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Abstract– A finite element model based on the Timoshenko 

theory is developed to compute the critical buckling loading of 

functionally graded beams. The Trefftz criteria is used for the 

stability analysis considering both fundamental and incremental 

states. A finite element formulation is derived from the principle of 

virtual work. The Lagrange interpolation functions are used to 

approximate the field variables. Numerical results are validated with 

several benchmark problems found in literature.   
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I. INTRODUCTION

It is important to understand the behavior and critical 

values of the structures under compressive loads to design more 

resistant and durable elements. Buckling analysis has been 

studied for many years since the pioneer work of Euler’s critical 

buckling formula in the 18th century [1,2].  

Functionally graded materials (FGM) are composites 

which properties vary continuously in one or more directions. 

It was firstly manufactured in Japan in 1987 with the objective 

to obtain heat-shielding for spacecraft [3]. Nowadays, it is 

applied in civil, naval and mechanical engineering projects due 

to their advantages in mechanical and thermal resistance. Also, 

FGM can avoid the critical stress concentrations, consequently, 

plastic deformations and cracking [4]. Generally, it is made of 

ceramic (high-temperature resistant) and metal (ductility and 

prevents fractures). 

In literature, there are excellent contributions to studies of 

buckling elements with functionally graded materials. Reddy 

and Arciniega [5] analyzed the mechanical and thermal 

buckling of FGM plates. They developed a finite element model 

based on the third shear deformation theory (TSDT). The 

Trefftz criterion was employed for the buckling stability 

formulation. Li and Batra [6] calculated the critical buckling 

load for Timoshenko and Euler-Bernoulli’s theories for three 

boundary conditions. They studied the buckling of FGM beams 

to compare both beam theories analytically and concluded that 

critical buckling load is easier to calculate by the Timoshenko 

theory. Kahya and Turan [7] obtained the buckling stability 

equation using Lagrange government equations, based on finite 

elements, to obtain the critical load for FGM Timoshenko 

beams. Huang and Li [8] performed stability for FGM beams 

with a circular cross-section. The authors considered shear 

deformation in their formulation, but not the shear correction 

factor for the calculation of the critical buckling load. Vo et al. 

[9] performed a finite element model based on the theory of

refined shear deformation for functionally graded sandwich

beams. They used the Reddy-Bickford beam theory to get the 

displacement field and Hamilton’s theory for the variational 

formulation. The authors concluded that the effect of the 

geometrical parameters, boundary conditions and power-law 

index play a very important role in the analysis of vibration and 

buckling. 

The aim of this study is to obtain the critical buckling load 

of FGM beams using a variational method called Trefftz 

criterion. The field displacement formulation is based on the 

Timoshenko beam theory for a finite element model. Also, the 

material properties of the FGM beam vary throughout the 

thickness considering a power-law index for three different 

boundary conditions simple supported, doubly clamped and 

clamped-free. Numerical results and the accuracy of the 

formulation have been compared and validated with other 

investigations based on literature. 

II. THEORETICAL FORMULATION

A. Kinematics and equilibrium equations

In this study, we use the Timoshenko beam theory to

represent the behavior of functionally graded beams, as shown 

in Fig. 1.  

Fig. 1 Deformation of the beam based on the Timoshenko theory 

The displacement field is represented by the following 

expression 

 𝑈1 = 𝑢(𝑥) = 𝑢0 + 𝑧𝜙1

 𝑈2 = 𝑣(𝑥) = 0 (1) 

𝑈3 = 𝑤(𝑥) = 𝑤0

where the three degrees of freedom are showed: two 

displacements 𝑢0, 𝑤0 and a rotation 𝜙1.Digital Object Identifier (DOI): 
http://dx.doi.org/10.18687/LACCEI2020.1.1.512 
ISBN:  978-958-52071-4-1 ISSN: 2414-6390

mailto:u201514754@upc.edu.pe
mailto:roman.arciniega@upc.edu.pe


18th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering, Integration, and Alliances for a Sustainable 

Development” “Hemispheric Cooperation for Competitiveness and Prosperity on a Knowledge-Based Economy”, 29-31 July 2020, Buenos Aires, Argentina. 2 

In Fig. 2, the geometric centroid (𝑂 point) is the origin of 

coordinates (𝑥, 𝑦, 𝑧) in the cross section of the element. 

