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Abstract

Avian influenza viruses have been affecting human
populations for a long time since the outbreak in the
year 1580 as the first recorded in history. Since then,
other mutations and reassortments of the influenza
viruses (e.g., H1N1, H3N2) have emerged causing
pandemics. Recent emergence of H7N9 influenza virus
in China resulted in 1307 laboratory-confirmed cases
of human infections causing 489 deaths (37.4%fatality
rate). Researchers have developed early esti-mates of
some of the epidemiological parameters to
characterize H7N9 virus in China. In this research we
examine the distribution that characterizes the time
to infection from a potential H7N9 influenza pandemic
outbreak using results from an agent-based (AB)
simulation model. The AB model replicates the
dynamics of contacts between susceptibles an infected
individuals. We considered some of the common con-
tinuous probability distributions and conclude, based
on the negative log-likelihood, that the lognormal dis-
tribution provides a good fit to characterize the time
to be infected.

1 Introduction

AH7N9 is a subtype of influenza A virus that is
found commonly in birds and poultry. Since March
of 2013, A(H7N9) has been noted to infect humans
in several regions of China, especially those who
are in close contact with poultry either at farms or
at markets dealing with poultry. So far, there has

been five waves of infections since March 2013. A
total of 1307 laboratory confirmed cases of A(H7N9)
infections have been recorded in several regions of
China causing 489 deaths [1]. The outbreaks have
occurred in relatively densely populated regions of
China that have over 54% of the country population.
The average age of those infected in the first three
waves have been reported to be 61, 57, and 56,
respectively. However, the relative high age of those
infected has not been attributed as an epidemiolog-
ical characteristics of the A(H7N9) virus. Instead,
it is conjectured to be a function of the higher level
of exposure to poultry for elderly men in particular.
Though most of the reported infections are known to
be isolated cases of animal to human transmissions,
researchers have noted exceptions where they believe
human-to-human transmission may have occurred.
However, it is concluded that there is still a lack of
sustained evidence of human-to-human transmission
[2].

It is feared though that A(H7N9) influenza virus
could gain the ability to mutate or reassort to
become human-to-human transmittable and cause a
pandemic. Similar situation happened with H5N1
during the years 2003-2009 where scientists believed
that H5N1 was highly likely to become human-to-
human transmittable and cause a pandemic. Though
an H5N1 pandemic did not occur as yet, this virus
is still in circulation and, as reported by WHO,
has caused 145 infections and 42 deaths in three
countries in 2015 [3].

An important observation made so far about
A(H7N9) is that, though it is highly pathogenic
both in humans and birds, infected poultry remain
asymptomatic and do not die. This makes it difficult
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to identify the spread of A(H7N9) among poultry.
In recent years, the Chinese government has applied
containment measures to limit the spread of the
virus including culling birds and closing live poultry-
markets and trading areas.

The objective of the research underlying the
content of this paper was to estimate the time to
be infected from a potential A(H7N9) influenza
pandemic outbreak. We used data from recent
reports and an updated version of our previously de-
veloped AB simulation model [4, 5, 6] to simulate an
outbreak and estimate which distribution provides
better understanding of the time to be infected.
The simulation model replicates the dynamics of
pandemic outbreak in a selected area incorporating
the demographic information (households, schools,
workplaces, and communities), human behavior
(including contacts, compliance to quarantine and
other public health measures, and travel), epi-
demiological parameters of the virus (e.g., force
of infection, incubation and latent periods, basic
reproduction number (R0), and fatality rate), and
non-pharmaceutical intervention strategies (NPI) for
containment and mitigation. The AB model consid-
ers detailed information about the households and
their member compositions (age, sex, work, parental
status), distance between individuals and their daily
movements, contact processes, infection process, and
disease natural history. We assumed that during the
outbreaks, an ad-hoc or an optimal NPI strategy
(which was found as optimal for a generic influenza
virus) was in place with a goal to contain the spread.
The NPI strategy comprised measures like isolation,
quarantine, school and workplace closures.

