
15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States.

Reinforcing Mathematical Skills in Introductory

Programming Courses

Jeffrey L. Duffany1, Ph.D.

Universidad del Turabo, Puerto Rico, U.S.A., jeduffany@suagm.edu

Abstract– Introductory programming classes are usually part

of the core curriculum taken in the first two years by all

engineering students. In these classes students learn programming

skills by writing, compiling and running computer programs in a

chosen computer language. By carefully selecting the programming

exercises that are assigned and used in the classroom a variety of

outcomes can be achieved depending on what is perceived to be

relevant or important to an engineering education. This paper

provides an overview of how introductory programming can be

used to reinforce basic mathematical skills and gives several

specific examples of how this might be done. For example students

might be asked to write a computer program to solve the quadratic

formula or multiply two square matrices. Not only does this teach

the programming language but it also reinforces mathematical

skills that are required in more advanced engineering classes.

Keywords-- programming, active learning, mathematics.

Digital Object Identifier (DOI):

http://dx.doi.org/10.18687/LACCEI2017.1.1.463

ISBN: 978-0-9993443-0-9

ISSN: 2414-6390

mailto:jeduffany@suagm.edu
http://dx.doi.org/10.18687/LACCEI2017.1.1.463

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for
Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States. 1

Reinforcing Mathematical Skills in
Introductory Programming Courses

Jeffrey L. Duffany1, Ph.D.
Universidad del Turabo, Puerto Rico, U.S.A., jeduffany@suagm.edu

Abstract– Introductory programming classes are usually part
of the core curriculum taken in the first two years by all
engineering students. In these classes students learn programming
skills by writing, compiling and running computer programs in a
chosen computer language. By carefully selecting the programming
exercises that are assigned and used in the classroom a variety of
outcomes can be achieved depending on what is perceived to be
relevant or important to an engineering education. This paper
provides an overview of how introductory programming can be
used to reinforce basic mathematical skills and gives several
specific examples of how this might be done. For example students
might be asked to write a computer program to solve the quadratic
formula or multiply two square matrices. Not only does this teach
the programming language but it also reinforces mathematical
skills that are required in more advanced engineering classes.

Keywords-- programming, active learning, mathematics.

I. INTRODUCTION

In introductory programming classes students learn to
write computer programs. So why not leverage off of this
existing infrastructure to take advantage of an opportunity to
reinforce mathematical skills and concepts at the same time?
Mathematical concepts can be reinforced in many ways. For
example a for loop can be used to reinforce the concept of a
mathematical summation (e.g., adding the integers from 1 to
100) whereas drawing a flowchart helps to develop logical
thinking. In addition, many programming exercises can be
viewed as a type of puzzle that needs to be solved by writing
the code needed to get the solution. Critical thinking should be
a byproduct of the overall engineering education and each
course should contribute to its development. This should occur
naturally without having to do anything however there is
always room for improvement.

Computers have been used in teaching of mathematics
since the 1960s and 1970s[1] with various levels of
success[2][3]. The fundamental problem is that educational
software programs tend to be passive in nature with the
student being presented information on a computer screen and
later asked to demonstrate knowledge of what was previously
presented[3][4]. As a result the benefits of computer-based
learning have never reached the potential that was originally
envisioned[1][2]. In an attempt to increase the effectiveness of
computer-aided learning there has been a trend towards
"gamification" of the learning experience[5][6]. Make it more

entertaining, the theory goes, similar in spirit to the 1970s
children's television program "Sesame Street"[10] which
worked mainly on the principle of repetition[11]. More
recently there has been a trend towards what is called "active
learning"[7] where the passive teaching techniques are
reduced to a minimum while the student is more "actively"
engaged in the learning process through a variety of
techniques[7][8]. One of these active learning techniques is
called "learning by teaching" and is well documented even
outside of the active learning community[9] and that is one of
the principles that support using computer programming class
to reinforce mathematical concepts and skills in engineering
students. The idea is that by programming a computer to solve
a problem you are effectively "teaching" that computer how to
solve a problem and by extension the student is learning and
reinforcing those concepts and skills. In addition to learning
by teaching the student is learning by repetition[11]. Being
exposed to the mathematical concepts in a variety of contexts
is a form of repetition as the student will be exposed through
mathematics classes, programming classes and later on in
various engineering classes.