  
Fig. 2 Geometry and coordinates of the element 

 

Kinematics equations are based on the Green-Lagrange 

strains tensor [10], namely  

 𝜀𝑖𝑗 = (1 2⁄ ) (𝑈,𝑥𝑗
𝑖 + 𝑈,𝑥𝑖

𝑗
+ 𝑈,𝑥𝑖

𝑘 𝑈,𝑥𝑗
𝑘 ) (𝑖, 𝑗 = 1,2,3)  (2) 

where 𝑈𝑖 , 𝑈𝑗, 𝑈𝑘  represent the displacement field showed in (1), 

and 𝑥𝑖 , 𝑥𝑗 are the 𝑥, 𝑦, 𝑧 coordinates [11]. 

The complete strain tensor has nine terms. Six of them are 

independent due to symmetry 𝜀21 = 𝜀12, 𝜀23 = 𝜀32, 𝜀13 = 𝜀31. 

Although, strains 𝜀22 = 𝜀33 = 𝜀12 = 𝜀23  are equal to zero, 

because they are not deformations in that way. Hence, the 

components are  

         𝜀11
0 = 𝑢,𝑥 + (1 2⁄ )(𝑤,𝑥)

2
 

        𝜀13
0 = (1 2⁄ )(𝜙1 + 𝑤,𝑥) (3) 

     𝜀11
1 = (𝜙1 , 𝑥)  

where super indexes 0 and 1 represent membrane strains and 

the bending strains, respectively. 

The kinematics relations are expressed with Voigt notation. 

The governing equations of the structural system are given by 

𝛿𝑢:     𝑁1,𝑥
= 0 

𝛿𝑤:    𝑄1,𝑥
+ 𝑞 + 𝑁1(𝑤,𝑥2) = 0               (4) 

𝛿𝜑:    𝑀1,𝑥
− 𝑄1 = 0. 

The stress resultants 𝑁1, 𝑄1, 𝑀1 are represented in the 

following equations 

𝑁1 = ∫ 𝜎1(1)
ℎ/2

−ℎ/2
 𝑑𝑧   

𝑀1 = ∫ 𝜎1(𝑧)
ℎ/2

−ℎ/2
 𝑑𝑧         (5)  

𝑄1 = ∫ 𝜎5(1)
ℎ/2

−ℎ/2
 𝑑𝑧.  

B. Functionally graded beams 

This two-phase functionally graded beam is composed of 

two materials: metal (at the bottom) and ceramic (at the top). 

The properties vary through the thickness of the element and 

are expressed in the following expression 

 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙
𝑐 𝑓𝑐 + 𝐶𝑖𝑗𝑘𝑙

𝑚 𝑓𝑚 (6) 

where the subscripts 𝑐 and 𝑚 are the expressions for ceramic 

and metal phases, respectively, and 𝑓 refers to the volume 

fractions which depend on the power-law denoted in the 

following formula 

 𝑓𝑐 = [(𝑧 ℎ) + (1 2⁄ )]⁄ 𝑛
        𝑓𝑚 = 1 − 𝑓𝑐 (7) 

where n is the power-law index which varies from 0 (fully 

ceramic) to ∞ (fully metal). 