The remaining part of the paper is organized as fol-
lows. In Section 2, we describe the methods used in
this research. Section 3 presents the results. Section
4 outlines the conclusions and Section 5 discusses im-
portant points from this research and propose future
work.

2 Methods

In this section we will describe the disease natural
history, the AB simulation model, the interventions
and the statistical modeling of the infection time.

Becomes 
infected

Becomes 
infectious

Becomes 
symptomatic or not

Latency Infectiousness
Period leading to 
health outcome

Incubation

Recovers or 
dies

Figure 1: Typical influenza disease natural history

showing the progression of the disease from the mo-

ment of exposure until health outcome.

Once a person becomes infected, s/he starts a pe-
riod of latency. During this period, infected indi-
viduals cannot infect other persons. After this, the
person becomes infectious and can spread virus to
susceptibles individuals in a symptomatic or asymp-
tomatic way which is defined by the incubation pe-
riod. Finally, after the infectiousness period is over
the person either recovers and becomes immune or
dies. Figure 1 describes the influenza disease natu-
ral history. That schema is used in the AB model to
simulate the contact and infection process for each
individual.

2.1 Agent-based simulation model

The agent-based (AB) simulation model provides
output data to be used to analyze the behavior of
the time to be infected. Figure 2 depicts the pro-
cess used in the AB model. Individuals and house-
holds are generated and associated. Then schools,
workplaces, community locations and schedules are
also assigned to the persons. After generating all
population, some infected individuals are released in
the model to trigger a pandemic. The model keeps
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daily trace of susceptible and infected individuals and
checks for contacts in households, workplaces/schools
and community places.

AB Simulation Process  

Generate schedules for 
weekdays and weekend

Assign schedules to the 
individuals based on 

their attributes

Generate initial infected 
individuals

Generate individuals in 
the simulated population

Generate households

Assign individuals to 
households

Generate schools/ 
workplaces and 

community locations

Check if
simulation condition

Is met

Individuals follow through with 
their schedules for that day

For each susceptible, check 
for contacts with infected in 

the household

Check for contacts in 
the workplace/school

Check for contacts in 
community locations

At the end of the day 
Calculate force of infection and probability 

of infection for each susceptible

Update health status 
of individuals 

Yes No

End simulation Report Disease 
Burden

Begin new day

Figure 2: Schematic of the AB model.

By the end of the day, the model calculates the
force of infection for each susceptible individual, cal-
culates the probability of infection and update the
health status for each susceptibles person. After hav-
ing no more infected and reaching the simulation
condition the model stops and generates output files
containing relevant daily statistics (e.g.,number of in-
fected persons, number of deaths, number of persons
that visit the doctor, number of persons recovered,
etc.).

2.2 Non-pharmaceutical interventions

We assume that during an outbreak, a NPI strategy
will be in place with a goal to contain the spread
(that is, to keep the reproduction number R0 < 1
and infection attack rate IAR < 0.1). A NPI

strategy comprises measures like social distancing,
isolation, quarantine, school and workplace closure,
and travel restrictions. Consequently, there can be
numerous possible strategies based on the chosen
parameter values for the measures. We implement
two NPIs strategies, one ad-hoc and the other that
was recommended in [5]. We refer to the strategies
as NPI(1) and NPI(2). Table 1 shows the 16 factors
involved in the NPI and their corresponding values
used in the AB model.

Global thresold is associated with the number of
cases needed to declare an outbreak of influenza.
Deployment Delay is the time needed to fully deploy
NPIs after the onset of an outbreak. Case isolation
is related to isolate an infected individual at home.
Household quarantine measures the restriction to
leave the house to the household members of an
infected person. School closure defines the number
of students infected in a class to close a class, the
number of classes closed to close a school and the
duration of such closure. Workplace closure requires
the number of cases to close a department in a
workplace, the percentage of departments closed
to close the workplace and the duration of the
workplace closure.

