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This research proposes a methodology to perform 

unsupervised unmixing establishing how the spatial information 

help to capture the relationship between the grade of uniformity of 

the clusters, and the convex regions in the image data set. The 

effect of splitting the image helps us to obtain homogeneous 

regions. To achieve the localization of the endmember, principal 

component analysis is used, and the first three of them containing 

about 96% of the total information of hyperspectral image and 

then they are plotted for visualization their behavior. 

This analysis help us to understand the relation between the 

spatial domain information and data cloud structure. We saw 

experimentally that by partitioning the image in homogeneous 

regions we can decompose the data cloud in piece wise convex 

regions. We can then apply linear unmixing to these regions and 
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I.  INTRODUCTION 

In hyperspectral imaging, the reflected radiation 

characterized by a specific pixel in the remotely sensed image 

not often comes from the interaction with an only one 

homogeneous material. Though, the extraordinary spectral 

resolution of imaging spectrometers allows the recognition, 

and classification of subpixel materials from their contribution 

to the measured spectral signal. The unmixing is a 

hyperspectral image processing approach for subpixel 

information extraction, where the measured spectral signature 

is decomposed into a collection of fundamental spectra, or 

endmembers, and a set of corresponding portions or 

abundances which correspond to the fractional area occupied 

by the specific endmember in that pixel. 

The use of only one endmember, to represent an 
endmember class does not take into account the variability of 
spectral signatures caused by natural factors. For instance, in a 
rocky scene, the spectral signature of a particular kind of 
mineral may vary due to mixing soil or by water content. 
Simple spectral mixture analysis (SSMA) can, by itself, 
provide suitable accuracies in some relatively homogeneous 
environments, but because of the spectral complexity of many 
landscapes, the use of fixed endmember spectra may results in 
inaccurate unmixing analysis for complex regions over wide 
landscapes [1].  

The effect of splitting the image using quadtree region 
partitioning, helps us to obtain homogeneous regions. To 
achieve the localization of the endmember, principal 
component analysis is used, the first three of them containing 
about 96% of the total information of hyperspectral image and 
then they are plotted for visualization. For endmember 
extraction, we proposed to extract local endmembers in each 
quadtree region, and merge them at a global level to develop 
an accurate description of the scene under study 

This paper show an approach that perform unsupervised 
unmixing where endmember classes are assumed to be 
composed of multiple spectral endmembers to look at local 
information as a result to use region partitioning method 
starting with the hypothesis that to split the image help us to 
obtain convex and homogeneous regions in the image.  

II. BACKGROUND

A. Linear Mixing Model 

In hyperspectral imaging, the reflected or emitted 

radiation represented by a single pixel in the remotely sensed 

image rarely comes from the interaction with a single 

homogeneous material.  However, the high spectral resolution 

of imaging spectrometers enables the detection, identification, 

and classification of sub-pixel objects from their contribution 

to the measured spectral signal. The linear mixing model [1] 

[2] represents a pixel as the linear combination of the spectral 

signatures of each material multiplied by its fractional 

coverage area or abundance. 
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where m
jx   is the measured spectral signature at 

pixel, pm
S


  is the endmembers matrix, p

ja   is the 

spectral abundances vector, and m
jw    is a measurement 

noise vector, m is the number of spectral bands, and p is the 

number of endmembers. In HSI, m >> p, notice that all 

elements of S, a, and x are constrained to be positive, and the 

sum of aij for all spectral bands m is less than or equal to one. 

For the full HSI, the linear mixing model (1) can be written in 

matrix form as:     

                                    WSAX                                   (2) 

where X = [x1 ... xN ] is the matrix containing all image 
pixels, S = [s1 ... sp] is the matrix of endmembers, A = [a1 ... 
aN] is the matrix of abundances, W = [w1 ...wN ] is the noise 
matrix, and N is the number of pixels in the image. 

B. Spectral Unmixing 
Spectral unmixing is the inverse procedure where given the 

image X, we want to determine the number of endmembers p, 
the endmember matrix S, and the abundance matrix A.  