II. MATHEMATICAL CONCEPTS

There is a high degree of synergy between programming
and various mathematical topics as can be seen by opening
just about any book on just about any programming
language[12][13][15]. Books have even been written on using
programming languages to teach certain specific branches of
mathematics such as statistics[14]. Even books that are not
specifically written about programming, such as books on
computer algorithms, can be a good source of mathematical
concepts that can be reinforced with engineering students[16].
This idea will be further developed with some illustrative
examples. For example take multiplication of two square
matrices. For many students it is difficult to visualize the
multiplication of two matrices however by actually
programming it using array structures it will help them to
solidify and reinforce their understanding of the concept. The
idea is if the students have to program it by hand then they
will learn it better and remember it better[11]. This can help
them in many different ways. Take for example take Boolean
logic. Increased exposure and practice with Boolean Logic can
help the students later on in courses such as Digital Logic
Design and Computer Architecture. As another example take Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2017.1.1.463

ISBN: 978-0-9993443-0-9
ISSN: 2414-6390

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for
Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States. 2

imaginary and complex numbers which could help the
students later on with Electric Circuits class. Another good
example is the quadratic equation that the student learns in
mathematics class. As will be seen the solution of the
quadratic equation can be used to illustrate several important
programming concepts such as Boolean logic and complex
numbers.

The following is a representative list of mathematical

concepts that frequently show up in engineering courses. This
is not intended to be a comprehensive list only representative.
The examples were chosen to be easy to program and at the
same time illustrate a concept from mathematics that will
benefit the student later on.

A. Boolean Logic
B. Prime Numbers
C. Limits and Infinity
D. Imaginary Numbers
E. Quadratic Formula
F. Vectors and Matrices
G. Probability and Statistics
H. Chaos Theory

Figure 1. Truth Table for AND, OR and NOT

A. BOOLEAN LOGIC

Boolean logic is a branch of mathematics where the values of
the variables are true and false, usually denoted 1 and 0
respectively. The main operations of Boolean algebra are the
conjunction AND the disjunction OR and the negation NOT. In
Figure 1 A and B are logic variables which can be either true
or false. Figure 1 shows the truth table for the AND and OR
and NOT operators. The concept should be familiar to anyone
who uses a search engine. AND represents both while OR
represents either. Also the value of NOT A is shown. The
following program illustrates the concept by printing out a
message appropriate to the time of day. For example to print
out "good morning" the time must be after 6AM AND before
12PM noon.
 H = Hour(today)
 If (H >= 6 And H <= 11) Then
 MsgBox("good morning")
 ElseIf (H >= 12 And H <= 18) Then

 MsgBox("good afternoon")
 ElseIf (H > 18 And H <= 23) Then
 MsgBox("good night")
 ElseIf (H > 0 And H < 6) Then
 MsgBox("it's past your bedtime ")
 End If

Figure 2. Program to illustrate Boolean Logic

B. PRIME NUMBERS

Prime numbers are very important in mathematics. A prime
number is defined to be any integer that is divisible only by
itself and 1. Prime numbers include 2,3,5,7,11,13,17, 19, 23...
etc. as shown in Figure 3. There is no largest prime number.
One famous technique of identifying a set of prime numbers is
called the sieve of Eratosthenes first expounded by
Eratosthenes in 200 BC[16]. Starting with a set of integers
from 1 to n say for example 1 to 100. Now eliminate 1 from
that set as it is not considered a prime number even if it meets
the definition of a prime number. The next number left is 2.
All numbers less than 2 have been eliminated so 2 must be
prime by definition. To find the remaining prime numbers
make use of the fact that all numbers that are multiples of a
prime number can be eliminated. That leaves 3 which is prime.
The integer 4 has been eliminated as a multiple of 2 so 5 must
be prime. Now eliminate all multiples of 5. Repeat until you
reach the square root of n. All remaining numbers that have
not been eliminated up until this point must be prime.

Figure 3. Prime numbers less than or equal to 100

 Figure 4 is an R language program that implements the sieve
of Eratosthenes [16] for the set of integers from 1 to 100. It
can easily be modified for any value of n.

n<-100	
x<-1:n	
x[1]<-0	
for(i	in	2:n){	

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for
Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States. 3

if(x[i]!=0){	
j<-x[i]+x[i]	
while(j<=n){	
x[j]<-0	
j<-j+x[i]	
}}}	
print(x[x!=0])	
}	

