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Abstract– The conurbation of Viña del Mar and Valparaíso 

presented the highest number of public transit crashes in Chile with 

a total of nearly 350 fatalities and severely injured victims between 

2014 and 2018. These crashes are caused mainly due to the 

imprudence of the driver yielding collisions between two or more 

moving vehicles, impacts with stationary objects, and falls of 

passenger from buses. This study performed a spatio-temporal 

analysis of traffic crashes that involved microbuses and taxi-buses to 

identify emerging and disappearing hotspots and coldspots during 

the study period. The results revealed that most crash hotspots due to 

the imprudence of the driver persisted in time in Viña del Mar, and 

crash hotspots due to signage disobedience sporadically appeared in 

Valparaíso. Hotspots of collisions and falls of passengers are types 

of crashes that emerged solely in Viña del Mar, as well as new, 

consecutive, and sporadic hotspots of severely injured victims. While 

morning historical hotspots emerged in Viña del Mar, consecutive, 

persistent, and sporadic hotspots of crashes appeared in the 

downtown area in both cities. The results of this study will aid 

authorities, transportation professionals, and planners make 

informed decisions about traffic safety. 
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I. INTRODUCTION

Every year approximately 1.3 million victims die as a result 

of traffic crashes worldwide. The number of fatalities due 

motorized crashes has decreased since 2010, except for Chile 

and the United States. Chile is the OECD member country that 

has the worst fatality rate with 11.9 per 100,000 inhabitants [1]. 

The number of road traffic crashes has presented a steady 

increase from 58,000 crashes in 2010 to nearly 90,000 crashes 

in 2018. Currently, the main external cause of death among 

Chileans is traffic crashes with approximately 1.600 deaths per 

year despite the recent enacting laws to prevent driving under 

the influence of alcohol, mandatory use of child car seats, 

maximum vehicle speed reduction to 50 km/hr in urban zones, 

among others [2]. This alarming statistic highlights the severity 

of this problem in Chile. In addition to the fatal losses due to 

traffic crashes in Chile, the estimated cost of traffic crashes in 

2018 was approximately US$5.8 billion, which corresponds to 

2.1% of the GDP per capita [3]. 

The conurbation of Viña del Mar and Valparaíso belong to 

the Region of Valparaíso, which is ranked second with the 

highest number of crashes after the Metropolitan Region [2]. 

Among all Chilean cities, Viña del Mar and Valparaíso present 

the highest number of crashes that involve public transit 

microbuses and taxibuses (from now on referred to as “public 

transit crashes”), followed by Concepción.  

The objective of this study is to analyze crashes of public 

transit microbuses and taxibuses that occurred in the 2014-2018 

period in the twin cities of Viña del Mar and Valparaíso from a 

spatial and temporal perspective. Thus, hotspots and coldspots 

of public transit crash attributes that persisted in time are 

identified. The results of this research will support authorities 

to develop efficient traffic safety programs for transit and to 

prioritize interventions by identifying high crash risk zones. 

Studies have used different spatial techniques to identify 

hotspots of road crashes such as Nearest Neighbor Clustering 

[4], K-means [5, 6], and Kernel Density Estimation (KDE) [7, 

8]. Studies have also employed spatial autocorrelation 

indicators to detect hotspots of road crashes [9, 10, 11, 12]. 

Additionally, researchers have conducted a spatio-temporal 

analysis of traffic crash hotspots [13, 14, 15]. For example, [14] 

conducted a spatio-temporal analysis to explore the traffic crash 

temporal evolution and to identify crash hot spots using 

Moran`s I and Getis-Ord Gi* spatial statistics. [13] performed 

a global and local spatial autocorrelation analysis of cargo 

trucks on Chilean highways to identify spatial clustering 

(hotspots) of crash attributes over time. In another study by 

[15], hotspots of traffic crashes involving elderly people in 

Seoul, Korea were analyzed spatial and temporally using 

emerging hotspot and space-time KDE analyses. In this study, 

a local spatial autocorrelation is performed using the Getis Ord 

Gi* index to identify public transit crash hotspots, and 

emerging hotspot analysis is conducted to classify these 

hotspots according to their temporal evolution. 

