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Abstract– The purpose of this research is to study the bending 
behavior of micropolar beams by using an improved first-order 
shear deformation theory. The proposed formulation employs five 
independent variables for the displacement field and a single 
parameter for microrotations. The model considers thickness 
stretching and 3D constitutive parameters. A finite element 
formulation is developed with spectral interpolation functions to 
avoid shear and Poisson locking. Convergence analysis of vertical 
deflections is presented to illustrate the performance of high-order 
elements. Numerical results obtained for cantilever and simply 
supported beams demonstrate the validity of the present approach.  

Keywords—Micropolar elasticity, Micropolar beams, 
Nonclassical continuum. 

I. INTRODUCTION

Due to the fast development in technology, there is a 
growing need in the design and manufacturing of micro and 
nano-electromechanical systems like biosensors, 
microsensors, or microscopes. Specifically, the use of beam-
like elements is general for those systems. This small-scaled 
structure develops size-dependent behaviors that cannot be 
evaluated by classical elasticity theories [1], [2]. For this, 
Shaw [3] has concluded an increasing hardening in 
microbending plates due to their stiffness parameters. 
Cantilever nanowires and polymer nanotubes were 
experimentally tested, resulting in an increase in the elastic 
modulus when smaller samples were analyzed [4]. Lam et al. 
[5], [6] and Mcfarland and Colton [6] concluded that the 
rigidity of microcantilever beams has an inverse dependency 
on the thickness of such elements. These experimental 
researches have led to the further development of theories that 
include intrinsic length scales important to capture nano and 
microscale phenomena. A general overview of these theories 
can be found in reference [7]. 

 In reference [8], Voigt included the effects of moment-
based stresses in classical elasticity theory. Cosserat and 
Cosserat [9] developed a new theory considering three new 
independent rotations, known as microrotations and three 
displacements in every point of the continuum, leading to a 
new concept of non-symmetric elasticity theory.  The 
references [10]–[13] further developed micropolar elasticity. 

Applications of this theory in beams by using the Finite 
Element Method can be found in the literature. Nampally et al. 
[14] developed a non linear micropolar beam solutions using
lattice core beams. In reference [15] a linear micropolar model
was used for the static bending analysis of a cantilever beam.

A dynamic analysis considering a Timoshenko beam model 
was also studied [16]. In reference [17], the micropolar model 
was extended to torsion as well as bending of cantilever and 
simply supported beams and results were obtained through the 
Finite Element Method. Both an static and dynamic analysis 
considering von Kármán nonlinearity was evaluated 
analytically [18].  In reference [19], high-order beam models 
were developed. This theory was also used for the analysis of 
lattice core sandwich beams considering von Kármán 
nonlinearity [14] and a geometrically exact model [20], also 
using the finite element method. From the literature review, it 
is seen that the bending analysis of micropolar beams has been 
widely studied. However, there is limited evidence of the use 
of higher-order models for this kind of studies.  

This research aims to present a computational model for 
the analysis of micropolar beams. The theoretical formulation 
is based on the improved first-order shear deformation theory 
(IFSDT) The adopted beam formulation can be found in [21].
The propos herein used considers five independent variables 
for the approximation of the displacement field and one for the 
microrotation field. This beam formulation will allow the use 
of 3D constitutive equations. A finite element formulation was 
derived using spectral high-order interpolation functions. 