Figure. 4 Program for the Sieve of Eratosthenes in R Language

C. LIMITS AND INFINITY

Computer programming is well suited for teaching the concept
of infinity. If you continually increase the size of a number it
will eventually exceed the largest number that can be
represented internally. There are many ways to explore the
idea of infinity however perhaps the simplest is to use the the
factorial function. Write a program that calculates 1!, 2!, 3!,
etc. until it exceeds the programming language's ability to
represent the value of the result. Another way is to calculate
the limit of 1/x as x approaches zero. Start with x=1 then
divide it by 10 and calculate 1/x. Eventually this will exceed
either the upper of lower limits of the machine. The following
computer program calculates x! for values of x from 1 to
1000. However at 171! the capability of the language is
exceeded and is printed out as Inf (infinity).
	xfact=1	
	for	(i	in	1:1000)	{	
	xfact=i*xfact	
	print(c(i,xfact))}	
	
170!	=				7.257416e+306	
171!		=			Inf	
172!			=		Inf	
173!		=		Inf	

Figure. 5 Program for Calculating x! in R language and Output

The largest number that can be represented in R language is
10308 and the smallest number is 10-308. Since 171! is greater
than 10308 R language simply prints out "Inf" which stands for
infinity. A similar program can be used as the limit as x->0. It
is the same program except x is multiplied by 10 and then the
reciprocal is calculated. When i=308 R language is able to
represent the value of x =10308 and 1/x = 10-308. However once
the value of i=309 x is represented as infinity and 1/x is
represented as 0 by R.

D. IMAGINARY NUMBERS

Imaginary numbers arise from attempting to take the square
root of negative 1. Mathematicians have effectively solved this
problem by postulating the existence of an imaginary number
called "i". To calculate the square root of a negative number

you simply factor out the -1 and replace it by the imaginary
number i. So for example the square root of -4 is the same as
the square root of 4 except it is multiplied by "i". When
working with complex numbers and computer programs you
have to format the output with the real and imaginary parts. In
visual basic you can use MsgBox (x & "i"). Where "&" is the
concatenation operator which appends the suffix "i" onto the
string or number x.

E. THE QUADRATIC FORMULA

The quadratic formula is used to solve the equation ax2 + bx +
c = 0. Written as computer code it would look something like
what is shown in Figure 6. However as shown in Figure 7
there are several possible outcomes depending on the values of
a, b and c. Since a square root is involved you can end up with
imaginary roots if the discriminant b2 – 4ac is negative. This is
not necessarily a serious problem you just have to append the
imaginary part of the output with "i" as shown in the
MSsgBox commands at the bottom of Figure 6. This will be a
good learning experience as the program will work for some
inputs and not others and they will have to figure out why.
This will then reinforce concepts of imaginary numbers.
Students should create a flowchart before attempting to write
the code for this exercise.

								If	(b	^	2	-	4	*	a	*	c	>	0)	Then	
												r1	=	(-b	+	(b	^	2	-	4	*	a	*	c)	^	0.5)	/	(2	*	a)	
												r2	=	(-b	-	(b	^	2	-	4	*	a	*	c)	^	0.5)	/	(2	*	a)	
		
								If	(b	^	2	-	4	*	a	*	c	<	0)	Then	
												r1r	=	-b	/	(2	*	a)	
												r1i	=	(4	*	a	*	c	-	b	^	2)	^	0.5	/	(2	*	a)	
												r2r	=	-b	/	(2	*	a)	
												r2i	=	(4	*	a	*	c	-	b	^	2)	^	0.5	/	(2	*	a)	
												MsgBox(r1r	&	"+"	&	r1i	&	"i")	
												MsgBox(r2r	&	"+"	&	r2i	&	"i")	
	

Figure. 6 Program for Solving the Quadratic Formula

Figure. 7 Possible Outcomes for Solving the Quadratic Formula

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for
Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States. 4

F. Matrix Multiplication

 Multiplication of two square matrices is illustrated in Figure
8. The (i,j) element in the product is the vector product of row
i of the first matrix with column j of the second matrix. This
can easily be implemented with repetition loops as shown in
Figure 8. This also provides an introduction to nested
repetition loops.

	

function(a,b){	
	 n<-ncol(a)	
	 for(i	in	1:n){	
	 for	(j	in	1:n){	
	 	 c[i,j]=a[i,]*b[,j]	 	
	 }}}	

	
Figure. 8 R Language code to Multiply Two nxn Square Matrices

G. PROBABILITY AND STATISTICS

The next example illustrates a simulation of rolling a die
however it can easily be modified to simulate tossing a coin. It
involves random numbers and array storage. A random
number between 0 and 1 is generated using Rnd(). This is
converted into an integer between 1 and 6 which is used to
increment an array "a" to keep track of the statistics of how
many times that number came up. The Randomize() function
ensures the simulation result will be different each time. The
student runs the simulation for several sample sizes and
records the results in the table.

