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the frequency from deviating to values outside acceptable oper-
ating ranges, and to stabilize them to a different value without
collapsing the system. To succeed in this, generators should
operate load shedding schemes and have adequate primary
power reserves. The power system’s capacity to endure a huge
generation loss represents the reserve magnitude available in
online generators, and therefore it is a generation percentage
that the machines do not deliver to the grid, such that they
operate below their rated capacities.

The Ecuadorian electricity sector has been developing re-
search on Automatic Generation Control (AGC) for some
years, but this has been limited to secondary frequency regula-
tion, where power interchange values between interconnected
areas are involved, as in the case of Ecuador and Colom-
bia case [5]. However, this paper will focus on a hitherto
unexplored research question, for which at present there is
no definitive answer, which in essence relate primarily to the
development of primary control, and in this paper we propose a
method of governor tuning by primary control using parameter
identification.

The simulations in this paper involved a load shedding
contingency, through which observed the response of the
simulated governor, so that parameter identification could be
executed to determine which unknown governor was being
tuned.

During the frequency deviation and stabilization [1], four
important factors intervene: generator inertia, governor droop,
the load damping coefficient, and governor and turbine time
constants. Inertia is the amount of kinetic energy stored in
the rotors of the generators connected to the grid. The load
damping coefficient [6] is a constant that relates the percentage
change in power load consumed due to the percentage of
frequency change. In this paper, the factors that we are going
to analyse via parameter identification are the droop and time
constants. These and others aspects of the primary regulation
are discussed below.

II. POWER SYSTEMS FREQUENCY RESPONSE

The North American Electric Reliability Corporation
(NERC) researchers [4] define frequency response as the
mathematical expression of net power change due to a change
in the frequency of interconnected areas; this is known as β
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Abstract—In this paper, we begin research on primary fre-
quency control in Ecuador, in the same way as has been done for 
many years for secondary control. We analyse primary frequency 
regulation, and the respective parameters of identification, made 
using the heuristic optimization method known as Particle Swarm 
Optimization. This is applied with the speed regulator of a 
hydraulic turbine-generator group, to recognize those parameters 
with a higher influence o  n  t  h e p  r imary f  r equency response, 
during disturbances or events that alter the system frequency. 
To observe the frequency response, load shedding tests were 
simulated on a test system with 39 buses, and a hydraulic 
turbogenerator was also analysed. The latter had a speed 
controller and is a typical simulator model of the HYGOV 
type. The results we obtained indicate that the identification, 
by the particle swarm algorithm, was able to tune a controller 
to approximate its response to the one desired, regardless of the 
number of tuned parameters. We preferred this method over 
other heuristic algorithms because it is easily understood, and 
has better computational efficiency w i th m u ltiple simultaneous 
variables.

Keywords — Frequency response, Governors tuning, Heuris-
tic method, Parameters identification, Particle swarm, Primary 
frequency control

I. INTRODUCTION

Power systems are unexpectedly exposed to many kinds of 
disturbances and faults, the causes of which can be sudden 
load or generation variations, or short circuits in transmission
lines that interconnect to the system. This includes line dis-
connections which occur, giving rise to an energy imbalance 
between supply and demand connected to the transmission 
system, in turn causing an acceleration or deceleration of the 
machines, according to the disturbance. The energy balance 
consists of the fact that the generated power in an inter-
connected electric system always has to be approximated 
(or equal) to the consumed power by loads in the grid [1]. 
Therefore, the turbogenerator group has a speed controller 
which regulates the mechanical input power to the turbine, and 
the speed, with respect to the electrical power output variations
of the generator; this controller is called a governor, and acts
on the gate servomotors which allow the water entry to turbine
blades.

The correct primary frequency regulation [2]–[4] aims to
make the turbogenerators’ response adequate according to the
disturbance. One critical phase of primary control is to prevent
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(Beta) and is expressed in MW/Hz, but it is also commonly
expressed in MW/0.1Hz. This represents the power change
in MW that caused a 1 dHz change. The resulting frequency
deviation is maintained until the primary regulation is replaced
by the AGC action, which corresponds to secondary control.
A typical response from the primary control is shown in Fig.
1 [4].

