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Abstract—Air pollution due to wood burning produces severe
health and environmental problems. Clustering methods are
needed to estimate PM2.5 exposures, and identify locations with
high PM2.5 concentrations. This study performed a spatial and
aspatial clustering analysis of PM2.5 pollutant collected in a
mobile campaign in the conurbation of Temuco and Padre Las
Casas, Chile. The Getis Ord G∗

i statistic was employed to obtain
spatial variability of PM2.5 concentrations, and a K-Means
clustering method was used to group PM2.5 concentrations with
a aspatial perspective. In addition, an integrated spatial and
aspatial clustering approach was implemented with the PM2.5
concentration and measurement spatial location. The comparison
results suggest that integrating the spatial and aspatial clustering
methods yield high quality partitions when considering spatial
information.

Index Terms—Clustering, PM2.5 concentrations, mobile mea-
surements, K-Means, Getis-Ord G∗

i

I. INTRODUCTION

Ambient air pollution causes serious human health problems
such as cardiovascular and chronic respiratory diseases and
lung cancer, as well as adverse environmental effects [1]–
[3]. According to the World Health Organization, every year
an estimated 4.2 million deaths worldwide are attributable to
ambient air pollution exposure, particularly due to PM2.5,
particulate matter less than 2.5 micrometers in diameter [4],
[5]. PM2.5 is capable of reaching the respiratory track and
producing damages in different parts of the body through
air exchange in the lungs [3]. Epidemiological studies have
revealed that PM2.5 increases the risk of morbidity and even
premature mortality [1], [6]. PM2.5 is emitted into the air
as fine particles from residential wood combustion generated
from cook stoves and space heaters. This wood combustion
occurs typically in urban areas and is a relatively cheap fuel
compared to diesel and gasoline or oil combustion [7], [8].
Wood burning pollution is a critical problem in southern Chile,
in which approximately 2 million inhabitants are exposed to
high environmental risk [9]. In particular, Temuco and the
adjoining commune of Padre Las Casas (PLC) present a severe
wood burning pollution problem with average daily levels of
PM2.5 concentrations of approximately 430 ug/m3. Note that
the Chilean normative declares an environmental emergency
when the level of PM2.5 concentrations in 24 hours is equal
to or greater than 170 ug/m3 [10]. Over 80% of the PM2.5

emissions are caused by residential wood burning mainly
in the winter season and at night when residential heating
increases and atmospheric dispersion decreases [8], [9], [11],
[12]. These high PM2.5 emissions are due to inefficient wood
stoves, poor household insulation, and lack of adequate wood
burning practices [8]. Therefore, there is a need for identifying
the spatial variability of different PM2.5 concentration levels
in the conurbation of Temuco and PLC.

II. LITERATURE REVIEW

Different methodologies have been employed to estimate
PM2.5 exposures at different locations for epidemiological and
environmental studies, and thus, capture the spatial variability
of PM2.5 concentrations [7]. For example, some studies have
used Kriging as a geostatistical technique [13]–[15], Land-Use
Regression [16]–[18], and clustering techniques [19]–[21] to
model spatial variation in air pollution concentrations.

In particular, clustering methods are widely used to recog-
nize homogeneous groupings of data [22]. These methods may
be classified into aspatial and spatial clustering. While aspatial
clustering approaches utilize solely independent point values
when partitioning the data into clusters, spatial clustering
methods consider the degree of similarity among neighboring
features (i.e., spatial autocorrelation) to determine the spatial
dependence or independence among the features [22].