	
Sub Main()
 Dim i, dice, a(6) As Integer
 Randomize()
 For i = 1 To 6
 dice = Int(Rnd() * 6) + 1
 a(dice) = a(dice) + 1
 Next i

 For i = 1 To 6
 Console.Write(a(i) & " ")

 Next
 End Sub

	
Figure. 9 Code for Simulation of Die Throwing

	
rolls 1's 2's 3's 4's 5's 6's
6 0 1 1 2 2 0
60
600
6000
60000

flips Heads Tails
10 6 4
100
1000
10000
100000
1000000

Figure. 10 Tables to Store Result of the Simulation of Die Throwing and
Coin Flipping

It is always beneficial to use examples that the student can

relate to in one way or another as is the case with flipping
coins or rolling dice. This could be further reinforced by
having the student run the experiment using an actual dice or
coin and comparing the results of the computer simulation. A
lot can be learned by this type of exercise that cannot simply
be taught through traditional classroom lecture.

Another possible exercise could reinforce what was

learned about matrices and storage arrays and combine that
with random number generation (Figures 11 and 12). Figure
11 shows the computer code for generating a 10x10 square of
random digits as shown in Figure 12.

Dim i, j, a(11,11) as Integer
 For i = 1 To 10
 For j = 1 To 10
 a(i,j)= 1
 Console.Write(Int(9.999*Rnd()))
 Next i
 Console.WriteLine("")
 Next j

Figure 11. Program to write a "square" of 100 random numbers

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for
Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States. 5

2073046197
5921745034
0638719328
7334912576
4109527435
8980071342
5371029468
6835742109
1753648902
2407398561

Figure 12. A 10x10 "square" of 100 random digits

At some point earlier in the course it is assumed that the
student was given active learning exercises on random number
generators (e.g., the Rnd() command). To generate the square
of random digits as illustrated in Figure 12 the student can use
the Console.Write() statement in Figure 11 to print a random
digit (0-9). This is done by first creating a random number
between 0 and 9.999 and then taking the integer part of that
number for example: Console.Write(Int(9.999*Rnd())).

H. CHAOS THEORY

Although chaos theory does not show up very often in

undergraduate engineering education it can be used to
reinforce several mathematical concepts including complex
numbers and divergence of a series. The Mandlebrot set is
easy to calculate and is a good example of something that can
stimulate an interest in the student through visualization.
Figure 13 shows a simple R language program that computes
an instance of the Mandlebrot set and creates a graphical
output shown in Figure 14.

dx	<-	400																			
dy	<-	400												
C	<-	complex(real=rep(seq(-2.2,	1.0,	length.out=dx),	each=dy),	
														imag=rep(seq(-1.2,	1.2,	length.out=dy),	dx))	
C	<-	matrix(C,dy,dx)			
Z	<-	0																		
X	<-	array(0,	c(dy,dx,20))	
for	(k	in	1:20)	{					
		Z	<-	Z^2+C							
		X[,,k]	<-	exp(-abs(Z))	
}	
write.gif(X,	"Mandelbrot.gif",	col=jet.colors,	delay=900)	

Figure 13. Program to calculate and display the Mandlebrot set

Figure 14. The Mandlebrot Set

III. DISCUSSION

Mathematics courses do a good job to prepare students for
engineering courses. However even though students are
exposed to the concepts in mathematics courses it may be the
case that some of this learning is superficial without a deep
understanding of the concept. The result is that the student can
still have difficulty when required to use these concepts in
engineering courses.

Programming can take the drudgery out of the mathematics
leaving the fun of exploring the topic deeper especially with a
highly interactive language such as R Language[14]. Usually
deep learning occurs after the student is exposed to a concept
several times in different ways and is called upon to apply the
concept to a specific situation. This process could be
accelerated if the programming classes intentionally reinforce
key mathematical concepts a number of which have already
been discussed. A good source would be the actual books that
the students will be using in later engineering courses. For
example for industrial engineering students it might be
beneficial to use more examples from statistics or simulation.
Some other possibilities are listed below.