Factor Intervention NPI(1) NPI(2)

1 Global Threshold 10 10

2 Deployment delay 3 days 7 days

3 Case isolation threshold 1 day 1 day

4 Case isolation duration 7 days 10 days

5 Case isolation compliance for workers 75% 75%

6 Case isolation compliance for non-workers 84% 57%

7 Household quarantine threshold 1 day 1 day

8 Household quarantine duration 7 days 7 days

9 Household quarantine compliance workers 75% 53%

10 Household quarantine compliance non-workers 84% 84%

11 Cases to close a class in a school 4 1

12 Classes to close a school 6 3

13 School clsure duration 10 days 21 days

14 # cases to close a department in a workplace 6 3

15 % of departments to close a workplace 60% 30%

16 Workplace closure duration 10 days 7 days

Table 1: Parameters for two NPI strategies
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2.3 Statistical modeling of infection

time

Due to the right-skewness of infection time data,
in this section, we investigated different survival
distributions, such as exponential, weibull and
log-normal, to characterize the time to infection
data. The last two distributions are more flexible in
representing the various heavy-tailed infection time
data. All results are implemented in the statistical
computing environment of R software [7, 8].

The maximum likelihood estimation (MLE) is em-
ployed to estimate the distribution parameters by
maximizing the data likelihood (LIK) function de-
scribed below:

LIK = [F (t1)r1 ]{
m∏
i=2

[F (ti)− F (ti−1)]ri} (1)

where F (ti) is the cumulative number of infected
persons up to time i, ri is the number of infections in
interval i, n is the total number of infected persons
and m is the day when there is no more infected
individuals. In our case, m can vary depending on
the scenario evaluated and our analysis of infections
considers only days with infected persons.

2.3.1 Exponential distribution

The exponential distribution is the simplest distribu-
tion in the analysis of reliability/survival data and
has a constant hazard. Totlife is defined as the time
elapsed before getting infected.

Totlife =
∑

((start+ end)/2 ∗ infected) (2)

The exponential hazard rate (i.e., the instanta-
neous probability of being infected) and the corre-
sponding mean time to be infected (MTTI) are pre-
sented in equations 2 and 3.

λ =
∑

(infected/Totlife) (3)

MTTI = 1/λ (4)

2.3.2 Weibull distribution

Weibull distribution is a generalization of the expo-
nential distribution and is often used in biomedical
applications. It can be used to model infection data
with a decreasing, a constant or an increasing hazard
rate.

Based on the MLE, distribution parameters of
weibull, namely the rate parameter α and the shape
parameter β, can be simultaneously estimated. The
correponding MTTI is given by,

MTTI = αΓ(1 + 1/β) (5)

2.3.3 Lognormal distribution

The lognormal distribution offers flexible shapes
for the probability density functions (pdfs) and
hazard rate functions. This distribution is preferred
when there is a hypothetical multiplicative and
progressive increments that could trigger a critical
event, e.g., the ocurrence of infection. In the context
of pandemic outbreaks, such progressive increments
can be interpreted as the increasing number of
infections during the first days of pandemics. This
means also an increasing number of contacts that a
susceptible individual faces which feeds the amount
of virus ingested and hence, it affects the probability
of getting infected.

If T∼lognormal(T50, σ), then lnT∼N(lnT50, σ),
where T50 is the median infection time for the popula-
tion of lognormal infection time observations and σ is
the standard deviation of the logarithmic transforma-
tion of infection times (i.e., shape parameter). Equiv-
alent, if X∼N(µ, σ), then ex∼lognormal(eµ, σ).
Both parameters can be estimated as follows.

T50 = eµ (6)

σ = ln(eσφ
−1F (t))/(φ−1F (t)) (7)
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where F (t) is the cumulative distribution function
(cdf) of the lognormal distribution. The MTTF is
estimated from:

MTTI = T50e
σ2/µ (8)

2.4 Problem description and data

The data comes from the AB model that use epidemi-
ological information from H7N9 outbreak in China
and combined that with U.S. demographical param-
eters to replicate a potential H7N9 outbreak in the
U.S. One of the outputs of the AB simulation model
is the daily number of infected persons which is used
in this study. This value is considered up to the day
where no further infections are detected.
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Figure 2: Epidemiological curve of avian influenza A(H7N9) cases in humans by week of onset, 

2013-2017 

 
 

Overall Risk Management Recommendations: 

 WHO does not advise special traveller screening at points of entry or restrictions with regard to 

the current situation of influenza viruses at the human-animal interface. For recommendations 

on safe trade in animals from countries affected by these influenza viruses, refer to OIE guidance.   