II. DATA DESCRIPTION

The public transit system of Viña del Mar and Valparaíso 

consists of approximately 2,096 buses that serve a population 

of 630,093 inhabitants through 100 routes [2]. A total of 3.586 

road crashes occurred between 2014 and 2018 that involved 

public transit microbuses and taxibuses, of which 48.3% and 

51.7% of these crashes occurred in Viña del Mar and 

Valparaíso, respectively. Fig. 1 presents 3,147 (87.8%) crashes 

that were successfully geocoded in a GIS environment. 

Most of the crashes in both cities comprised two or more 

vehicles that collided as they were traveling, followed by 

impacts of vehicles with stationary objects, as shown in Fig. 2. 

As a result of these crashes, 2.103 victims suffered some type 

of injury during the studied period. Fig. 3 shows that more 

fatalities and injuries occurred in Viña del Mar than Valparaíso. 

The main cause of public transit crashes in both cities was 

the imprudence of the driver (e.g., inattentive driving, abrupt 

lanes changes, improper turns, shoulder overtaking, etc.), which 

accounted for 75.4% and 58% of these crashes in Viña del Mar 

and Valparaíso, respectively (See Fig. 4). Additionally, this 

figure shows that more crashes occurred in Valparaíso due to 

other causes and the disobedience of traffic signals. 
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Regarding the time of day, crashes in Valparaíso on 

average tend to occur at 8am, between 11am and 1pm, and 

between 5pm and 7pm. Whereas, Fig. 5 indicates that traffic 

crashes in Viña del Mar are mostly concentrated around noon 

and 6pm. On average, most traffic crashes in Viña del Mar tend 

to occur during weekdays (particularly Mondays), while over 

50% of the crashes in Valparaíso occurred between 

Wednesdays and Fridays. On average, 145 and 154 public 

transit crashes arose every month in Viña del Mar and 

Valparaíso, respectively, with the highest number of crashes in 

March. 

 
Fig. 1 Public transit crashes in Viña del Mar and Valparaíso that occurred 

during the period 2014-2018. 

 

 
Fig. 2 Number of public transit crashes by type of crash in Viña del Mar and 

Valparaíso. 

Fig. 3 Killed and seriously injured in Viña del Mar and Valparaíso due to 
public transit crashes. 

 

 
Fig. 4 Number of public transit crashes by contributing cause in Viña del Mar 

and Valparaíso. 

 

 
Fig. 5 Number of crashes per hour in Viña del Mar and Valparaíso. 

 

 

Table I presents the variables associated to the public 

transit crashes analyzed in this study. These are grouped by 

contributing cause, type of crash, and time of day. Severely 

injured victims (summation of killed, and seriously and less 

seriously injured) are also examined. 
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TABLE I 

PUBLIC TRANSIT CRASH VARIABLES 

Variable Category Variable 

Severely injured 
Summation of killed, and seriously and less seriously 

injured 

Contributing causes 

Imprudence of the driver 

Imprudence of the pedestrian 

Loss of control of vehicle 

Signage disobedience 

Other causes 

Type of crash 

Collision of two or more moving vehicles 

Impact with a stationary vehicle 

Fall of passenger from a bus 

Pedestrian run-over 

Time of day 

Morning (6am-11:59am) 

Afternoon (12pm-5:59pm) 

Night (6pm-11:59pm) 

 

III. METHODOLOGY 

Tobler´s first law of geography states that “everything is 

related to everything else, but near things are more related than 

distant things” [16]. The principle of spatial autocorrelation is 

based on this law, in which assesses the spatial relationship 

between attributes at certain locations and surrounding 

locations. If the spatial correlation is higher (lower) than 

expected, then neighboring locations have similar (dissimilar) 

values and the spatial autocorrelation is positive (negative) [17]. 

Therefore, spatial patterns of crashes demonstrate distinct 

clustering or dispersion and are not generated by random. 

In this study, spatial autocorrelation analysis was 

performed with the Emerging Spatio-temporal Hotspot 

Analysis tool from ArcGIS software to identify the clustering 

tendency of public transit crashes by evaluating spatial-

temporal cubes. These cubes consist of bins with information 

that horizontally represent the location and vertically the time 

series, as depicted in Fig. 6 [18]. Each bin is assigned with total 

number public transit crashes that occurred in a certain time 

slice o interval, and empty bins are filled with zero values. 

 

 
Fig. 6 3D representation of time-space bins [18]. 

 

Getis-Ord Gi* statistic was used to identify the location and 

level of spatial clustering of bins (aggregated public transit 

crashes) in combination with the Mann-Kendall statistic to 

assess the trend through time series at each location [19, 20]. 