II. THEORETICAL FORMULATION

A. Linear isotropic micropolar theory
Being 𝐯 the displacement and 𝝑 the microrotation field

respectively of a continuum and considering spatial gradients 
are infinitesimal  

𝐯 ≪ 1, 𝑮𝒓𝒂𝒅𝐯 ≪ 1 
( 1 ) 

𝝑 ≪ 1, 𝑮𝒓𝒂𝒅𝝑 ≪ 1, 
the linear stretch tensor 𝜺 and the linear wryness tensor 𝜸, with 
𝐈 as the identity tensor in the undeformed configuration, are 
defined as follows [22] 

𝜺 = Grad𝐯 − 𝝑×𝐈, 𝜸 = 𝑮𝒓𝒂𝒅𝝑. ( 2 ) 

For a linear micropolar isotropic solid, stress-strain 
relations for the stress tensor 𝝈 and the couple stress tensor 𝝌 
are stated as [23] 

𝝈 = 𝜆𝐈tr𝜺 + 𝜇 + 𝜅 𝜺 + 𝜇𝜺𝑻, 
( 3 ) 

𝝌 = 𝛽!𝐈tr𝜸 + 𝛽!𝜸𝑻 + 𝛽!𝜸,
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where 𝜇, 𝜆, 𝜅, 𝛽!, 𝛽!, 𝛽! micropolar elastic constants. 
Parameters 𝜇  and 𝜅  relates to the Lamé shear modulus 
𝜇 according to [24]  as 

𝜇 = 𝜇 +
1
2
𝜅, ( 4 ) 

and 𝜆 is the first Lamé parameter. 
Furthermore, Young’s modulus 𝐸 and Poisson’s ratio υ 

can be defined in terms of these micropolar elastic constants 
by the following equations 

𝐸 =
2𝜇 + 𝜅 3𝜆 + 2𝜇 + 𝜅

2𝜆 + 2𝜇 + 𝜅
, 

( 5 ) 

ν =
𝜆

2𝜆 + 2𝜇 + 𝜅
. 

In 3  tr(∙) represents the trace operation. 
 

B. Beam theory 
Let 𝑥𝑖  be a set of Cartesian coordinates with 

orthonormal basis 𝐞𝑖 . The 𝑥1  axis is aligned with the 
horizontal axis of the beam, passing through the centroid of 
the cross-section, 𝑥3  goes through its thickness and 𝑥2 is 
transversal to it. The displacement and microrotation fields are 
assumed to be of the following form (see [21]) 

𝐯 𝑥!, 𝑥! = 𝐮 𝑥! + 𝑥!𝛗 𝑥! + 𝑥! !𝛙 𝑥! , ( 6 ) 

𝝑 𝑥𝟏 = 𝛉 𝑥𝟏 . ( 7 ) 

where 𝐮 = 𝑢!𝐞!  represents the displacement vector of the 
neutral axis, while 𝛗 = 𝜑!𝐞𝒊  and 𝛙 = 𝜓!𝐞! are difference 
vectors with 𝑖 = 1,3. The displacement field contains five 
independent variables and contains one quadratic term 𝛙  to 
avoid poisson locking. The microrotation field contains 
𝛉 = 𝜃!𝐞𝟑 , which represent the microrotation along the 
transversal axis of the beam. 

For the given displacement and microrotation fields 
presented in equations 6  and 7  and by the first equation in 
2 , the linear stretch tensor is defined as 

𝜺 = 𝜺 𝟎 + 𝒙𝟑𝜺 𝟏 , 
( 8 ) 

𝜺 𝒊 = 𝜺𝟏𝟏
(𝒊)𝐞𝟏⨂𝐞𝟏 + 𝜺𝟐𝟐

(𝒊)𝐞𝟐⨂𝐞𝟐 
+𝜺𝟏𝟐

(𝒊)𝐞𝟏⨂𝐞𝟐 + 𝜺𝟐𝟏
(𝒊)𝐞𝟐⨂𝐞𝟏,   

where 𝑖 = 0,1, while the linear wryness tensor is expressed by 
means of the second equation in (2) as 

𝜸 = 𝜸 𝟎 ,	
( 9 ) 

𝜸 𝟎 = 𝜸𝟏𝟑
(𝟎)𝐞𝟏⨂𝐞𝟑, 

where high order terms are neglected. 