The constitutive equations are expressed in (8) to get the 

relations between the stresses and the deformations 

 𝜎𝑖𝑗
(𝑟)

= 𝐶𝑖𝑗𝑘𝑙
(𝑟+𝑠)

𝜀𝑘𝑙
(𝑠)

. (8) 

The term 𝜎 is the stress produced for the axial loads, shear 

loads and moment. Consequently, the fourth-order tensor 𝐶 

refers to the integral along the element 

 𝐶𝑖𝑗𝑘𝑙
(𝑟)

= ∫ 𝐶𝑖𝑗𝑘𝑙
(𝑟+𝑠)

𝑧(𝑟)𝑑𝑧
ℎ/2

−ℎ/2
 

                       = 𝐶𝑖𝑗𝑘𝑙
(𝑟+𝑠)((𝑧𝑟+1) (𝑟 + 1)⁄ )|

−ℎ 2⁄

ℎ 2⁄
 (9) 

for the next values:  

(𝑟 = 0, 𝑠 = 0)    𝐶𝑖𝑗𝑘𝑙
(0)

= 𝐶𝑖𝑗𝑘𝑙
(0) (ℎ) 

(𝑟 = 1, 𝑠 = 0)    𝐶𝑖𝑗𝑘𝑙
(1)

= 0                       (𝑖 = 1,3)      (10) 

(𝑟 = 2, 𝑠 = 0)    𝐶𝑖𝑗𝑘𝑙
(2)

= 𝐶𝑖𝑗𝑘𝑙
(2) (ℎ3 12⁄ )    (𝑖 = 2).  

Replacing (10) in (8), then in (5), the following expression 

is obtained  

𝑁1
(0)

= 𝐶1111
(0)

𝜀11
(0)

+ 𝐶1111
(1)

𝜀11
(1)

= 𝐴11𝜀11
(0)

+ 𝐵11𝜀11
(1)

 

𝑀1
(1)

= 𝐶1111
(1)

𝜀11
(0)

+ 𝐶1111
(2)

𝜀11
(1)

= 𝐵11𝜀11
(0)

+ 𝐷11𝜀11
(1)

     (11) 

 𝑄1
(0)

= 𝐴𝐾𝑆(𝐶1313
(0)

𝜀13
(0)

) = 𝐴𝐾𝑆(𝐴55𝜀13
(0)

).  

The term 𝑄1 is multiplied for a constant shear correction 

factor equal to 5/6. Hence, the coefficients for the material 

stiffness are obtained from the following equation 

 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 = ∫ ((𝐶𝑖𝑗
𝑐 − 𝐶𝑖𝑗

𝑚)(𝑓𝑐 + 𝐶𝑖𝑗
𝑚))(𝑧 − 𝑧𝑐)𝑟𝑑𝑧

ℎ 2⁄

−ℎ 2⁄
  (12)  

where 𝑧𝑐 is the position of the neutral axis when it changes due 

to the variation of the stresses as a consequence of the power-

law index. 

C. Stability Analysis 

For the stability analysis, we utilize variational methods. 

For an equilibrium system, the total potential energy must be 

minimum. The displacement field is expressed through a 

fundamental as well as an incremental state [2]. Then 

 𝑈 = {
𝑢 = 𝑢0 + 𝑢1

𝑤 = 𝑤1
 (13) 

where 𝑢0 represent the displacement in a pure membrane state 

(fundamental state). Also, 𝑢1  y 𝑤1  are infinitesimally small 

increments (arbitrary perturbations).  

Total potential energy can be represented with a Taylor’s 

expansion  

 𝛥𝛱 = 𝛱(𝑈𝐹 + 𝑈𝐼) − 𝛱(𝑈𝐹) = ∑ (1 𝑛!⁄ )𝛿𝑛4
𝑛=1 𝛱. (14) 
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Slenderness Ratio 

For the above expression the first variation (𝛿𝛱) must be 

equal zero, so the equation depends entirely on the second 

variation which must be nonnegative. Therefore, the critical 

buckling load is defined as the lowest load when the second 

variation of the potential energy is the minimum which is called 

Trefftz criterion [2] 

 𝛿[𝛿2𝛱] = 0. (15) 

Replacing (15) in (3) and computing the second variation 

of the potential energy are expressed in the following 

expression 

 𝛿(𝛿2𝛱) = (1 2⁄ ) ∫ {𝑁1
0𝑤1 ,𝑥𝛿𝑤1 ,𝑥}𝑑𝑥

𝛺
. (16) 

D. Finite Element Formulation  

The finite element model based on the Timoshenko beam 

theory is derived by the principle of virtual work. It allows the 

use of Lagrangian interpolation functions for the approximation 

of displacements and rotation.  