Studies have combined spatial and aspatial clustering tech-
niques in different fields of study, proving overall improved
results. For example, [22] concluded that integrating K-Means
clustering and the spatial Getis-Ord G∗i statistic resulted in
a superior technique for identifying clusters of orchards. In
another study, [23] employed multiple K-Means clustering and
Moran’s I spatial autocorrelation method to find the prefer-
ences and provincial characteristics of consumers in the retail
industry. In [24] Scrucca implemented K-Means clustering and
measures of spatial autocorrelation to incorporate the spatial
structure of the labor market data in Umbria, Italy. In order to
determine irrigation management zones. In [25] Ohana-Levi et.
al. employed a weighted multivariate spatial clustering model
that integrates Getis-Ord G∗i statistic and K-Means clustering.
Finally, [26] analyzed satellite images to identify local aridity
in Indonesia based on vegetation indices by combining spatial
autocorrelation (Moran’s I statistic) and K-Means clustering.
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Few studies have been found in the literature to combine
spatial and aspatial clustering methods to identify clusters of
PM2.5 concentrations. For instance, [27] employed a local
spatial autocorrelation model and hierarchical clustering anal-
ysis to classify the monthly average PM2.5 concentrations,
to determine the spatial distribution of PM2.5, and thus, to
identify the cities with the highest PM2.5 concentration.

In this study, we performed a local spatial autocorrela-
tion using Getis-Ord G∗i index to identify spatial clusters of
PM2.5 concentrations. Subsequently, K-Means technique was
employed for the aspatial clustering of this pollutant, and an
integrated spatial and aspatial clustering method (both Getis-
Ord G∗i and K-Means) was applied to assess the extent of
spatial variability of PM2.5 concentrations in the conurbation
of Temuco and PLC due to woodsmoke generation. A compar-
ison analysis was performed to examine the clustering quality
among the clustering methods.

III. DATA

A. Study area

Temuco is the main city of the region of Araucanı́a in
southern Chile with a population of 282,415 inhabitants [28].
Approximately 23% of the households are classified as poor
with an average of 8.2 schooling years of the head of the
household [9]. The surrounding area is dominated by forest
and a touristic lake district. The region of Araucanı́a is a major
producer of crops, fruits, cattle ranching, and forestry [29]. Al-
though the industrial activity is relatively low, an important air
pollution source includes industrial boilers that use wood and
coal as fuel. However, residential wood burning is the largest
source of PM2.5 in the study area since approximately 90%
of the households in Temuco and PLC have woodstoves [9].

In this study, a combined spatial and aspatial clustering
analysis and comparison are performed for the whole study
area, and also separately for each of the five collection zones
depicted in Fig. 1.

B. Data collection and description

Mobile sampling has been used to describe and character-
ize the spatial distribution of air pollutants [30], [31]. The
advantage of mobile monitoring campaigns of air pollutants
is that achieves unparallel spatial coverage when compared to
fixed-site sampling, and it is a simple and economical manner
for spatial distribution exploration [11], [30]. In this study,
a mobile sampling campaign was performed in Temuco and
nearby commune of PLC during 20 nights in the winter of
2016 between 8:00pm and midnight following different routes
to cover each of the five collection zones shown in Fig. 1.

The instrumentation consisted of two DustTrack II to collect
mobile and fixed PM2.5 concentrations and a GPS receiver
to obtain position coordinates every second. Note that a
calibration phase took place using a fixed central site prior to
initiating the mobile measurements. The PM2.5 measurements
were normalized with the background concentrations at the
fixed central site to minimize the influence of the meteorolog-
ical variations in the air pollution [31].

Table I presents basic descriptive statistics of the collected
PM2.5 concentrations for the whole city and each collection
zone. This table indicates that on average the highest and
lowest PM2.5 concentrations were measured in Las Encinas
and PLC, respectively.