Mathematically, the unmixing problem could be stated as 
follows:                                            

2

,1,0,0
1

minarg)ˆ,ˆ,ˆ(
FAS

SAXASp 






Zpa

p

i iijij

                        (3) 

where || ||F is the Frobenious norm. The optimization 
problem in (3) is related to a constrained non negative matrix 
factorization (cNMF) [3]. If the number of endmembers and 
the endmember matrix S were known in (3), the problem 
becomes the abundance estimation problem which is a 
constrained linear least squares problem. The fully constrained 
abundance estimation problem has been solved using different 
approaches. See for instance [4][8]. 

Different approaches have been proposed to solve the 
linear unmixing problem. Most state of the art methods solve 
the unmixing problem in two stages and not as an optimization 
problem like (3). In the first stage, the number of endmembers 
is determined and spectral signatures of the endmembers are 
extracted by searching for "pure" pixels in the image by using 
spectral signatures from a library or from field data [1] [2]. In 
the second stage, abundances are estimated. 

C. Endmember Extraction Approaches 

Once the number of endmember is estimated, the next step 

is to find the endmember signatures. Most algorithms assume 

that endmembers are known a priori. Spectral libraries 

obtained in laboratories or collected in the field can be used as 

endmembers, but automated unmixing algorithms seek to 

extract the endmember signatures from the hyperspectral 

image itself. 

Most of unmixing algorithms are pixel-to-pixel techniques 

that do not take into account the spatial information captured 

in hyperspectral imaging. Some unmixing algorithms that use 

the spatial and spectral information have been introduced 

recently [7].  
Automated unmixing algorithms can be classified in 

Geometric, Parametric and Spatial Spectral Algorithms. 

D. Geometric Approaches 

Algorithms based on geometric models assume that pixels 

are enclosed in a simplex whose corners are the endmembers. 

The geometrical mixing model provides an intuitive mean to 

describe the endmember determination problem which is 

reduced to determining the corners of the minimum volume 

simplex that encloses the data cloud [1], [2]. Figure 1 shows 

examples of simplex. 
 

 

Fig. 1 Simplex illustration in (a) 2-D and (b) A regular 3-D simplex or 

tetrahedron. 

The relation between the unmixing problem and convex 

geometry has been used by many researchers to develop 

algorithms for the extraction of endmember signatures. Some 

examples of the most used geometric methods are Pixel purity 

index, N-Finder, Maximum Distance (MaxD), Vertex 

Component Analysis (VCA) and Nonnegative Matrix 

Factorization (NMF) [9] [10]. In this approach is used the 

NMF method.  
   

E. Endmember Classes 

In hyperspectral image classification, information classes 

are related with categories of interest to the user, while spectral 

classes refer to pixels with similar spectral signatures [11]. An 

information class may be composed of several spectral classes 

[13]. It is unusual to find several spectral classes for the same 

soil information class, for the same apparent type of 

vegetation, and so on for other cover types in a scene. These 

variances may result from alterations in wetness content, earth 

type, topographic effects, among others.  

Endmember classes are defined in similar way to 

information classes. Using a single spectral signature to 

represent an endmember class does not take into account the 

variability of these spectral signatures; hence, it is more natural 

to talk about multiple spectra representation of an endmember 

or an endmember class. In our approach, a single endmember 

spectral signature will play the role of a spectral class in 

classification. 
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 To develop an approach to unsupervised unmixing in large 
scene images, we propose to look at local tiles to extract local 
spectral endmembers. We expect that at a local level there are 
more homogeneous conditions, which may allow description 
of an endmember class by a single spectrum. Once local 
endmember are extracted, they are combined to extract 
endmember classes for global descriptions of the scenes. 

  

F. Abundance Estimation 
Once the endmembers are determined, the next step is to 

estimate their abundances. Abundance estimation is the 
process (AEP) of determining the abundances associated with 
the endmembers for each pixel in the image. The AEP for a 
particular pixel xj is given by the constrained linear least 
squares problem [5] [6]: 

                     2
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1
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i iij
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                           (4) 

The objective function in (4) and constraints are convex, 

consequently the solution is unique. Several solution methods 

have been proposed in the literature for (4), [5, and 6]. 