 WHO advises that travellers to countries with known outbreaks of animal influenza should avoid 

farms, contact with animals in live animal markets, entering areas where animals may be 

slaughtered, or contact with any surfaces that appear to be contaminated with animal faeces. 

Travellers should also wash their hands often with soap and water. Travellers should follow good 

food safety and good food hygiene practices. 

 Due to the constantly evolving nature of influenza viruses, WHO continues to stress the 

importance of global surveillance to detect virological, epidemiological and clinical changes 

associated with circulating influenza viruses that may affect human (or animal) health. 

Continued vigilance is needed within affected and neighbouring areas to detect infections in 

animals and humans. As the extent of virus circulation in animals is not clear, epidemiological 

and virological surveillance and the follow-up of suspected human cases should remain high. 

 All human infections caused by a new influenza subtype are notifiable under the International 

Health Regulations (IHR, 2005).5 State Parties to the IHR (2005) are required to immediately 

                                                           
5
 World Health Organization. Case definitions for the four diseases requiring notification in all 

Figure 3: Laboratory-confirmed cases and deaths of

human infection with A(H7N9) reported by WHO.

The data used in this research was simulated for a
population of 1.27 million of persons (Hillsborough
county area in Tampa Bay) considering a moderate
force of infection. The number of incidences of
H7N9 in China has been reducing since 2013 but
researchers think that a potential pandemic can
occur at any time and more dangerous is that the
virus mutate or reassort to a human-to-human
transmittable. Figure 3 shows the number of cases

since initial outbreak.

We used readout data consisting of interval, start,
end and infected. This data is obtained from the
AB model output report and is used in the three
statistical distributions proposed.

Finally, this study considers 6 scenarios associated
with the variation on the NPI used (as described in
section 2.2) and the potential force of spread which
is related with the IAR, beeing 33%, 50% and 65%
the values more considered in the literature.

3 Results

In the present project we considered three main dis-
tributions as potential candidates to describe the
time to infection from an influenza pandemic out-
break: exponential, weibull and log-normal. After
running the AB model, we obtained as output the
daily number of infected cases. This information is
used as readout data to proceed estimating the main
parameters, the LIK and the MTTI for each case.

Figure 4: Simulated daily infected cases for NPI(1).

Simulated infected cases are shown in figure 4 and
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figure 5 for NPI(1) and NPI(2) respectively and for
the three levels of spread. From figure 3, for a given
year, each one of the waves displayed seems not to
differ significantly from the shape obtained as result
from our AB simulation model depicted in figures 4
and 5. It is important to notice that in figure 5, we
observe the presence of waves in all spread cases. Our
procedure takes in consideration all time frame, hence
all waves in the estimations. Parameters estimated
for the exponential (λ), weibull (α, β) and lognor-
mal (T50, σ) distributions are respectively displayed
in Table 2 for NPI(1) and in Table 3 for NPI(2).

Figure 5: Simulated daily infected cases for NPI(2).

Spread Distribution Parameters MTTI LIK

Exponential 0.00069 1440.05 -1439.40

Low Weibull (707.99,0.51) 1366.07 -1343.747

Lognormal (5.51,2.21) 96.40 -1342.92

Exponential 0.00038 2642.62 -1607.19

Medium Weibull (978.35,0.47) 2208.31 -1462.15

Lognormal (5.80,2.67) 334.72 -1455.18

Exponential 0.00036 2794.97 -1992.63

High Weibull (866.38,0.46) 2046.32 -1777.91

Lognormal (5.69,2.26) 107.37 -1765.95

Table 2: Estimated parameters for each distribution

and for each force of spread when NPI(1) is deployed.