Getis-Ord Gi* index obtains the concentration of high values 

(hotspots) and low values (coldspots) of a study area by using 

(1), (2), and (3) [21]. 

 

𝐺𝑖
∗(𝑑) =  

∑ 𝑤𝑖𝑗(𝑑)𝑥𝑗𝑗 − 𝑥̅ ∑ 𝑤𝑖𝑗(𝑑)𝑗

𝑆
√𝑛 ∑ 𝑤𝑖𝑗

2(𝑑)−𝑗 (∑ 𝑤𝑖𝑗(𝑑)𝑗 )
2

𝑛−1
 

                                 (1) 

with 

 

𝑥̅ =
∑ 𝑥𝑗𝑗

𝑛
                                                                            (2) 

and 

 

𝑆 =  √
∑ 𝑥𝑗

2
𝑗

𝑛
− (𝑥̅)2                                                       (3) 

where xj is the attribute value of each location j, wij(d) is the 

spatial weight matrix for all locations j within distance d from 

the crash at location i, and n is the total number of locations. 

Z-score and p-values are yielded as output information for each 

bin when using the Gi* statistic to indicate standard deviation 

and statistical probability, respectively. Table II presents the 

classification of hotspots and coldspots according to Z-score 

and p-values [18]. Note that a positive (negative) spatial 

autocorrelation is identified with Z-score values of 1.65 or 

greater (-1.65 or less) with p-value <0.10. 

 
TABLE II 

HOTSPOT AND COLDSPOT CLASSIFICATION ACCORDING TO Z-SCORE AND P-

VALUES 

Z-Score p-value Category 

< -2.58 0.01 Coldspot, 99% confidence level 

-2.58 – 1.96 0.05 Coldspot, 95% confidence level 

-1.96 – -1.65 0.10 Coldspot, 90% confidence level 

-1.65 – 1.65 - Not significant 

1.65 – 1.96 0.10 Hotspot, 90% confidence level 

1.96 – 2.58 0.05 Hotspot, 95% confidence level 

> 2.58 0.01 Hotspot, 99% confidence level 

 

Once the hotspots and coldspots are identified per bin for 

each time interval (time-space cubes), these are classified into 

the temporal trend categories listed in Table III. These 

categories represent fluctuations between emergences and 

disappearances of hotspots and coldspots over time. 

 

IV. RESULTS 

First, time-space cubes were obtained for each analyzed 

variable by aggregating the public transit crashes in 268 m x 

268 m bins and using a time-step interval of 4 months (i.e., 15 

bins per location for the complete study period). These values 

were determined by testing bin sizes between 100 m and 400 

m, and time-step intervals between 1 and 6 months. Different 
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distance bands were also tested to examine the proximity 

between each crash and its neighboring crashes (i.e., distance at 

which spatial autocorrelation is maximized). A distance band of 

1,498.3 meters yielded the best results for all crash variables 

analyzed in this study. 

 
TABLE III 

TEMPORAL TENDENCY CATEGORIES OF STATISTICALLY SIGNIFICANT 

HOTSPOTS AND COLDSPOTS (BASED ON [18]) 

Tendency Definition 

No identified 
tendency 

None of the temporal tendencies specified in the other 
categories. 

New hotspot 
(coldspot) 

Hotspot (coldspot) appeared only during the last time 
interval. 

Consecutive hotspot 

(coldspot) 

More than 90% of the bins appeared continuously as 

hotspots (coldspots) 

Intensifying 

hotspots (coldspot) 

At least 90% of the time intervals have presented 
hotspots (coldspots) and clustering intensity has been 

increasing over time. 

Persistent hotspot 

(coldspot) 

At least 90% of the time intervals have presented 

hotspots (coldspots) and no increasing or decreasing 
tendency exist. 

Diminishing hotspot 

(coldspot) 

At least 90% of the time intervals have presented 

hotspots (coldspots) and clustering intensity has been 
decreasing over time. 

Sporadic hotspot 
(coldspot) 

Hotspots (coldspots) appear only during certain time 
intervals. 

Oscillating hotspot 
(coldspot) 

Some hotspots appear for certain time intervals and 
some coldspots appear for certain time intervals. 

Historical hotspot 

(coldspot) 

At least 90% of the time intervals have presented 

hotspots (coldspots), except for the last time interval. 

 

Subsequently, the spatial autocorrelation results are 

analyzed through time, and statistically significant hotspots and 

coldspots are classified according to the temporal tendency 

categories described in Table III. The following subsections 

present the results for each analyzed crash variable. 