It is also possible to express equations 8  and 9  in 
indicial notation considering the five components of the 
displacement field and the single component of the 
microrotation field as 

𝜀!!
! = 𝑢!,! 𝜀!!

! = 𝜑!,!
𝜀!!
! = 𝜑! 𝜀!!

! = 2𝜓!
𝜀!"
! = 𝑢!,! − 𝜃! 𝜀!"

! = 𝜑!,!
𝜀!"
! = 𝜑! + 𝜃! 𝜀!"

! = 0
𝛾!"
(!) = 𝜃!,! 𝛾!"

(!) = 0

 ( 10 ) 

 
C. Principle of virtual work 

The weak form of the model is constructed by the 
Principle of Virtual Work, in which virtual stress measures are 
work-conjugate to virtual strain measures in the micropolar 
continuum, as stated in [25]. The configuration solution of the 
micropolar beam is defined by the set Φ ≡ 𝐮,𝛗,𝛙,𝛉 . Thus, 

𝒢 Φ, δΦ = 𝒢!"# Φ, δΦ − 𝒢!"# Φ, δΦ , 

( 11 ) 
𝒢 Φ, δΦ = 𝐍 ! ∙ δ𝛆 ! + 𝐍 ! ∙ δ𝛆 !

!!

+𝐌 ! ∙ δ𝜸 ! 𝑑𝑥! 

+ 𝐩 ∙ δ𝐮 +𝐦 ∙ δ𝛉 𝑑𝑥!
!!

, 

where δΦ ≡ δ𝐮, δ𝛗, δ𝛙, δ𝛉 . 𝐍 ! are the force stress 
resultants, 𝐌 !  is the micropolar stress resultant, 𝐩 are the 
body forces acting on the beam per unit length and 𝐦 are the 
body moment forces respectively.  

Force stress resultants 𝐍 ! are of the form 

𝐍 ! = 𝔹 !!!
!

!!!

𝜺 ! , 𝑖 = 0,1, ( 12 ) 

while moment stress resultants 𝐌 !   have the form 

𝐌 ! = 𝕄 𝟎  𝜸 𝟎 . ( 13 ) 

For the definition of 𝐍 !  and 𝐌 !   it is necessary to 
define the material stiffness coefficients 𝔹 and 𝕄 as 

𝔹 ! = 𝑥! !ℂ𝑑𝑥!
!/!

!!/!
, 𝑘 = 0,1,2,   ( 14 ) 

𝕄 ! = ℎ𝔻, ( 15 ) 

where ℎ represents the thickness of the beam. 
The new fourth order micropolar tensors ℂ  and 𝔻  are 

stated by means of the definitions from [23] 

ℂ = 𝜆𝑰⨂𝑰 + 𝜇 + 𝜅 𝐞𝒂⨂𝐞𝒃⨂𝐞𝒂⨂𝐞𝒃 
+𝜇𝐞𝒂⨂𝑰⨂𝐞𝒂, 

( 16 ) 
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𝔻 = 𝛽!𝑰⨂𝑰 + 𝛽!𝐞𝒂⨂𝑰⨂𝐞𝒂 
+𝛽!𝐞𝒂⨂𝐞𝒃⨂𝐞𝒂⨂𝐞𝒃, 

( 17 ) 

where 𝑎, 𝑏 = 1,2,3. 
From equations 11) to (13 , the final expression of the 

virtual work can be stated as 

𝒢 Φ, δΦ = δ𝛆 ! 𝔹 !!!
!

!!!

𝜺 !
!

!!!

𝑑𝑥!
!!

 

+ δ𝜸 ! 𝕄 𝟎  𝜸 𝟎 𝑑𝑥!
!!

 

− 𝐩 ∙ δ𝐮 +𝐦 ∙ δ𝛉 𝑑𝑥!
!!

. 

 ( 18 ) 

III. FINITE ELEMENT APPROXIMATION 

Let Ω be the domain of the neutral axis of the beam 
which is discretized into 𝑁 elements such that 

Ω = Ω!
!

