient at location i, Z(xi) are the measured 

values at location i, and n is the number of measured values. 

 

V. RESULTS 

A. Semivariogram 

Prior to implementing the geostatistical tool, Kriging, a 

semivariogram was generated to obtain the spatial dependence 

of the data points through the fitting of a model using R 

software. A direction tolerance of 45 degrees with a spherical 

model presented the best spatial continuity for the complete set 

of PM2.5 measurements, as shown in Fig. 7. Fig. 8 and 9 

present the semivariograms for the PM2.5 measurements 

collected in June and July, respectively. The PM2.5 

measurements collected in June and July presented the best fit 

with Gaussian and circular models and direction tolerances of 

45 and 135 degrees, respectively. 

Table II presents the values of the nugget, sill, and range of 

these semivariogram for the complete set of PM2.5 

measurements and also for the June and July measurements, 

separately. These values are employed in the subsequent 

analysis with Kriging. 
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Fig. 7 Semivariogram with a direction tolerance of 45 degrees for the 

Spherical model using all PM2.5 measurements 

 

 
Fig. 8 Semivariogram with a direction tolerance of 45 degrees for the 

Gaussian model using PM2.5 measurements collected in June 

 

 

 
Fig. 9 Semivariogram with a direction tolerance of 135 degrees for the 

Circular model using PM2.5 measurements collected in July 

 
TABLE II 

SEMIVARIOGRAM COMPONENT VALUES FOR THE COMPLETE SET, AND 

FOR JUNE AND JULY PM2.5 MEASUREMENTS 

Semivariogram 

Components 

PM2.5 Measurements 

Whole period June July 

Nugget (m) 0.6 0.5 0.65 

Sill (m) 0.8 1.3 0.5 

Range (m) 1,200 6,000 2,000 

 

B. Ordinary Kriging 

Subsequently, the Ordinary Kriging employed the 

components obtained from the semivariogram model. Fig. 10 

shows the estimated surface with the spatial variability using all 

PM2.5 measurements, where the lighter (darker) colors indicate 

high (low) concentrations of PM2.5. The inverse log-

transformation of these estimates reveal that PM2.5 

concentrations could reach values near 150 µg/m3 in some areas. 

Fig. 11 and 12 present the spatial variability of PM2.5 

concentrations in Temuco and PLC for measurements collected 

in June and July, respectively. These figures show that PM2.5 

concentrations in June varied between 20 and 665 µg/m3, 

whereas, in July, PM2.5 concentrations ranged from 30 to 140 

µg/m3. 

Kriging also has another output that shows the reliability 

of the PM2.5 estimates, yielding a Kriging variance for each 

measured point. This reliability depends on the selected spatial 

model (e.g., Spherical, Gaussian, or Circular) in the 

semivariagram. Fig. 13, 14, and 15 show the Kriging variance 

with the reliability level of the estimates for all PM2.5 

measurements, and those PM2.5 concentrations measured in 

June, and July, respectively. In these figures, lighter colors are 

more reliable than darker colors. Note that lighter colors tend to 

coincide with the PM2.5 measurement routes, while no PM2.5 

measurements were collected in areas with the color magenta, 

showing less reliable PM2.5 estimates. 

 

 
Fig. 10 Estimated surface of all PM2.5 measurements in Temuco and 

PLC 
 

 
Fig. 11 Estimated surface of PM2.5 measurements collected in June in 

Temuco and PLC 
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Fig. 12 Estimated surface of PM2.5 measurements collected in July in 

Temuco and PLC 

 

 

Fig. 13 Kriging variance of all estimated PM2.5 measurements in 

Temuco and PLC 

 

 
Fig. 14 Kriging variance of estimated PM2.5 measurements in June in 

Temuco and PLC 

 

 
Fig. 15 Kriging variance of estimated PM2.5 measurements in July in 

Temuco and PLC 

 

VI. CONCLUSIONS 

In this study, we employed PM2.5 concentrations that were 

collected in a mobile campaign in the conurbation of Temuco 

and Padre Las Casas (PLC) in Chile during the winter of 2016. 

The results of this study show the prediction of PM2.5 

concentrations at unmeasured locations in this conurbation 

using the geostatistical method, namely Ordinary Kriging. 

Overall, the results of this study suggest that higher PM2.5 

concentrations were collected in Temuco than in PLC, similar 

to the results of [30]. Therefore, local authorities should 

implement environmental measures to reduce PM2.5 

concentrations in these areas, and thus, improve the air quality 

and the health of the community. 

When considering the complete set of PM2.5 

measurements, we observed high PM2.5 concentrations 

throughout the western part of Temuco and only part of PLC. 

However, differences exist when examining the PM2.5 

measurements by month (June and July). While in June high 

PM2.5 values (as high as 665 µg/m3) are more concentrated 

toward the west of Temuco (Amanecer, Estadio Municipal, Av. 

Alemania, Barrio Inglés) and large part of PLC, high PM2.5 

concentrations are clustered in the north, north-east, and south 

of Temuco and south-west of PLC in July, as in [20]. Further 

analysis of the collections routes for each month are required to 

analyze the difference in the PM2.5 concentrations. Perhaps 

there were less routes conducted in July in the center of 

Temuco, and this generated higher concentration values of 

PM2.5 toward other parts of the city. Although higher PM2.5 

concentrations were predicted in the June measurements, less 

reliable PM2.5 estimates were obtained in this month using the 

Kriging variance. This result requires further investigation. 

Future research should include the prediction of PM2.5 

concentrations by hour and day of the week to determine the 

spatial variability at smaller temporal units. Additionally, 

meteorological and environmental conditions should be studied 

to comprehend their impact on the estimated PM2.5 

concentrations in space and time. Finally, additional mobile 

campaigns are need in Temuco and PLC to update the PM2.5 

measurements employed in this study. 
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