
15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States.

Developing a Multipath-TCP Analyzer using

Software Defined Networking
Carlos Cajas Eng.1, Christian Valdivieso Eng.1, David Mejía M.Sc.1, and Iván Bernal Ph.D. 1

1Escuela Politécnica Nacional, Ecuador, {carlos.cajas; christian.valdivieso; david.mejia; ivan.bernal}@epn.edu.ec

Abstract– MP-TCP (MultiPath-Transmission Control

Protocol) is a network protocol that uses subflows for allowing the

existence of disjoint paths and increases the overall throughput

with respect to employing a common TCP connection. The idea of

analyzing MP-TCP messages using the principles of SDN

(Software Defined Networking) is proposed. Relevant aspects of

how the Analyzer was developed as a module for OpenDayLight’s

SDN framework are presented. The Analyzer runs in the SDN

controller and it commands the installation of appropriate rules in

the network devices (switches supporting Openflow) so that all TCP

traffic be derived to the controller. Then the Analyzer must identify

MP-TCP messages by checking the options field of TCP and

present all the related information to the user employing a GUI

(Graphical User Interface). By combining the usage of proactive

and reactive rules, the Analyzer’s implementation tries to minimize

the impact of sending TCP traffic to the controller. The Analyzer

has been tested with other modules (e.g. Layer 2 Switch) that are

included with OpenDayLight; this is done for showing that it is

possible that the Analyzer may not interfere with other running

modules. Some results obtained with the Analyzer when using

physical and virtual switches in different topologies in a network

using MP-TCP are presented. Simulation results using MP-TCP

with Mininet are also discussed.

Keywords—Protocol Analyzer, MP-TCP, SDN, Openflow,

OpenDayLight.

Digital Object Identifier (DOI):

http://dx.doi.org/10.18687/LACCEI2017.1.1.264

ISBN: 978-0-9993443-0-9

ISSN: 2414-6390

mailto:ivan.bernal%7D@epn.edu.ec
http://dx.doi.org/10.18687/LACCEI2017.1.1.264

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 1

Developing a Multipath-TCP Analyzer using

Software Defined Networking

Carlos Cajas Eng.1, Christian Valdivieso Eng.1, David Mejía M.Sc.1, and Iván Bernal Ph.D. 1
1Escuela Politécnica Nacional, Ecuador, {carlos.cajas; christian.valdivieso; david.mejia; ivan.bernal}@epn.edu.ec

Abstract– MP-TCP (MultiPath-Transmission Control

Protocol) is a network protocol that uses subflows for allowing the

existence of disjoint paths and increases the overall throughput with

respect to employing a common TCP connection. The idea of

analyzing MP-TCP messages using the principles of SDN (Software

Defined Networking) is proposed. Relevant aspects of how the

Analyzer was developed as a module for OpenDayLight’s SDN

framework are presented. The Analyzer runs in the SDN controller

and it commands the installation of appropriate rules in the network

devices (switches supporting Openflow) so that all TCP traffic be

derived to the controller. Then the Analyzer must identify MP-TCP

messages by checking the options field of TCP and present all the

related information to the user employing a GUI (Graphical User

Interface). By combining the usage of proactive and reactive rules,

the Analyzer’s implementation tries to minimize the impact of

sending TCP traffic to the controller. The Analyzer has been tested

with other modules (e.g. Layer 2 Switch) that are included with

OpenDayLight; this is done for showing that it is possible that the

Analyzer may not interfere with other running modules. Some

results obtained with the Analyzer when using physical and virtual

switches in different topologies in a network using MP-TCP are

presented. Simulation results using MP-TCP with Mininet are also

discussed.

Keywords—Protocol Analyzer, MP-TCP, SDN, Openflow,

OpenDayLight.

I. INTRODUCTION

Nowadays, many devices such as laptops, tablets and

smartphones are multihomed using different interfaces to

connect to a network (Wi-Fi or a mobile network). However,

TCP (Transmission Control Protocol) does not take advantage

of multiple interfaces in hosts. Even though there may exist

multiple paths in a network, TCP sessions are limited to take

advantage of only one path. A related problem is due to moving

hosts that may require changing the current network

configuration, a process that demands resetting IP (Internet

Protocol) and TCP values.