• Irrational Numbers
• Finding Roots of Polynomials
• Summation Formulae

For irrational numbers the value of pi can be
approximated and there are many techniques for doing
this[16]. This can work out particularly well if the course is
given in the spring semester and one of the classes happens to
fall on March 14th (Pi day). Finding roots of polynomials is
an integral part of the solution to a wide variety of engineering
problems. Summation formulae such as adding up the
numbers from 1 to n arise naturally from repetition loops and
can be used for illustrating for example Taylor's Series.

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for
Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States. 6

IV. SUMMARY AND CONCLUSIONS

There is a high degree of synergy between computer
programming and various mathematical topics. This can be
exploited to stimulate a student's interest in mathematics.
Normally the student learns the quadratic equation in
mathematics class. However it can be used to illustrate
programming concepts such as Boolean Logic and complex
numbers. Programming a mathematical concept can help to
visualize the mechanics of the solution and therefore help the
student to visualize it better and therefore to understand it
better. Also repeated exposure to a topic in different ways can
help to improve understanding. This has been shown with
some illustrative examples, These examples were chosen to be
easy to program and at the same time practice a concept from
mathematics. The idea is if the students have to program
something by hand then they will learn it better. Reinforcing
mathematical concepts in an introductory programming course
can contribute to what is being called deep learning[7][8] and
can benefit the student in later courses. A programming
course has many benefits but can also be used to stimulate
interest in mathematics and reinforce mathematical concepts.

REFERENCES
[1] Thomas, M. O. J. (2006), “Teachers Using Computers in Mathematics: A

Longitudinal Study. International Group for the Psychology of
Mathematics Education, Vol. 5, pp. 265-272.

[2] Ruthven, K. & Hennessy, S. (2002). "A practitioner model of the use of
computer-based tools and resources to support mathematics learning and
teaching", Educational Studies in Mathematics, 49, 47-88.

[3] Afzal, M. T. , Gondal, M. B. and Fatima, N. 2014. "The effect of
computer based instructional technique for the learning of elementary
level mathematics among high, average and low achievers” International
Journal of Education and Development using Information and
Communication Technology (IJEDICT), 2014, Vol. 10, Issue 4, pp. 47-
59.

[4] Fernández-Alemán, J. L., Palmer-Brown, D. & Jayne, C. 2011. "Effects
of Response-Driven Feedback in Computer Science Learning", IEEE
Transactions on Education, 54, 501-508.

[5] Domínguez, A., Saenz-de-Navarrete, J., de-Marcos, L., Fernández-Sanz,
L., Pagés, C., Martínez-Herráiz, J.J. "Gamifying learning experiences:
Practical implications and outcomes". Computers & Education. 63. pp.
380-392. http://dx.doi.org/10.1016/j.compedu.2012.12.020.

[6] de Freitas, S.&Oliver, M., 2006. "How can exploratory learning with
games and simulations within the curriculum be most effectively
evaluated?", Computers & Education, 46(3), 249-264.

[7] R.M. Felder and R. Brent, "Active Learning: An Introduction." ASQ
Higher Education Brief, 2(4), August 2009.

[8] Duffany, J.L. "Active Learning Applied to Introductory Programming",
LACCEI 2015 Conference, Santo Domingo, Dominican Republic.

[9] A. Gartner, M. Kohler, F. Riessman: "Children teach children. Learning
by teaching". Harper & Row, New York u.a. 1971, ISBN 0-06-013553-0.

[10] Fisch, Shalom M. and Rosemarie T. Truglio, Eds. (2001). "G" is for
Growing: Thirty Years of Research on Children and Sesame Street.
Mahwah, New Jersey: Lawrence Erlbaum Publishers. ISBN 0-8058-3395-
1

[11] Thorndike, Edward L. (1898-1901) 1911 Animal Intelligence:
Experimental Studies. New York: Macmillan.

[12] Duffany, J.L. "Choice of Language for an Introductory Programming
Course", LACCEI 2014 Conference, Guayaquil, Ecuador.

[13] Bronson, G. (2010). C++ For Scientists and Engineers, 3rd edition,
Course Technology/CENGAGE Learning.

[14] Crawley, Michael J. Statistics: An Introduction using R. Wiley, 2nd
edition, 2014. ISBN 978-1-118-94109-6.

[15] Zak, D. (2013) Programming with Microsoft Visual Basic 2012, Course
Technology/CENGAGE Learning.

[16] Levitin, Anany, Introduction to the Design and Analysis of Algorithms",
2002, Addison-Wesley, ISBN: 0-201-74395-7.