 

G. Quadtree Partitioning 

Quadtree is unbalanced spatial data structure made by 

recursive partitions of space in four equals size quadrants. This 

spatial data structure is used commonly for represent an image 

in numerous applications, like content-based image retrieval 

and compressing images. Moreover, it is used in computer 

graphics, image processing, and Geographical Information 

Systems (GIS). 

Different types of data can be represented by quadtree data 

structure [18], the most known quadtree is called "region 

quadtree", let us cutting an image in regions or quadrants 

according to a given split criterion. Then, the quadtree help us 

to represent images at different levels of homogeneity (Fig. 2) 

[13]. 

 

Fig. 2 Synthetic binary image and the region quadtree representation. 

III. PROCEDURE 

The proposed procedure consists of several steps that are 
mentioned bellow: 

 

 

A. Spatial Partitioning 

The process start with the determination of the appropriate 

number and size of the spatial subsets for a specific image. 

This is perform calculating the split criterion to estimate the 

grade of homogeneity of the portion of the image. Several 

metrics are used to obtain it (mean distance from the spectral 

centroid, norm of the spectral centroid, mean of all values in 

the image, norm of Shannon entropy) [15] [16]. 

B. Local Endmember Extraction 

The endmember extraction is performed on each portion of 

the image. The non-negative matrix factorization algorithm of 

[4] is used to extract endmembers. Non-Negative Matrix 

Factorization (NMF) approximation based algorithms [4] [5] 

[7] do not assume that there are pure pixels in 

the image, which is very important for low spatial resolution 

images. Given the number of endmembers p, the NMF 

determines the endmember matrix Ŝ and abundance matrix Â  

by solving the optimization problem:  
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                     (9) 

where ||  ||F is the Frobenious norm. 

C. Finding Endmember Classes 
Once endmembers for each spatial subset are extracted, the 

next step is to combine them into endmembers classes. 
Clustering methods are being exploited to extract the 
endmember classes [17][18]. Spectral endmembers are 
clustered using the angle distance. In the experiments, 
endmember classes were built using the cosine of spectral 
angle distances with threshold of 99%. Improving the 
extraction of endmember classes was made applying 
segmentation methods for more accuracy. 

D. Global Abundance Estimation 
With the endmember classes selected, the next step is to 

extract their abundances.  Abundances are computed using the 
same approach (NMF) of the equation (4).  All extracted 
signatures are used for computing abundances. The abundance 
of an endmember class is the sum of the abundances for the 
spectral signatures in that class. Constrained least squares (4) 
or sparse regression are used to compute the abundance 
depending on whether or not there are more spectral 
endmember than bands [4][5]. 

E. Hyperspectral Data 

In the experiments presented here, the 30-m spatial 

resolution AVIRIS image collected over Fort A.P. Hill in 

Virginia (see Fig. 3) is used. A classification map from [13] 

[20] is also shown in Fig. 3 depicting the different classes in 

the image. This thematic map is used to evaluate how well the 

proposed approach extracts individual information classes in 

the image. 
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Fig. 3 True color composite and classification map for AVIRIS image from 

Fort A.P. Hill AFB, VA [19]. 

IV. EXPERIMENTAL RESULTS 

After the image is partitioning the results obtained using 
the Shannon Entropy as a split criterion the partition are show 
at the following Figure 4. 

 

Fig. 4 Partitions using norm of the Shannon Entropy 

Selecting the specific tile ZoomI411 of the Fig. 4 we can 

see the pixel distribution in the tile for a real hyperspectral 

image. The data is processed applying a principal component 

analysis (PCA) and select the three first PCA that contains 

around of 96% of the information of the all data. Using these 

three first PCA of the data the we can visualize the data using 

scatterplots in three dimension using MATLAB. 

 

Fig. 5 Partitions using norm of the Shannon Entropy 

As mention above the basic assumption on the linear 
unmixing model is that the pixels are in the convex hull of the 
cone with the endmembers at its vertices. But, real 
hyperspectral data in general does not follow the structure as 
shown in the Fig. 5. Here we use exploratory data analysis to 
analyze how spatial information can be used to extract 
homogeneous regions in the image. 