MP-TCP (MultiPath TCP) is a network protocol that can

be considered a TCP extension for multipath forwarding. MP-

TCP is an alternative to exploit multihomed scenarios. A MP-

TCP connection splits into several TCP connections referred to

as subflows. These subflows can use disjoint paths using either

a single interface or multiple interfaces; this may allow

increasing the throughput of the overall connection. Besides,

even if a subflow fails during the live time span of a MP-TCP

connection, the connection may continue by using the

remaining subflows. This strategy increases reliability if

something goes wrong in any of the network paths [1].

On the other hand, SDN (Software Defined Networking)

technology has emerged as a flexible way to control the

network in a systematic way. Networks have as two of their

building blocks a data plane and a control plane which coexist

in a unique physical device in traditional networking

architectures. In SDN the control plane is physically separated

and moved to a computer known as a controller. The data plane

is implemented by networking devices that communicate with

a controller by means of some protocol for receiving

instructions of how to handle incoming traffic. By installing

rules in the switches, a controller has a high level of control of

the network which in turn makes introducing changes, new

functionalities and services faster and easier.

Based on this flexibility, the idea proposed in this paper is

that monitoring specific protocols in networking devices along

the path that traffic flows follow can benefit from SDN. This

technique is applied for monitoring and analyzing the messages

of MP-TCP by using Openflow devices and OpenDayLight’s

platform [2]. A module named as “MP-TCP Analyzer” is

developed to run in OpenDayLight’s context. The Analyzer

obtains TCP packets from the switching devices before they get

to the destination hosts, then it decodes MP-TCP information

and presents the results to the network administrator in a GUI

(Graphical User Interface).

Non-SDN solutions for monitoring and analyzing

protocols include port mirroring that allows to copy traffic of a

live network and send it to port where an analysis tool is

connected, using extra ports on a switch [3]. With port

mirroring it is not possible to select traffic, and the switch can

be overloaded with the volume of traffic being mirrored.

In response to these issues, the industry came up with

dedicated devices called network packet brokers [4] that can

select the traffic being monitored (based on IP address or

application type, for example) and forward it to analysis tools;

however, they are too expensive to use everywhere one might

want to monitor or analyze traffic. Another option is to use

network Test Access Points (TAPs) [5] which are hardware

tools that allow to access and monitor a network.

SDN opens the possibility of implementing more

inexpensive alternatives with low-cost switches and controllers

and can offer granular traffic control comparable to network

packet brokers. So SDN is a feasible way to develop a simple

and dynamic packet monitoring system to analyze the traffic of

a network.

Within the SDN alternative, one way is not replacing

monitoring tools but just changing the way in which

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2017.1.1.264
ISBN: 978-0-9993443-0-9
ISSN: 2414-6390

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 2

information is passed from the physical network to analyzing

tools. This can be implemented using the same idea of port

mirroring, in this case controlling the rules in the switches but

this maintains the aforementioned problem. A tool using this

idea is mentioned in [6]. Another way is to develop tools that

simply collect information gathered in the controllers [7].

Besides, analyzers using the SDN architecture usually lack the

packet decode for protocol details required for some analysis

and troubleshooting.

The Analyzer that is proposed in this paper is based on

SDN, it presents details that go to bit level, it is run in the

context of the controller and it uses the same port that connects

switches with the controller. It does have some shortcomings

that will be mentioned in later sections.

Another aspect to consider is that the development of the

MP-TCP analyzer was proposed as part of a larger project that

implements a solution for the shared bottleneck [8] that MP-

TCP suffers. Details at bit level for MP-TCP were not offered

by other available tools and these details were required for

checking for compliance and reproducing the shared

bottleneck.

The remaining of the paper is organized as follows: Section

II outlines some useful details about MP-TCP. This work will

not dive deep into MP-TCP’s specification, but some basic

technical details should be understood and are briefly

discussed. Section III presents some aspects regarding SDN,

including Openflow and OpenDayLight. Section IV outlines

some aspects related to the design and implementation of the

Analyzer, including the GUI. Section V presents some results

obtained from running tests with the Analyzer and using

different network topologies. Finally, conclusions are outlined

in Section VI.

II. MP-TCP

MP-TCP is a modification or extension to TCP. MP-TCP

is specified in the Request For Comment RFC-6824 of the

Internet Engineering Task Force (IETF) [9].

Each subflow in MP-TCP is characterized by a different

tuple of elements which are: (source IP address, destination IP

address, source port, destination port, protocol identifier).