A. Injury severity 

Fig. 7 shows a 3D visualization of bins with hotspots of 

public transit crashes that yielded severely injured victims in 

Viña del Mar and Valparaíso. This figure indicates that few 

hotspots appeared in Valparaíso, while some hotspots emerged 

in the center of Viña del Mar near the Pacific Ocean in recent 

years. No coldspots are identified for this variable. 

The emerging spatio-temporal hotspot analysis for each bin 

yielded three types of severely injured hotspots (New, 

consecutive, and sporadic hotspots) only in Viña del Mar, as 

illustrated in Fig. 8. These results suggest that most crashes did 

not persist in time since the majority of the hotspots are 

classified as sporadic hotspots. The few hotspots that appeared 

in the center of Valparaíso, as shown in Fig. 7, are not classified 

into any of the temporal trend categories. 

 

 
Fig. 7 3D visualization of hotspots of severely injured victims. 

 

 
Fig. 8 Temporal trends of hotspots of severely injured victims. 

 

B. Contributing causes 

Fig. 9-11 present the 3D visualization hotspots and 

coldspots associated to public transit crashes caused by the 

imprudence of the driver, signage disobedience, and other 

causes, respectively. These figures suggest that more crash 

hotspots are perceived in Viña del Mar due to the imprudence 

of the driver, whereas crash hotspots due to the signage 

disobedience and other causes are observed only in Valparaíso. 

Neither hotspots nor coldspots were identified for crash 

variables related to the imprudence of the pedestrian and loss of 

control of vehicles. 

 

 
Fig. 9 3D visualization of crash hotspots and coldspots due to imprudence of 

the driver. 
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Fig. 10 3D visualization of crash hotspots due to signage disobedience. 

 

 
Fig. 11 3D visualization of crash hotspots due other causes. 

 

Fig. 12 shows that while persistent crash hotspots due to 

the imprudence of the driver arose in the center of Viña del Mar, 

a group of sporadic coldspots are present near the Gómez 

Carreño neighborhood in Viña del Mar, and consecutive, 

intensifying, and sporadic coldspots appear on the hills of 

Valparaíso. Fig. 13 indicates that sporadic crash hotspots due to 

signage disobedience are only observed downtown Valparaíso. 

New crash hotspots due to other causes are perceived only on 

the hills of both cities, as shown in Fig. 14. 

 

 
Fig. 12 Temporal trends of crash hotspots and coldspots due to imprudence 

of the driver. 
 

 
Fig. 13 Temporal trends of crash hotspots due to signage disobedience. 

 

 
Fig. 14 Temporal trends of crash hotspots due to other causes. 

 

C. Type of crash 

Fig. 15 suggests from the 3D visualization that more 

hotspots of colliding vehicles appeared in Viña del Mar than in 

Valparaíso. However, the results of the temporal tendency 

analysis in Fig. 16 yielded only few persistent hotspots in Viña 

del Mar, and only coldspots emerged in Valparaíso. In 

Valparaíso, hotspots for this variable persisted only 8 out of 15 

bins during the 2014-2018 period, and thus, these hotspots were 

not classified into any spatio-temporal category.  

Fig. 17 reveals that hotspots of falling passengers from 

buses prevailed in Valparaíso. However, new and sporadic 

hotspots appeared only in Viña del Mar (See Fig. 18). Hotspots 

in Valparaíso did not meet any temporal criterion of the 

emerging hotspot categories. Notice that no hotspots and 

coldspots were obtained for public transit crashes that resulted 

in impacts of vehicles with stationary objects and pedestrian 

run-overs.  
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Fig. 15 3D visualization of crash hotspots and coldspots that resulted in 

collisions 

 

 
Fig. 16 Temporal trends of crash hotspots and coldspots that resulted in 

collisions. 

 

 

Fig. 17 3D visualization of crash hotspots that resulted in the falls of 
passengers 

 

 

Fig. 18 Temporal trends of crash hotspots and coldspots that resulted in falls 
of passengers. 

D. Time of day 

More hotspots of morning and afternoon crashes persisted 

over time in Viña del Mar than in Valparaíso, particularly in the 

center of the cities, as shown in Fig. 19 and 20, respectively. 