TABLE I: Data summary

Area PM2.5 Concentrations

# Measurements Mean S.D. Min Max

Whole study area 162.4 127.1 105.3 2.6 1,255.3
Collection zones

Amanecer 40.3 104.4 66.6 2.6 933.7
Labranza 13.8 110.6 90.6 13.4 704.3

Las Encinas 56.9 173.4 140.2 6.7 1,255.3
Padre Las Casas 18.9 85.1 55.1 3.9 431.9

Pedro de Valdivia 32.4 105.8 65.9 4.9 517.1

IV. METHODOLOGY

A. Local spatial autocorrelation

Local spatial autocorrelation identifies statistically signifi-
cant spatial clusters with high (hotspots) and low (coldspots)
values. The Getis-Ord G∗i statistic is commonly used to
identify these hotspots and coldspots by testing the null
hypothesis that the spatial autocorrelation of a variable is equal
to zero. If the null hypothesis is rejected, then the variable is
spatially autocorrelated (Ord and Getis, 1995). The Getis-Ord
G∗i statistic is expressed by (1).

Gi(d) =

∑n
j=1 wij(d)xj − x̄

∑n
j=1 wij(d)

s

√
n
∑n

j=1 w2
ij−(

∑n
j=1 wij)2

n−1

(1)

Where xj indicates the attribute value at location j, wij(d)
is a spatial weight matrix for all locations j within distance
d from the feature at location i, n is the total number of
locations, x̄ is the sample mean, and s is sample variance.

Z-score and p-values are outputs of the Getis-Ord G∗i statis-
tic, which indicate measures of statistical significance [32].
The larger (smaller) the Z-score is, the more intense the
clustering of high (low) values. Random distribution exists
for Z-score values near zero. In this study, Z-score values are
classified into three clusters: 0 (negative spatial autocorrelation
with Z-score<-1.65 and p-value<0.1), 1 (no spatial autocor-
relation with Z-score ∈ [-1.65, 1.65] and p-value≥0.1), and
2 (positive spatial autocorrelation with Z-score>1.65 and p-
value<0.1).

B. K-Means clustering

K-Means is an iterative algorithm that separates a set of data
in a set of k groups. Starting from a set of k centroids, K-
Means minimizes the within-cluster sum of squares. Similarity
between observations is measured as Euclidean distance be-
tween attribute values [33]. At each step, centroids are updated
as the mean of the observations in each cluster. As new
observations are included in clusters, centroids are updated.

K-Means is one of the most used clustering method. It
is simple to implement and has a lineal complexity, but has
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Fig. 1: Collection zones of PM2.5 concentrations

some disadvantages (e.g., no convergence can be assured, the
number of clusters is a user defined parameter of the method,
and is sensitive to the presence of outliers in the data).

V. EXPERIMENTAL RESULTS

This section presents the results of the spatial and aspatial
clustering, and also the integrated spatial and aspatial approach
that were applied to the PM2.5 concentrations measured in
Temuco and PLC as a whole study area, and also in each of
the five collection zones.

In the local spatial autocorrelation analysis, the zone of
indifference method was employed to determine the spatial
relationship among the PM2.5 measurements. In this method,
a influence weight equal to one is assigned to those mea-
surements within the threshold distance d of the measurement
under study. This weight decreases with distance for those
measurements that are located beyond the threshold distance.
The threshold distances employed for each zone are shown in
Table II.

TABLE II: Threshold distances for the whole study area and
each collection zone

Area Threshold distance (meters)

Whole study area 27.4
Collection zones

Amanecer 26.6
Labranza 18.0

Las Encinas 27.4
Padre Las Casas 20.8

Pedro de Valdivia 23.8

The results of the Elbow Method for the K-means clustering
analysis indicate that three clusters (k=3) yielded the best
results in most cases. Thus, this number of clusters was used

in the local spatial autocorrelation and integrated spatial and
spatial approach for comparison purposes.

Tables III, IV, and V present the mean and standard
deviation of the PM2.5 concentrations for the clusters with
low (0), medium (1), and high (2) values that were obtained
with the Getis-Ord G∗i statistic, K-Means, and the combination
of both, respectively. Note that, in Table III, low values (0)
are coldspots and high values (2) are hotspots of PM2.5
concentrations, while medium values (1) present a random
pattern or no clustering.