Fig. 1: Typical frequency response from the primary control

In Figure 1, three important points about the frequency
response can be observed: point A is the pre-fault frequency
value where the system was operating; point C is the minimum
value and it reached a maximum of 12 or 16 seconds;
stabilization is at point B because of the governor actuation,
with a duration of between 20 and 60 seconds (or more).
Thus, the frequency response is the change between points A
and B due to the programmed droop [2]–[4]; its mathematical
expression is seen in Equation 1.

∆Pi = β ∗ ∆f (1)

If, after a perturbation, frequency C is higher than that pro-
grammed for the actuation of the first step of the load shedding
scheme, then the governor and power reserves performance are
adequate for the primary regulation [2], [3].

The droop factor is the proportion of the per unit frequency
change and the active power output change, expressed as a
percentage [2], [3], called R, in units of Hz/MW. Equation 2
represents the droop.

R(%) =
∆fp.u.
∆Pp.u.

∗ 100 (2)

Droop is a programmable parameter in the turbine governor.
The value of the steady state frequency after a perturbation
depends on the programmed droop, typically between 4%
and 7%, but 5% is the most common value for hydraulic
generators. This means that if the frequency deviates by
5%, there will be a 100% change in the power generated
by the generator, to counter the frequency deviation; this is
responsible for allowing the frequency deviation.

In the Ecuadorian electricity sector, with respect to primary
control, the National Council of Electricity (CONELEC, its
acronym in Spanish) is now the Agency of Regulation and
Electricity Control (ARCONEL, its acronym in Spanish). It

manages the electric sector in the country. Regulations estab-
lish [7] that the National Centre for Energy Control (CENACE,
for its acronym in Spanish) is the entity which seasonally
defines the optimum percentage of the required spinning power
reserve for primary frequency regulation. Arias affirms [7]
that in normal system operating conditions, the value of the
primary reserves must cover random load variations. These
are: 19.36 MW for minimum demand, 23.29 MW for medium
demand, and 25.16 MW for maximum demand. Based on these
values, the spinning reserve for primary regulation in Ecuador
must be: 45 MW, 52.5 MW and 60 MW, respectively, for each
value of random load variation.

III. THE PARTICLE SWARM OPTIMIZATION (PSO)
ALGORITHM

PSO is a stochastic computational algorithm [8], [9]inspired
by the natural behaviour of animal species and social psy-
chology. It employs a population of candidate solutions that
moves toward the optimum solution for an objective function.
This population is constituted by the called particles that move
across the space of the problem at a certain speed, while they
register their better previous position. In a swarm [10], each
individual (particle) follows the leader, which leads them to
favourable zones to comply with some work. This behaviour
is imitated by the algorithm to solve optimization problems.

PSO has the following principal elements:
• Particle: the candidate solution represented by a vec-

tor of m dimension, which is the number of opti-
mized parameters in each particle, in t number of
iterations; the j particle is represented as Xj(t) =
[xj,1(t), xj,2(t), . . . , xj,m(t)];

• Population P (t): the set of n particles that form
the swarm in the t iteration, so that P (t) =
[X1(t), X2(t), . . . , Xn(t)]T , j = 1, 2, . . . , n;

• Speed V (t): the speed at which particles move
across the space. The particle speed is: Vj(t) =
[vj,1(t), vj,2(t), . . . , vj,m(t)];

• Inertia weight w(t): a control parameter used in the
speed impact previous to the current, which influences
the compensation between global and local explorations
of the particles;

• Swarm leader: the particle with the best aptitude value;
• Best global X ∗∗(t): the best position of all the positions

of the best individual, until the current iteration (swarm
leader).

In Figure 2 [11], we show a reduced scheme of steps by
which to execute the algorithm.

During each iteration, the aim is to actualize the particles
positions and speed, the weight, and the leader.

