Clasificación de niveles de Medida de la Función Motora Gruesa mediante técnicas de Aprendizaje Automático

Published in: Engineering, Integration, and Alliances for a Sustainable Development. Hemispheric Cooperation for Competitiveness and Prosperity on a Knowledge-Based Economy: Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education and Technology
Date of Conference: July 27-31, 2020
Location of Conference: Virtual
Authors: Jose Sulla-Torres (Universidad Católica de Santa María, PE)
Juan Carlos Copa Pineda (Universidad Católica de Santa María, PE)
Raul Sulla Torres (Universidad Católica de Santa María, PE)
Full Paper: #216

Abstract:

El objetivo del artículo es clasificar los niveles de medida de la función motora gruesa (GMFCS) en menores de edad mediante técnicas de aprendizaje automático. Los elementos de estudio fueron 16 pacientes, niños y niñas entre 2 y 9 años de una institución de rehabilitación y fisioterapia que sufren parálisis cerebral en la función motora gruesa. Se recolectó el análisis clínico, la aplicación de terapia y su medida de la función motora gruesa, luego se aplicó la clasificación de nueve algoritmos de aprendizaje automático: k-Nearest Neighbor (k-NN), Gradient Boosted tree, Decision Stump, Random Tree, Rule Induction, Improved Neural Net, Generalized Linear Model, SVM y el Análisis Discriminante Lineal, los cuales se compararon en base a la exactitud. Los resultados obtenidos mostraron que el Modelo Discriminante Lineal fue el que dio el mejor resultado con un 96.88 de exactitud en la clasificación. Por lo que se concluye que el uso de las técnicas de aprendizaje automático permite obtener una buena exactitud en la clasificación del nivel medida de la función motora gruesa en niños y niñas que puede ser utilizado por los especialistas para realizar dicha tarea.