The field variables are approximated by the following 

expression:  

 𝑢 = ∑ 𝑈(𝑗)𝛷(𝑗)(𝑥)𝑚
𝑗=1   

        𝑤 = ∑ 𝑊(𝑗)𝛷(𝑗)(𝑥)𝑚
𝑗=1  (17) 

𝜙1 = ∑ 𝜙1
(𝑗)𝛷(𝑗)(𝑥)𝑚

𝑗=1 .  

Then, a matrix equation is obtained by substituting 

Equation (17) in (15), that means:  

 [𝐾 − 𝜆𝐾𝑔] = 0. (18) 

In order to solve (18), an eigenvalue numerical method is 

utilized. Namely  

 [𝐾]{𝛥} = 𝜆[𝐾𝑔]{𝛥} (19) 

where 𝐾  and 𝐾𝑔 are the stiffness matrix and the geometric 

stiffness matrix, respectively; 𝜆 is the eigenvalue. The critical 

buckling load is given in 𝜆 and the buckling modes in 𝛥. 

III. NUMERICAL RESULTS 

In this section, benchmark problems are studied to evaluate 

the accuracy of the present formulation for FGM Timoshenko 

beams.  

A. Isotropic beams 

It is necessary to clarify the difference between slenderness 

ratio (𝐿 𝑅⁄ ), which relate the length and radius of gyration, and 

slenderness relation (𝐿 𝐻⁄ ), which relate length and thickness 

of the beam, to get better understanding of the next topic.  

The results obtained are compared with the Engesser 

formula [13] for isotropic beams. The Euler buckling theory 

does not take into consideration the effect of shear deformation. 

Therefore, for non-slender elements the formula is no longer 

valid. In order to consider this limitation, a clamped-clamped 

steel column with 𝐸 = 200 GPa and 𝑣 = 0.3 is evaluated for 

different slenderness ratios (𝐿/𝑅). The critical buckling stress 

is normalized with the Young modulus to get a nondimensional 

value (𝜎𝑐𝑟 𝐸⁄ ). In Fig. 3, these three models (present, Engesser 

and Euler) are compared. The proposed formulation agrees with 

to Engesser formula. As we can see, the Euler theory over 

stiffens the element for the slenderness ratio minor of fifteen 

(𝐿 𝑅⁄ < 15), even exceeding its resistance limit.   
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Fig. 3 Slenderness ratio as function the normalized critical buckling 

stress  

 

To compare the results with other formulations in 

literature, the critical buckling load is normalized as in the 

following parameter: 

 𝑁𝑐𝑟 = (𝑁𝑐𝑟𝑏2) (𝐸𝑚ℎ3)⁄ . (20) 

To verify the precision of the method, an FGM column is 

evaluated. It is composed of alumina (𝐴𝑙2 𝑂3) as the ceramic 

material and aluminum as metal with 𝐸𝑐 = 380 GPa and 𝐸𝑚 = 

70 GPa, respectively. The Poisson’s modulus (𝑣) is 0.23 and 

0.3 for Li and Batra [6] and Kahya and Turan [7], respectively. 

Clamped-clamped, simple-simple and clamped-free are the 

boundary conditions for the analysis.     

As shown in Table 1 and Table 2, the normalized critical 

buckling load is compared for two slenderness relations (𝐿 𝐻⁄ ) 

and nine power-law indexes (𝑛). A doubly clamped column is 

evaluated since this boundary condition requires of higher 

critical buckling load. The proposed formulation is compared 

with the method of Li and Batra [6] for doubly clamped beams. 