A. Parameters Identification
The parameter identification of the governor [11] which we

can observe as a black box aimed to determine the gains, time
constants and other parameters that constrain the governor, so
that we can establish a robust control system in a wide range
of operating states. In this paper, we exclusively employ the
PSO algorithm to do this. The identification tunes the governor
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Fig. 2: Steps in the PSO algorithm

to obtain the desired responses, and this has been employed
in Ecuador for secondary control. However, now we propose
to begin governor tuning with primary control.

The objective function of parameter identification is to
minimize error or difference, in an iterative way, between
the signals obtained in the field and the governor’s signal
simulated in this paper. For this, we employ a governor model
called a HYGOV [12], which is a standard, simple mechanical
governor. It is this governor that we use in the simulated
model, and Fig. 3 [13] shows its scheme.

Fig. 3: Block scheme of the HYGOV governor model

The scheme shows two reference signals and two important
output signals. These are: the speed change reference and the
electric power, as input signals; and the output gate signal
(identified with the number 3) and the output of the turbine’s
mechanical power.

B. Gaussian white noise
Noise is define [14] as all sets of data, signal or general

information that are irrelevant to the measure, or which distort
and contaminate the principal signal. In measuring electric
systems, where sensors or transducers are used, noise can exist
before or after the measuring element. Gaussian white noise
in electric circuits is called the Gaussian normal distribution

of the voltage noise, in V 2/Hz, which indicates the spectral
power density of the distribution or the noise content per
frequency unit. These are random voltage excursions.

IV. METHODOLOGY FOR PARAMETERS
IDENTIFICATION

The methodology followed in this paper (see Fig. 4) consists
of the simulation of a load disconnection event in a 39-bus
power system, as in Fig. 5, called a 39-bus New England by the
Institute of Electrical and Electronic Engineers (IEEE) [15],
followed by the simulation of parameter identification in the
computational simulator DIgSILENT, PowerFactory.

Fig. 4: Flowchart of the Methodology

We created a fictional field database for two reasons: first,
parameter identification needs two signals, one from the field
governor and the other from a simulated governor resulting
from parameter identification; second, we had no real field
data.

For this, we loaded the HYGOV governor into the Compos-
ite Model of the only hydraulic generator of the 39-bus system
(generator G10) in PowerFactory, on the DIgSILENT Simula-
tion Language (DSL) of the simulator. This contains dynamic
models that are the generator controllers. Also, we loaded the
load disconnecting event, which disconnected 50 MW of bus
26 at five seconds of simulation; the total simulation lasted
120 seconds. This bus consists of a 139 MW load divided into
two parts, so 89 MW remain connected. Once this was done,
we observed the turbine’s mechanical power response and the
turbogenerator’s speed response, versus time; thus, these are
the fictional field data, and formed two databases from them,
with and without white noise.

We randomly generated white noise in the field governor
response in the simulation, so that the signal looked like real
data acquisition from a measurer connected to the grid. Fig. 6
[16] shows an example of this for a 50 Hz grid. Bear in mind
that the operational frequency in Ecuador is 60 Hz whereas in
Europe is generally 50 Hz.
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Fig. 5: 39-bus New England System

Fig. 6: Example of noise in a simulated signal

In Fig. 6, we observe (in red) the simulated noise signal,
over the signal that is controller response (in blue). This
allowed us to compare the parameter identification between
signals with and without noise, and observe the effectiveness
of the PSO method for signals with the characteristics from
real data acquisition, and for noise free signals. Noise was
added using MATLAB, and the database was exported from
PowerFactory and imported into MATLAB to add noise, and
then imported back to PowerFactory. The results for the speed
response are shown in Fig. 7.

After we generated the database, we began the parameter
identification with the governor which we will call the “known
governor”; it was necessary to change its parameters so the
response to disturbance was different to the field governor.

A. Simulation parameters
For the known governor, we decided to modify only one

parameter in a controller with different actuation. In Power-
Factory, the HYGOV governor has thirteen parameters, as we
can see in Fig. 8.

The parameters observed in Fig. 8 correspond to predefined
values in the HYGOV model, and so these are the values of

Fig. 7: Field HYGOV governor speed response. Top: data
without noise. Bottom: data with noise

Fig. 8: Predefined parameters of HYGOV governor

the field governor. To obtain the known governor, we decided
to change only the value of the parameter called Governor
Time Constant Tr, which we changed from 8 to 3 seconds.