Every subflow creates a TCP connection, the set of subflows

form the overall MP-TCP connection.

 By using multiple paths and by sending data through the

less congested paths [1], both throughput and redundancy are

increased and the grade of use of the available resources is

maximized. It is also possible to perform load balancing

between available paths.

 MP-TCP is transparent for the higher and lower layers of

the TCP / IP architecture. This allows user-level applications to

simply use MP-TCP, assuming the kernel of the operating

system supports MP-TCP.

A. MP-TCP Option Subtypes

 It is worth mentioning that it is not accurate to introduce

the idea of “MP-TCP packets”, packets are simply standard
compliant TCP packets using their option field to handle

MP-TCP data. Sometimes the term “MP-TCP messages” is

used for referring to TCP’s option field when it contains MP-

TCP information. MP-TCP option format (Fig. 1) includes the

following fields:

1) Kind: 8-bit field with a value of 30. This field allows

to discriminate between MP-TCP and other TCP options.

2) Length: 8-bit field for signaling the size of the MP-

TCP message.

3) Subtype: 4-bit field for discriminating among MP-TCP

messages (see Table I).

4) Subtype-specific data: Space where each MP-TCP

subtype messages place their control information.

Fig. 1 MP-TCP option format.

Some examples of the tasks associated to MP-TCP that use

several of the option subtypes are:

1) Establish a MP-TCP connection: An MP_CAPABLE

message declares MP-TCP support during the connection

setup. This message is part of TCP’s three-way handshake. The

first connection will be the main subflow of the MP-TCP

connection.

2) Add new subflows: MP-TCP uses ADD_ADDRESS

messages for notifying the hosts about a new IP address. This

address can be used to establish a new subflow. After an

ADD_ADDRESS message is received by the hosts, they may

send MP_JOIN messages.

3) Disable offline paths: When an interface goes down or

a subflow connection cannot be supported any more (e.g. a

middlebox is present somewhere along the path), a

REMOVE_ADDRESS message is sent. This message allows

disabling subflows related to this address.

TABLE I

MP-TCP SUBTYPE FIELD

Value Symbol Name

0x0 MP_CAPABLE Multipath Capable

0x1 MP_JOIN Join Connection

0x2 DSS Data Sequence Signal

0x3 ADD_ADDRESS Add Address

0x4 REMOVE_ADDRESS Remove Address

0x5 MP_PRIO Change Subflow Priority

0x6 MP_FAIL Fallback

0x7 MP_FASTCLOSE Fast Close

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 3

4) Signaling MP-TCP data: With a Data Sequence Signal

(DSS) message, MP-TCP connections can signal MP-TCP data.

There is a data sequence number (DSN) and there is a subflow

sequence number. Data is distributed among subflows so data

sequence mapping is required. A DSS message helps to fit each

subflow into the overall MP-TCP stream.

5) Establish priority: An MP_PRIO message can change

the state of a subflow from backup to regular. If the subflow is

established like a backup path, it will not be use in a MP-TCP

connection unless all available subflows are down.

6) Close connection: When a whole MP-TCP connection

abruptly crashes, MP_FASTCLOSE messages are sent. This

message is similar to RST in regular TCP connections.

7) Fallback to a regular TCP connection: In some cases,

middleboxes might be present and might not support MP-TCP.

These devices could erase the whole TCP option field or make

payload data be lost. In these special scenarios, it is necessary

to fallback to regular TCP connections; this is achieved with an

MP_FAIL message.

B. MP_CAPABLE Message

 The Analyzer must decode MP-TCP messages by

discriminating which of the subtype messages is contained and

decode all the fields that the specific message may have. For

this reason, it is necessary to know all the fields of every MP-

TCP subtype messages. As an example, the structure of

MP_CAPABLE messages (see Fig. 2) is presented, followed by

a short description of each field.

Fig. 2 MP_CAPABLE option.

1) Version: Signals MP-TCP version. 0 for every current

available implementation.

2) Bit A: A value of 1 indicates that a checksum is

required. It is not required that both sender and receiver set their

bit A to 1. Only if both hosts set their bit A to 0, a checksum

will not be used.

3) Bit B: It must be set to 0. This bit will be used in future

implementations.

4) Bits C-H: These 6 bits allow to negotiate the crypto

algorithm to be used. Currently only bit H is used and set to 1.