   

Fig. 6 Quadtree partitions using norm of the Shannon Entropy in fig. 5. 

 As shown in Fig. 6 at right, although there are still 
distinguishable classes on the image, its data cloud is convex, 
the data cloud shows an elongated convex form that represent 
2 endmembers which clearly facilitates endmember extraction 
and unmixing. Fig. 6 at left include the buildings class and still 
shows a non-convex data cloud. Notice that the image is not a 
uniform sub-tile of the image. If the division process is 
repeated with the top left image. 

  

Fig. 7 Quadtree partition using norm of the Shannon Entropy from part 
top left of fig. 6. 
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 Then when we repeat the procedure again, zoom top left 
of the Fig. 6 is partitioned into four quadrants as shown in Fig. 
7, notice that the tiles show different levels of uniformity, 
emerging new convex hull at the data cloud. Again, uniform 
tiles lead to convex data clouds and in the lower right image 
show non-uniform tiles and, hence non-convex data clouds. 
These results suggest that by decomposing the image in 
homogeneous regions, we partition its data cloud into piece 
wise convex regions.  This is the main motivation behind 
image partitioning. Using this trend, by dividing the image we 
establish easier the spectral signatures of different materials 
found in the image. The image is processed to obtain 148 
endmembers throughout the all global image, that to be 
grouped into eleven different endmember classes.  

 

Fig. 8 Results obtained for endmember classes of summer deciduous 
forest, loblolly pine and autumn deciduous #1. 

 

Fig. 9 Results obtained for endmember classes of autumn deciduous #2, 
autumn deciduous #3 and green ag field #1. 

With these unmixing results we saw experimentally that 

by partitioning the image in homogeneous regions we can 

decompose the data cloud in piece wise convex regions. Then 

we can apply linear unmixing to these regions and easily 

extract endmembers for different homogeneous tiles in the 

image. 

 

Fig. 10 Results obtained for endmember classes of soil ag field #3, 
generic road and river water. 

 

Fig. 11 Results obtained for endmember classes of grass field and gravel. 

 Finally, we understand the relation between the spatial 
domain information and data cloud structure. Also, using the 
exploratory data analysis to analyze how spatial information 
can be used to extract homogeneous regions in the image to be 
more accuracy the extraction the endmember of the different 
material in the image. 

The table 6-1 show the results of the classifications of the 
different classes for the AP-Hill image compared with the 
given ground true. The classes, summer deciduous, loblolly 
pine, soil ag field, river water, grass field and gravel had a 
good result in the classification around 86.23% that is like the 
overall performance of the classification in the entire image, 
because there are the majority classes in the image. The total 
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pixels in this image was 262,144 and the highest percent of the 
detection were the grass field with 96.75%, and the river water 
95.38%, and the lowest percent were the generic road with 
59.67% and the shaded vegetation with 65.58%. 

TABLE I 

CONFUSION MATRIX FOR THE APHILL IMAGE. 

 

V. CONCLUSIONS 

The experimental results showed the potential of the 

proposed approach to perform unsupervised unmixing of large 

scenes images, and to extract spectral endmember classes that 

better capture the spectral variability in an endmember class. 

By decomposing the image into uniform regions and extracting 

endmembers for each tile using cNMF we make the cNMF 

sensitive to spatial information. 

The exploratory data analysis of the behaviour of the data 

cloud in the image to demonstrate how the spatial information 

help to capture the relationship between the grade of 

uniformity, clusters, and the convex regions in the image data 

set helping to improve the hyperspectral unmixing process. 

Looking for homogeneous regions in the scene, guarantee that 

when we perform spectral unmixing in each partition, will be 

working regions of data that can be enclosed in convex 

regions. 

Breaking the large scene into tiles allowed the extraction 

of spectral endmember classes that had small contrast at the 

full image level but high contrast at the local level. Several 

issues still need to be addressed, in particular, how to select 

the optimal tile size and faster ways to determine the number 

of endmembers.  

Results from the local unmixing analysis agree more with 

published ground truth for the A.P. Hill image than what was 

possible with the global approach. This is encouraging since 

the proposed method was fully image based with some analyst 

intervention for endmember class tuning.  
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