We facilitated the identification of ten parameters with the
following: [13] temporary droop (r), governor time constant
(Tr), filter time constant (Tf), servomotor time constant (Tg),
water time constant (Tw), turbine gain (At), frictional losses
factor in p.u. (Dturb), no-load water flow rate, which accounts
for the fixed losses in the turbine (qnl), permanent droop
(R), and gate speed limit (Velm). The identification of three
parameters will be made with the following: the governor
time constant (Tr), filter time constant (Tf), and servomotor
time constant (Tg). We do not consider the identification of
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the following parameters: PN, Gmin and Gmax, which are
turbine rated power, and minimum and maximum gate limits,
respectively.

B. Objective function and PSO algorithm
The objective function minimizes the quadratic error (dif-

ference to square) between the pairs of signals shown in Fig.
10, as in Equation 3.

f(x1, x2) = Σ(x1i − x2i)
2 (3)

where f(x1, x2) is the objective function that the PSO
algorithm has to minimize; N is the number of iterations of
the algorithm x1 and x2 are the signals from the field and
known governors, respectively; i is the current iteration. The
minimization is not subject to restrictions.

In DSL language, in a Composite Model, we propose the
entries of the objective function: sigread1, sigcal1, sigread2
and sigcal2, as is shown in Fig. 9.

Fig. 9: Objective function of the Composite Model in DSL
language

Once we created the events and established the objective
function, the known HYGOV model was loaded. At this
point, we began the PSO algorithm developed in a code in
DIgSILENT Programming Language (DPL), to obtain the
results of the tuning of the known governor by parameter
identification for each one of the four tests.

V. RESULTS OF THE PARAMETER
IDENTIFICATION

We made changes to obtain the known governor, which is
different to the field governor, so that the governor responses
were different; this can be observed in Fig. 10.

In Fig. 10, we observe (in green) the known governor
responses (signals sigcal1 and sigcal2, for power and speed,
respectively), and in red the field governor responses (signals
sigread1 and sigread2, for power and speed, respectively).
With these two signal pairs, we can identify the parameters
which in tests will be used to identify three and ten parameters,

Fig. 10: Field and known governor responses, for signals
with white noise

respectively. This was done with the aim of proving the
efficiency of the PSO algorithm for the identification and
verification of tuning the known governor, to obtain power
and speed responses similar to the field governor. The tests
we implemented were: identification of ten parameters with
field data with and without noise, and identification of three
parameters with field data with and without noise.

The results will be compared and shown in tables to aid the
observation of their relationships. They will also be classified
by test categories, that is tests of three and ten parameters, with
and without white noise; the identifications of three and ten
parameters were as described previously in the methodology
section, and these will be tuned for the PSO algorithm for the
execution of this method.

A. Tuning results

After we had executed the PSO algorithm for one iden-
tification, PowerFactory records the parameter values in the
HGOYV governor, and we can observe this in a window
shown in Fig. 8 (se figure Predefined parameters of HYGOV
governor in Section IV.A). Thus, when we finalized one
identification, the governor was tuned with the new values
that the algorithm found, to represent the optimum of the
planted objective function. With the HYGOV parameters, we
built tables to compare the tuning values of each identification.
From this, we show the tuning parameter results, according
to the identification of either three or ten parameters, and
comparing results with field signals with or without white
noise.

1) Identification of three parameters: In Table I, we can
observe the results for the field signal with and without white
noise.

TABLE I: Tuning for the identification of three parameters

Parameter Original
HYGOV

Tuning
without
noise

Tuning
with noise

Tr [s] 8 8.022 8.405
Tf [s] 0.05 0.221 0.455
Tg [s] 0.2 0.062 0.069
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The results can be analysed to observe discrepancies be-
tween them, remembering that the aim of the algorithm, in
both cases, was to obtain the same power and speed responses,
resulting in parameter tuning that responds to the known
governor in the same way as the field governor.

2) Identification of ten parameters: In Table II, we can
observe the results for the field signal with and without white
noise.