The other bits C to G are set to 0. With this configuration, MP-

TCP will use HMAC-SHA1 as the crypto algorithm. The

algorithm and the keys will be used in MP_JOIN messages for

authenticating the connection and avoid authentication attacks.

5) Sender’s Key: 64-bit key generated by the sender. This

key will be used with MP_JOIN messages. Besides, it is sent in

SYN and ACK packets.

6) Receiver’s Key: 64-bit key generated by the receiver.

It will be used by MP_JOIN messages. This key is sent in

SYN/ACK and ACK packets. If the receiver gets both keys

correctly in ACK packets, the MP-TCP connection is

established.

 Additional information about every MP-TCP message is

available in [1].

III. SDN (SOFTWARE DEFINED NETWORKING)

As mentioned before, SDN is a networking architecture

that decouples the control and switching planes [10]. The

switches or white boxes are required to be extremely efficient

at their task of switching and must reduce their intelligence to a

minimum.

The intelligence of the control plane is derived to a

controller (Fig. 3) that executes software modules that define

the functionality of the switches and generate rules that must be

installed on them. The controller communicates with the

switches by means of a protocol (e.g. Openflow); in the switch

side this protocol allows manipulating the flow table of the

switch.

Fig. 3 SDN architecture.

These changes in the architecture compared to traditional

networks will enable the development of a highly flexible

infrastructure that will allow operators the deployment and

introduction of new services into the network at an increased

pace of innovation.

Some of the key characteristics of SDN are:

 Directly program network devices from the controller,

thanks to the separation of the control and data planes.

 Dynamically manage the network, adjusting to the traffic

that circulates in it, managing the eventual requirements

that may appear.

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 4

 Centrally control and manage the functionality of the

network. This is because the controllers can handle a set of

devices and can decide the entire operation of the network

applying previously defined policies.

 Configure the use of network resources dynamically.

Network operators can write their programs achieving a

rapid innovation since there would not exist dependency

on proprietary software.

 Simplify the design of the network as well as its operation,

since the instructions are received from the controller,

instead of being received from vendors specific to certain

brands or protocol owners.

A. Openflow

Openflow, created by the ONF (Open Networking

Foundation), is one way of structuring the communication

between the controller and switching devices. Switches that

support Openflow have one or more tables holding rules. These

rules handle the incoming packets, discriminate among traffic

flows and execute a set of actions on them [11].

Each rule includes some fields that must be matched

against incoming traffic. There is a variety of conditions that

can be specified to match, such as: in-port, out-port, source ipv4

address, etc. Based on the matching result, certain actions will

be executed. Actions include: forwarding to other ports,

sending packets to the controller, flooding, dropping packets,

etc. Depending on the rules installed on networking devices by

the controller, the devices will have different functionalities and

services such as: firewall services, L2 Switch capabilities, NAC

(Network Access Control) services, load balancers, etc.

B. Openflow Switches

An Openflow switch is a solution that consists of a physical

or virtual switch that has one or more internal flow tables where

it is determined how to process any data flow that enters the

switch. Besides, it has a channel to communicate with a SDN

controller [11].

C. OpenDayLight Controller

OpenDayLight (ODL) is a modular open-source platform

for SDN, which provides centralized, programmable control

and monitoring of network devices. This controller is a

collaborative project organized by the Linux Foundation and

aims to accelerate the adoption of SDN worldwide. The stable

version that was used in the project is referred to as Beryllium.

1) General Architecture

OpenDayLight’s architecture is made up of the Controller

Platform layer and the Service Abstraction Layer (SAL) [12] as

shown in Fig. 4.

2) MD-SAL (Model Driven-SAL)

SAL allows applications, services and modules of the

controller to communicate with other components using

southbound (SB) and northbound (NB) interfaces as shown in

Fig. 4. SB interfaces allow communicating with network

devices and NB interfaces allow communicating with

Applications. SAL determines how to respond to devices

regardless of what protocols in the SB interfaces are being used,

so Openflow is just an option not the only one. For the project,

the MD-SAL model included in Beryllium was used. MD-SAL

has the following two components:

a) A data store shared by all modules which maintains the

following structure:

 Operational Data Store: Keeps information about the

current state of the network.

 Configurational Data Store: Space where modules can

store configuration information. Users can also modify

this store through REST APIs using NB interfaces such

as is the case of DLUX.

b) A message bus is a messaging service which allows

multiple modules to notify events and communicate with

each other. Events includes RPCs (Remote Procedure

Calls) and data change notifications.