Spread Distribution Parameters MTTI LIK

Exponential 0.00270 369.46 -2419.22

Low Weibull (338.52,0.85) 368.29 -2410.31

Lognormal (5.16,1.39) 16.75 -2418.44

Exponential 0.001135 880.82 -2723.30

Medium Weibull (727.24,0.81) 816.77 -2706.31

Lognormal (6.06,1.08) 11.58 -2646.97

Exponential 0.000785 1273.83 -2852.42

High Weibull (1039.47,0.81) 1167.44 -2834.98

Lognormal (6.45,1.03) 11.39 -2766.91

Table 3: Estimated parameters for each distribution

and for each force of spread when NPI(2) is deployed.

4 Discussion

To estimate the distribution parameters of the
mentioned three distributions, maximum likelihood
function in (1) is maximized based on numerical
optimization methods. For exponential distribu-
tion, single parameter is estimated based on the
Nelder−Mead method [9]. For Weibull and Lognor-
mal distributions, Broyden − Fletcher − Goldfarb
and Shanno (BFGS) method [10] is considered
to estimate the two-dimensional parameters. The
estimation results for three parametric survival
distributions are implemented via fitdistr function in
R.

The negative log-likelihood (LIK) is considered as
the goodness-of-fit measure to evaluate and compare
the performance among different distributions. A
smaller value of LIK indicates a better goodness-of-
fit. Among all 6 scenarios, Exponential distribution
gives the largest LIK values and thus exhibits the
poorest goodness-of-fit. It is mainly due to its less
flexibility in representing different shapes of infection
data.

As depicted in table 3, the weibull distribution
outperforms other distribution with better goodness-
of-fit in the low spread scenario. However, its
corresponding LIK value is not far away from its
counterpart of lognormal distribution. As shown
in all scenarios, the estimated shape parameters
of weibull distribution is less than 1. It implies a
decreasing hazard rate over time. In the context of
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pandemic outbreak, it indicates that the infection
rate is decreasing over time and eventually the
pandemic will stop. The estimation results of weibull
distribution also explain the reason why exponential
distribution exhibits unsatisfactory goodness-of-fit.
In exponential distribution, hazard rate is constant.
It indicates that the inflection rate will not change
over time, which fails the capture the actual pan-
demic outbreak process with dynamically changing
inflection rate.

Among 5 out of 6 scenarios, lognormal distribu-
tion gives the most superior performance of good-
ness of-fit. There are mainly two reasons. From the
data fitting perspective, comparing to weibull distri-
bution, lognormal distribution has similar capability
and flexibility to represent various heavy tails and
right-skewed inflection time data. From the pan-
demic outbreak process perspective, lognormal dis-
tribution can more closely mimic the underlying pro-
cess, and thus gives satisfactory results. In addition,
it is noticed that goodness-of-fit results of weibull
and lognormal distributions are similar and lognor-
mal exhibits slightly better results. The hazard rate
of lognormal is in complex form and less interpretable
compared to weibull distribution. Thus, weibull dis-
tribution is still valuable in providing compact and
interpretable information (e.g., decreasing infection
rate) while maintaining a reasonable well goodness-
of-fit of data.

5 Conclusion and future work

An inconvenient for this study is that we do not
have the exact time of infection but just the number
of people infected daily. Having more detailed
information from official sources (e.g., CDC, CDC
China, WHO) could help to: i) expand the study
including time of death and time of recovery, and ii)
have better estimates.

Another important improvement to consider is
to disaggregate the analysis (infected and deaths)
according to age groups: < 19yrs, 20 − 64yrs and
65 + yrs. This could help to the making decision

process since H7N9 attacks mainly elder people
(65 + yrs group). and other influenza viruses can
have different age-targets.

It is also known that not all infected persons are
symptomatic and a significant part of the population
can stay as asymptomatic (they don’t show symp-
toms, hence they don’t know that they are sick).
Official reports do not capture those asymptomatic
cases that may affect our estimations. We propose
to develop some multipliers and incorporate them to
better estimate the number of infected persons and
to capture the real nature of the infection process.

Finally, as seen in figure 5, distribution of number
of infected persons exhibit multi-modal shapes at
different waves and none of the proposed distribu-
tions can capture the real nature of that behavior.
We will address this issue in details by investigating
mixture distributions and their variants in the future.
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