The aforementioned tables show that the Las Encinas zone
has the highest average PM2.5 concentration (even higher than
when the whole study area is analyzed), while the PLC zone
presents the lowest average values of the PM2.5 pollutant. Las
Encinas is located in the center of the city with the lowest
elevation and a large upper class population, and PLC is a
low class commune that adjoins Temuco in the south at a
higher elevation than Las Encinas. This is partly due to the
tendency of PM2.5 concentrations to decrease with increasing
elevations [34].

TABLE III: Clustering summary – Getis-Ord statistic

Area 0: low 1: medium 2: high

Mean S.D. Mean S.D. Mean S.D

Whole study area 76.9 47.8 122.8 55.6 204.2 143.3
Collection zones

Amanecer 64.5 45.8 107.2 58.0 155.7 59.5
Labranza 55.1 28.4 105.7 53.8 198.2 132.4

Las Encinas 111.9 53.5 159.4 82.1 285.6 192.9
Padre Las Casas 44.4 26.5 81.7 41.7 120.3 56.4

Pedro de Valdivia 62.5 36.4 103.9 47.1 153.4 67.5

Figures 2 and 3 present the clustering results of PM2.5
concentrations for the whole conurbation of Temuco and PLC
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TABLE IV: Clustering summary – K-Means

Area 0: low 1: medium 2: high

Mean S.D. Mean S.D. Mean S.D

Whole study area 63.6 29.1 168.3 43.2 494.6 151.3
Collection zones

Amanecer 45.2 24 136.4 23.2 218.3 40
Labranza 61.8 27.9 171.4 45.6 453.6 106.9

Las Encinas 120.4 46 349.2 79.6 679 140.2
Padre Las Casas 41.7 15.4 95.9 18.2 176.4 37.1

Pedro de Valdivia 59.7 25.6 157.4 29.6 328.1 65.8

TABLE V: Clustering summary – Integrated approach

Area 0: low 1: medium 2: high

Mean S.D. Mean S.D. Mean S.D

Whole study area 81.3 49.6 146 71.8 308.4 201.1
Collection zones

Amanecer 41.4 40 79 52.8 152.2 59.3
Labranza 68.4 37.4 135.8 73.9 379.5 171.9

Las Encinas 97.5 36.5 125.2 64.2 273 188.1
Padre Las Casas 36.8 22.2 76.1 40.7 124.3 56.7

Pedro de Valdivia 48.5 19.1 75.6 44.1 149.2 66.5

and separately for each collection zone, respectively. These
figures present the low, medium, and high values of PM2.5
concentrations denoted by 0, 1, and 2, respectively. Differences
are observed among the clustering methods in both figures.
For example, when taking into account the whole study area in
Figure 2, a larger zone of high PM2.5 concentration is detected
in Las Encinas and part of Pedro de Valdivia (north) and
Amanecer (south) zones with the local spatial autocorrelation
(Getis-Ord G∗i statistic). Moreover, Figure 3 shows that high
PM2.5 concentrations tend to cluster more when the analysis
is performed separately by collection zone than for the whole
area. When each collection zone is analyzed separately, the
three types of clustering methods group PM2.5 concentrations
with less number of measurements, and clusters with low,
medium, and high values are identified in a smaller area.

VI. COMPARISON RESULTS

In order to compare the quality of different clustering pro-
cesses, we used the Silhouette coefficient [35]. The Silhouette
coefficient definition is shown in (2), which measures for each
point the relative difference between the average distance to
each point within the same cluster and each point in the closest
cluster.