!!!

 ( 19 ) 

Recall that Ω! = −1,1  is a parent domain in 𝜉-space and 
𝑥! 𝜉 :Ω! ∈ ℝ → Ω! . The finite element equations are 
obtained by interpolating the components of the field variables 
written in terms of the base vectors. Namely, 

𝐮!! 𝑥𝟏 = 𝑢!
! 𝜙 ! 𝜉

𝒎

!!𝟏

𝐞! , 

𝛗!!(𝑥𝟏) = 𝜑!
(!)𝜙(!)(𝜉)

𝒎

!!𝟏

𝐞! ,    

𝛙!!(𝑥𝟏) = 𝜓!
(!)𝜙(!)(𝜉)

𝒎

!!𝟏

𝐞! , 

𝛉!! 𝑥𝟏 = 𝜃!
! 𝜙 ! 𝜉

𝒎

!!𝟏

𝐞!, 

𝑘 = 1,2. 

( 20 ) 

The adopted basis functions 𝜙 !  are 𝐶!  interpolant 
polynomials of Gauss–Lobatto-Legendre (GLL) quadrature 
points [26], which are suitable for high-order expansions. 
Explicitly, the one-dimensional basis functions of the order 
𝑝 = 𝑚 − 1  are expressed using the p-order Legendre 
polynomial 𝑃!!!, as shown 

𝜙 ! 𝜉 =
1 − 𝜉! 𝑃′!!! 𝜉

𝑚 𝑚 − 1 𝑃!!! 𝜉! 𝜉 − 𝜉!
 ( 21 ) 

 

 

IV. NUMERICAL RESULTS 

In the following section cantilever and simply supported 
microbeams are evaluated using a 4-element mesh with 𝑃 = 4 
interpolation functions for primary variables to avoid shear 
locking. Nondimensional parameters are used according with 
the following equations: 

𝜇 = 𝜇/𝐸, 𝜅 = 𝜅/𝐸, 

( 22 ) 

𝛽! = 𝛽!/ 𝐸𝐿! , 

𝛽! = 𝛽!/ 𝐸𝐿! , 

𝐼! = 𝐼!/ 𝐴𝐿! , 

𝑅! = 𝐿/ 𝐼!𝐴 , 

𝑓! = 𝑓!/ 𝐸𝐴 , 

𝑚! = 𝑚!/ 𝐸𝐴 , 

𝑈! = 3𝐸𝐼!𝑢! 𝑥𝟏 / 𝑓!𝐿! , 

where 𝐼! is the moment of inertia,𝑅!is the slenderness ratio, 𝑓! 
the point load at the free end of the beam, 𝐴 the area of the 
cross-section and 𝐿 the length of the beam 

A. Convergence analysis 
 Preliminary converge analysis was conducted to 

demonstrate the numerical stability of the proposed finite 
element model applied to micropolar elasticity. A cantilever 
beam was analyzed with the nondimensional parameters in 
Table I [17].  

 
TABLE I 

 
Parameter Value 

𝑅! 10 

𝜇 3/8 

𝜅 0.02 

𝛽!  0 

𝛽! 5×10!! 

 
Vertical deflection at the free end of the beam was 

calculated for different 𝑃  levels. A normalized vertical 
deflection 𝑢!  is compared for different numbers of nodes 
considering the case with 𝑃 = 8  and 8  elements as the 
reference value, being 𝑢! calculated by the following equation 
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𝑢! =
𝑢!(𝑃,𝑁)
𝑢!(8,8)

. ( 23 ) 

The cantilever beam is loaded with a nondimensional 
point load at its free end 𝑓! = 5×10!! and a distributed body 
moment 𝑚! = 10!!. Fig. 1 shows the convergence analysis. 
An excellent rate of convergence is achieved when higher-
order elements are employed. 

Fig. 1 Convergence analysis. 
 