TABLE II: Tuning for the identification of ten parameters

Parameter Original
HYGOV

Tuning
without
noise

Tuning
with noise

r[%] 0.4 0.464 0.436
Tr [s] 8 8.228 9.069
Tf [s] 0.05 0.203 0.593
Tg [s] 0.2 0.243 0.01
Tw [s] 1.2 1.621 3.787
At [%] 2.5 2.989 2.999

Dturb [%] 0.3 0.299 0
Gnl [%] 0.5 0.137 0.065
R [%] 0.06 0.07 0.072

Velm [%] 0.2 0.105 0.121

Even though these are the tuning results for ten parameters,
and in both cases the algorithm should give the same power
and speed responses, we can see important differences in
parameter values. The fact that each identified parameter
response should be the same will be observed below analysing
the graphics.

B. Speed and power responses
The graphics of the turbine mechanical power response and

turbogenerator group speed response are now given for tests
with and without noise in field data. In Fig. 11, we can observe
the results of parameter tuning for field data without noise.
The red and green colours represent the field governor power
and speed signals, respectively. The blue and brown dotted
lines represent the known governor power and speed signals,
respectively.

Fig. 11: HYGOV governor responses for identification with
field data with noise

In Figure 12, we observe the parameter tuning responses
for field data with noise.

Fig. 12: HYGOV governor responses for identification with
field data without noise

The colour distribution in the figures below is the same
as for Fig. 12. The notable difference now is the distortion
of the two field governor signals (sigread1 and sigread2); the
known governor signals (sigcal1 and sigcal2) still had the same
appearance as a simulation signal, that is, without noise.

In both cases, the figures for the identification of three and
ten parameters gave the same pair of answers, that is, the
sigcal1 signal was equal for both the three and ten parameter
identifications, and the same occurred with the sigcal2 signal.
These results are reasonable because, for each case with and
without noise, the PSO algorithm must approximate the power
and speed responses to the field signal, which are unique
regardless the number of identified parameters. The algorithm
found a set of parameter values for the governor, and so it gave
power and speed responses equal to the field governor, for the
load disconnection event simulated as a test. This identification
method peculiarity is an important conclusion to highlight
in this paper, because it means that we must consider this
algorithm’s behaviour in future investigations.

C. Objective function answers
Now we will show the results of the PSO algorithm ob-

jective function across the parameter identification; in other
words, the algorithm tried to converge to zero, after starting
with high values, for the mean square error values in all cases.
It is not possible to observe the changes in governor responses
during iterations while the algorithm is being executed. How-
ever, in each iteration, we can observe different forms of
responses, which, at the beginning of algorithm execution, did
not look like the field data; in this way, we can see that the
algorithm had “learned” from its own results, and decreased
the quadratic error between the field objective signal and the
known governor response.

1) Identification of three parameters: We can observe in
Fig. 13 the objective function results without white noise for
the field signal.

At the beginning of the identification, the algorithm gave
an error near to 1000. When the process continued, the error
converged to zero, meaning that the algorithm approximated
the known governor response to the field governor. We made
one thousand iterations, which are shown on the horizontal
axis of Figure 14, along with the objective function results
with white noise for field signal.
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Fig. 13: Quadratic error for the identification of three
parameters without white noise in field signal

Objective function results with white noise for field signal
is illustrated in Fig. 14.

Fig. 14: Quadratic error for the identification of three
parameters, with white noise in field signal

The result obtained in this test is completely different to the
previous case: the quadratic error started with a value around
1150, and converged to around 600, also with one thousand
iterations. Although it did not converge to zero in this case,
we can see the mechanical power and speed graphics for the
case of field signal with noise and ten parameters.

2) Identification of ten parameters: Objective function re-
sults without white noise for field signal are presented in Fig.
15.

Fig. 15: Quadratic error for ten parameters identification,
without white noise in field signal

This quadratic error started with a value around 200,000,
but with the algorithm also converged to zero. We performed
one thousand iterations for this case. The objective function

results with white noise for the field signal can be seen in Fig.
16.