Fig. 21 shows that only three historical hotspots of crashes 

emerged in the morning in Viña del Mar, while Fig. 22 presents 

that consecutive, persistent, and sporadic hotspots arose in Viña 

del Mar and Valparaiso during the afternoon. The latter figure 

also shows that only one new coldspot and some sporadic 

coldspots are perceived on the hills of Valparaíso. Note that 

hotspots and coldspots did not emerge for public transit crashes 

during the evening between 6pm and 11:59pm. 

 

 

 
Fig. 19 3D visualization of crash hotspots that occurred during the morning. 

Fig. 20 3D visualization of crash hotspots that occurred during the afternoon. 
 

 
Fig. 21 Temporal trends of crash hotspots that occurred during the morning. 
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Fig. 22 Temporal trends of crash hotspots and coldspots that occurred during 

the afternoon. 
 

V. DISCUSSION 

The results of the spatio-temporal analysis performed in 

this study for different public transit crash variables helps to 

identify critical zones that require urgent traffic safety 

measures. For example, in Viña del Mar, local authorities 

should prioritize those crash locations identified as new and 

consecutive crash hotspots that resulted in severely injured 

victims. These have either recently emerged with high values 

of the crash attributes surrounded by high values of crash 

attributes or more than 90% of the bins have continuously 

emerged as hotspots.  

In addition, hotspots caused by the imprudence of the 

driver that resulted in collisions have persisted over time in the 

center of Viña del Mar, particularly in the afternoon. These 

crash hotspots may have appeared because of the high flow of 

pedestrians and vehicles in commercial areas during that time 

of the day and noting that approximately 70% of the bus routes 

traverse this part of the city [22]. Police monitoring and 

surveillance is mandatory, in order to increase traffic safety and 

raise awareness of appropriate driving behaviors. 

New crash hotspots that emerged on the hills of Valparaíso 

and Viña del Mar due to other causes should be analyzed in 

more detail to determine specifically each of these causes and 

why they have appeared in the last time interval. Sporadic crash 

hotspots caused by disobeying traffic signals appeared in 

downtown Valparaíso during the afternoon, which coincides 

with the highest number of crashes during this time period and 

approximately 63% of the bus routes. These hotspots emerged 

only during certain time intervals, and perhaps these may not 

require urgent countermeasures. Both new and sporadic 

hotspots of crashes that resulted in falls of passengers arose 

only in Viña de Mar. These hotspots also need to be examined 

with caution. Overall, the results of this study imply that 

hotspots of certain public transit crash variables are more prone 

to occur over time in Viña del Mar than in Valparaíso.  

Although many persistent hotspots and coldspots are 

observed with different crash variables, these do not fulfill the 

90% requirement described in the temporal tendency category. 

Thus, these hotspots and coldspots do not belong to any of the 

spatio-temporal categories described in Table III. For example, 

although hotspots of morning crashes are illustrated in the 3D 

visualization for Viña del Mar and Valparaíso, these were 

statistically significant in approximately 80% and 50% of 

continuous time intervals, respectively. Perhaps additional 

temporal trend categories are required, in order to highlight this 

type of crash hotspots. Similarly, more hotspots of crashes that 

resulted in falls of passenger are visualized in 3D in Valparaíso 

than in Viña del Mar. However, no statistically significant 

hotspot is obtained in Valparaíso from the emerging spatio-

temporal hotspot analysis. 

 

VI. CONCLUSIONS 

This study performs a spatiotemporal analysis of traffic 

crashes that involves microbuses and taxibuses in the cities of 

Viña del Mar and Valparaíso, Chile. Different crash variables 

are analyzed to determine locations of hotspots and coldspots 

and their emergence or disappearance during the 2014-2018 

period. These variables are grouped into severely injured 

victims, contributing causes, type of crash, and time of day.  

The results suggest that most public transit crash hotspots 

that persisted over time in Viña del Mar occurred due to the 

imprudence of the driver causing collisions between two or 

more moving vehicles mainly. Whereas, in Valparaíso, 

sporadic hotspots of crashes emerged because the driver 

disobeyed the traffic signals. Both hotspots in these cities 

occurred during the afternoon in the downtown area, in which 

a large flow of vehicles and pedestrians exists in commercial 

areas during this time of the day. Authorities should pay close 

attention to the hotspots of crashes that are yielding fatalities 

and seriously injured persons in the center of Viña del Mar 

during the studied period.  

Further research is required to analyze high crash risk 

locations near bus stops, commercial areas, etc. in more detail, 

in order to implement adequate safety measures. 
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