B. Bending analysis of micropolar beams 
	 For the evaluation of the proposed model, results are 
compared against [17]. In the first case, a cantilever beam with 
a squared cross-section is considered. The action of different 
distributed body moments 𝑚! = 0,±0.5×10!!,±1×10!! and 
a point load applied at the free end  𝑓! = 5×10!!  are 
analysed. The material parameters used in the results are given 
in Table I. The boundary conditions are taken as follows: 

𝑢!(0) = 𝑢!(0) = 0, 

𝜑!(0) = 𝜑!(0) = 0, 

𝜓!(0) = 0. 

( 24 ) 

 Fig. 2 shows the normalized displacement 𝑈! along the 
length of the beam. The advantage of the present formulation 
is that 3D constitutive relations are used. Hence, the inclusion 
of the Poisson ratio leads to more stiff results. For the case 
with a distributed moment of 𝑚! = +1×10!!, the proposed 
model presents displacements 10.86% smaller in comparison 
with the reference value. The same behaviour is evidenced in 
fig. 2 and fig. 3 with respect to macrorotation 𝜑!  and 
microrotation 𝜃! respectively. 
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Fig 2. Normalized vertical deflection Û2 of the cantilever beam.

Fig 3. Macrorotation φ1 of the cantilever beam.

Fig 4. Microrotation θ3 of the cantilever beam.

 
 Secondly, a simply supported micropolar beam is 
evaluated under the action of a distributed load 𝑝! . The 
magnitude of 𝑝! is selected such that it generates a 
nondimensional vertical deflection of 0.3 at the middle spam 
of the beam based on the Timoshenko bending theory. The 
material parameters are given in Table II. 
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TABLE II 

Parameter Value 

𝑅! 50 

𝜇 3/8 

𝜅 (2×10!, 2×10!!") 

𝛽!  0 

𝛽! 2×10!!" 

 
 The boundary conditions are taken as follows: 

𝑢𝟏(0) = 𝑢𝟐(0) = 0, 

𝑢𝟏(𝐿) = 𝑢𝟐(𝐿) = 0, 
( 25 ) 

 The proposed model presents stiffer behavior compared 
with [17]. Fig. 5 shows the results considering the first value 
of micropolar constant 𝜅 presented in Table II. It is observed 
that the macrorotation 𝜑!  and microrotation 𝜃!  coincide for 
the present formulation as it was stated by [17]. Fig. 6 shows 
the results with the second value of micropolar constant 𝜅 
from Table II. It is observed that as the micropolar constant 𝜅 
is reduced, the microrotation 𝜃! decreases in comparison with 
the macrorotation 𝜑!. Also, the microrotation 𝜃! obtained with 
the proposed model coincides with the results from [17]. 
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Fig. 5 Bending deformations of a simply supported beam under a distributed 

load 𝑝! (𝜅 = 2×10!). 
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Fig. 6 Bending deformations of a simply supported beam under a distributed 

load 𝑝! (𝜅 = 2×10!!"). 
	

V. CONCLUSIONS 

In the present study, a finite element model based on an 
improved first-order shear deformation theory was obtained 
based on micropolar elasticity theory. The proposed model 
uses six independent variables for the approximation of the 
displacement and microrotation fields. A variational 
formulation has been derived using 3D constitutive relations 
and spectral high-order interpolation functions. A convergence 
study of the vertical deflection of a cantilever beam was 
evaluated, showing the advantages of these spectral high-order 
interpolation functions. Bending results were obtained for 
cantilever and simply supported beams with distributed 
vertical loads and body moments, which were compared 
against the deflections of a micropolar first-order shear 
deformation model. The proposed model developed stiffer 
deflections, macro rotations, and microrotations due to the use 
of 3D constitutive equations.  In the next investigations, the 
authors expect to extend the present research to evaluate 
geometrical nonlinear behavior and functionally graded 
materials considering micropolar elasticity theory. 
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