Fig. 16: Quadratic error for the identification of ten
parameters, with white noise in field signal

The initial quadratic error value and the converged value in
this test were very similar to the ten identified parameters case
without white noise, where it started at approximately 200,000
and converged to zero.

The PSO algorithm tuned with different parameter values
to the HYGOV governor for each of the four tests aimed
to obtain an equal turbine mechanical power response, and
turbogenerator speed responses, for each of the three and ten
identified parameter cases. These can be compared in Tables
1 and 2. The results show differences between the obtained
parameters tuning; nevertheless, the algorithm gave the same
data for the governor responses for both cases where the field
signal is with and without noise.

After we assessed the results from three different aspects,
that is identification tuning, power and speed governor re-
sponses, and the objective function values, we observed the
following important observation about this method: tuning
after identification only gives a unique response equal to
the field data for each particular test kind, which means
for different events in the power system, even if these are
generation or load disconnections of different capacities.

VI. DISCUSSIONS AND OBSERVATIONS
The entry data from the test simulations in the computa-

tional software on the 39-bus power system, its load values,
generation capacities, transmission lines parameters and so on,
are freely available online, in IEEE information or in other
works using this power system. HYGOV governor parameter
information is also free online, provided by the IEEE. Pow-
erFactory has the governor model in its database, and so this
39-bus system is very reliable.

Another optimization heuristic algorithm is the genetic
algorithm, but we chose the PSO method as this algorithm is
easier to understand compared to the genetic algorithm. This is
supported in [17], whose authors compared both algorithms.
Even though the PSO is an algorithm that does not require
high computational power, the execution of each test by a
conventional personal computer requires a great deal of time to
complete each iteration for only one parameter identification
test; indeed, it took more than 45 minutes for all cases, or
more than one hour. This time can be considered very long
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with respect to other simulations in PowerFactory, like power
flow, if someone needs to perform multiple simulations on
computers and the algorithm is inefficient.

VII. CONCLUSIONS AND FURTHER REMARKS

For the identification of both three and ten parameters,
we obtained equal graphs for the turbine mechanical power
responses and turbogenerator group speed responses, with and
without noise for the field signal. It indicates that it is possible
to tune a governor with variable parameter identification.
Moreover, the PSO algorithm is able to adjust the governor
response to the signal model desired, considering that the time
constants adjustment is roughly the governor time of response.

For future research work related to governor parameter
identification in primary frequency regulation in Ecuador, we
recommend performing simulations based on the Ecuadorian
SNI, to validate the responses in simulations with grid codes
and international norms for primary control, so that the
frequency response under different contingencies is closer to
reality. Governor parameter tuning can also be implemented in
the central generation of Ecuador. Also, the results could better
contribute to research and practice if they were compared and
adjusted to Ecuadorian norms on frequency control, such as
the NERC briefly mentioned in the introduction of this paper.

This paper could be used as a reference for future research
on speed regulator parameter identification in primary fre-
quency control, because we performed identifications using an
optimization heuristic algorithm, which was the computational
tool needed to solve this work. This means that we used a
program for power systems analysis. Finally, in this paper, we
have proposed the basis for continuing research on primary
frequency regulation in Ecuador, and, in the future, the country
should be able to establish norms according to the reality of
the Ecuadorian electricity system.
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Sistemas de Energı́a Eléctrica, Aug. 2014. [Online]. Available:
https://idus.us.es/xmlui/handle/11441/27037

[12] V. Koritarov and L. Guzowski, “Review of existing hydroelectric
turbine-governor simulation models,” Decision and Information
Sciences, Argonne National Laboratory, Tech. Rep., 2013.
[Online]. Available: https://ceeesa.es.anl.gov/projects/psh/ANL DIS-
13 05 Review of Existing Hydro and PSH Models.pdf

[13] PowerWorld, “Governor hygov,” PowerWorld, Tech. Rep.,
2018. [Online]. Available: https://www.powerworld.com/WebHelp/
Content/TransientModels HTML/GovernorHYGOVandHYGOVD.
htm?TocPath=TransientStabilityAdd-On%20(TS)%7CTransient%
20Models%7CGenerator%7CGovernor%7C38
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