S(C) =
1

n

∑
ck∈C

∑
xi∈ck

b(xi, ck)− a(xi, ck)

max{a(xi, ck), b(xi, ck)}
(2)

where the dataset X is a set of n points and each one is
represented as a vector in a F -dimensional space, and k is the
number of clusters in the partition. Moreover, equations (3)
and (4) show the computations of functions a and b respec-
tively.

a(xi, ck) =
1

|ck|
∑

xj∈ck

de(xi, xj) (3)

(a) Getis-Ord G∗
i statistic

(b) K-Means clustering

(c) Integrated K-Means and Getis-Ord G∗
i

Fig. 2: Clustering for the whole study area

b(xi, ck) = mincl∈C\ck

 1

|cl|
∑
xj∈cl

de(xi, xj)

 (4)

For each point i, the Silhouette coefficient represents how
well it was assigned. If S(i) is close to 0, then it is situated
at the inflection point between two clusters. If S(i) is close to
−1, then we would have been better off assigning the point
to the other cluster. If S(i) is close to 1, the point is correctly
assigned and can be interpreted as belonging to the appropriate
cluster.
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(a) Getis-Ord G∗
i statistic

(b) K-Means clustering

(c) Integrated K-Means and Getis-Ord G∗
i

Fig. 3: Clustering for each collection zone

Table VI shows the Silhouette coefficient values for all the
cluster partitions that were analyzed in this study. Moreover,
for each case, the Silhouette coefficient was computed con-
sidering only the PM2.5 concentrations, and also considering
the PM2.5 concentrations and the spatial locations of the
measurement points (P+L). Data was normalized to avoid
bias related to differences in ranges of values. The results
in Table VI show that higher Silhouette values were obtained
when using only the PM2.5 concentration than when including
the location information since all these clustering processes
were based on the PM2.5 concentrations. Moreover, according

to these values, the best clustering processes were performed
by K-Means when using only the PM2.5 concentrations. From
the results presented in Section V, we observe that these
partitions were unable to clearly differentiate geographical
areas with different air pollution levels. From Table VI, when
using P+L, we observe that the partitions performed by Getis-
Ord G∗i indicator were the best in three out of six cases and
the partitions performed by the integrated approach obtained
the best Silhouette indicators in the remaining three cases.

TABLE VI: Silhouette coefficient results

Area Getis-Ord G∗
i K-means Integrated

PM2.5 P+L PM2.5 P+L PM2.5 P+L

Whole study area 0.186 0.110 0.702 -0.034 0.378 0.016
Collection zones

Amanecer 0.181 0.090 0.659 0.071 0.121 0.111
Labranza 0.274 0.026 0.729 -0.143 0.431 -0.118

Las Encinas 0.211 0.136 0.755 0.027 0.184 0.024
Padre Las Casas 0.149 0.119 0.669 0.002 0.138 0.154

Pedro de Valdivia 0.216 0.063 0.750 -0.010 0.100 0.127

VII. CONCLUSIONS

This study implemented a spatial and aspatial clustering
method of PM2.5 concentrations that were collected in a
mobile campaign in the conurbation of Temuco and Padre Las
Casas in Chile during the winter of 2016. We used Getis-Ord
G∗i statistic to perform the spatial autocorrelation, and thus,
hotspots and coldspots were identified throughout the city.
K-Means was employed to group the PM2.5 concentrations
in three clusters with a aspatial perspective. Subsequently,
both Getis-Ord and K-Means were combined to perform the
clustering of this pollutant. The Silhouette coefficient was
used to compare the results of the quality in the clustering
processes. Observing the results on the whole study area,
we observe that the use of spatial approaches allow the
identification of separated areas of the same hazardous level.
This can be noticed when evaluating the Silhouette coefficient
values, where the best P+L values were obtained using the
spatial approach (higher than zero in both cases). Moreover,
analyzing the results from separated collection zones, we
observe that the higher P+L Silhouette coefficient values were
obtained by the integrated approach in Amanecer, Padre Las
Casas, and Pedro de Valdivia.

Future research should include elevation information cap-
tured in each GPS measurement to relate the topography of
the conurbation with the air pollution. Additionally, other
clustering techniques such as Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) or Agglomerative
Hierarchical Clustering will be employed to compare with the
current results.
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