The results show a close agreement with the analytical method 

of [6]. The critical load increases while the power-law index 

decreases. It represents that the buckling load depends on the 

material properties (𝐸𝑐 > 𝐸𝑚). Also, the buckling load increases 

as soon as the slenderness relation raises.  

Slenderness  Power-law Theory 

relation (L/H) index (n) Present Li & Batra [6] 

5 

0 154.352 154.350 

0.5 103.224 103.220 

1 80.498 80.498 

2 62.615 62.614 

5 50.384 50.384 

7 47.332 47.332 

10 44.267 44.267 

100 31.231 31.231 

∞ 28.433 28.433 

TABLE 1 
NORMALIZED CRITICAL LOAD FOR DOUBLY CLAMPED FGM BEAMS (L/H=5) 
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Slenderness  Power-law Theory 

relation (L/H) index (n) Present Li & Batra [6] 

10 

0 195.343 195.340 

0.5 127.871 127.870 

1 98.750 98.749 

2 76.981 76.980 

5 64.097 64.096 

7 61.062 61.062 

10 57.709 57.708 

100 40.082 40.081 

∞ 35.984 35.984 

 

In Fig. 4, an FGM beam is analyzed for three different 

boundary conditions (CC, SS and CF) with slenderness relation 

equal to five. Furthermore, the results are compared with the 

obtained on [7] and [14]. The buckling load obtained has an 

excellent approach to the benchmarking results. In other words, 

the proposed formulation match with the results of the authors 

and validates the present analysis.  

To observe the influence of the slenderness relation and the 

power-law index, in Fig. 5 an FGM simple supported beam is 

evaluated. The critical buckling load increases as soon as the 

slenderness relation raises, but this increment is less than 1% 

when the slenderness relation (𝐿 𝐻⁄ ) is over 20. It happens for 

all power-law indexes cases because the material properties 

have more influence than the geometrical parameters.  
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Fig. 4 FGM beams for different power law index 
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Fig. 5 Slenderness Relation under 8 different power-law indexes  

B. Buckling modes  

In this section numerical examples are presented to show 

the four principal buckling modes for different boundary 

conditions. Buckling modes are only relative displacements 

where the values vary among ±1 in the range displacements. 

In Fig. 6-8, a clamped-free, simple supported and doubly 

clamped FGM column is evaluated. The slenderness ratio is 
𝐿 𝐻⁄ =50 and width 𝐵 = 1. The material is made of aluminum 

(𝐸𝑚 = 70 GPa) and zirconia (𝐸𝑐 = 151 GPa), Poisson modulus 

( 𝑣𝑚 = 𝑣𝑐 =  0.3) and the power-law index ( 𝑛 =  2 ). The 

example is computed with polynomials of fourth order (𝑃 = 4) 

and with a finite element mesh of four elements. Also, the first 

mode (on the left) represents the movement of the column for 

the critical buckling load, while the three other modes represent 

the most representative ones. 

 
 
 

Fig. 6 Buckling mode shapes for a Clamped free column 
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TABLE 2 

NORMALIZED CRITICAL LOAD FOR DOUBLY CLAMPED FGM BEAMS (L/H=10) 
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Fig. 7 Buckling mode shapes for a simple supported column 

 

 

 

Fig. 8 Buckling mode shapes for a doubly clamped column 

IV. CONCLUSION 

In the present study, a formulation to compute the critical 

buckling loading for functionally graded beams has been 

presented. The Timoshenko beam theory was used to develop a 

finite element model based on the principle of virtual work. The 

Trefftz criterion was utilized to derive the stability analysis. The 

formulation obtained high accuracy respect to the Engesser 

formula for isotropic cases. When comparing with the Euler 

formula, results varied significantly for ratios 𝐿/𝑅 < 15. The 

classical formula does not take into consideration the shear 

deformation. The critical buckling load decreased when the 

index n and the slenderness ratio (𝐿/𝐻) decreased its values for 

functionally graded beams. 
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