So, SAL is the framework that connects OpenDayLight

modules through well-defined APIs. Yang models are used to

generate this sort of APIs [12].

Depending on whether the data is stored or read in the data

store, the modules may become providers or consumers. A

provider stores data in the data store and generates notifications,

whereas a consumer uses the data in the data store and receives

notifications about data changes.

3) Controller Platform

This element contains bundles or modules that implement

basic functionalities or advanced networking services. L2

Switch, Topology Processing, Statics Manager and Openflow

Switch Manager are examples of modules which are part of the

Controller Platform [13]. The MP-TCP Analyzer is part of this

layer and may interact with other modules as shown in Fig. 4.

Fig. 4 MP-TCP Analyzer within OpenDayLight’s architecture.

IV. DESIGN AND IMPLEMENTATION

A. Functional Requirements

Some relevant functions that the Analyzer must do are:

 Install the appropriate rules on Openflow switches

(physical/real or virtual) so that they send TCP packets to

the OpenDayLight controller.

 Process TCP packets received from the switches so that

only packets containing their option field with MP-TCP

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 5

information are identified. Further decode MP-TCP

messages of such packets.

 Present to the end user all the information obtained from

MP-TCP messages using a graphical user interface.

 Display the decoded information in real time and allow the

end user to filter information based on the following

criteria: switch identification, MAC address, IP address,

MP-TCP message subtypes.

 Start/Stop, at will, the operation of the Analyzer in either a

specific switch or all the switches, without unloading the

modules.

B. Use Case Diagram

Fig. 5 shows the use case diagram for the Analyzer. This

diagram shows the user as the main actor who interacts with the

OpenDayLight controller and MP-TCP Analyzer. The user can

start/stop OpenDayLight and the Analyzer, see MP-TCP

decoded messages in real time, start/stop the Analyzer

functionality in every switch, filter messages based on the MP-

TCP subtype, MAC addresses or IP addresses (source or

destination), access help information on the Analyzer, access

the graphical representation of the current topology of the

network provided by DLUX.

C. Relevant components used from OpenDayLight’s

The Analyzer is contained in a module that is executed in

the context of OpenDayLight’s platform which will be running

on the SDN-controller machine. The main components from

OpenDayLight’s that were used in the implementation are:

DLUX: Application that exploits the REST API and is used

to visualize the network topology; it is part of the modules that

can be easily installed in the controller.

L2 Switch: Provides functionalities of a layer 2 switch to

devices managed by the controller.

Openflow: Service located at the SB interface that manages

the communication between the controller and the physical

and/or virtual network devices using the Openflow protocol.

The MP-TCP Analyzer must be installed and configured to

be loaded and run in Karaf [14]. It is assumed that the additional

modules should have been loaded before the Analyzer.

D. Main ideas behind the implementation of the Analyzer

Java was used as the programming language for writing the

code of the Analyzer. The starting point for developing the code

was structured modifying an existing maven archetype [15] and

Yang as the modeling language for generating classes that

allow handling the data store. Then, some classes were

modified and others created to develop the required

functionality.

When the Analyzer starts, it registers to receive

notifications for every kind of event of interest (e.g. switches

connecting to the controller, packets arriving to the controller,

etc.). Much of the processing must be coded when TCP packets

are received in the controller.

When switches connect to the controller, the Analyzer will

receive notifications associated to these events and will install

proactive rules after other modules running in OpenDayLight

might have processed these same notifications.

Fig. 5 Use case diagram for the MP-TCP Analyzer.

These proactive rules have higher priority than those

previously installed by other modules and will have as their

main action: packet flooding. Flooding will be done only in the

case of incoming TCP packets and will include every Openflow

forwarding port and the port connecting the switch to the

controller. Flooding TCP packets may not be compatible with

every peer module’s functionality running in OpenDayLight.

Once the rules have been installed in the switches, every

TCP packet is sent from switches to the controller. The

Analyzer must discriminate between regular TCP packets and

those using the option field for signaling MP-TCP. After this

process, it is possible to decode each MP-TCP subtype

messages.

In the case of proactive rules, depending in the network

topology, the possibility of introducing loops when defining the

rules should be avoided. This is accomplished by using the

services of the Loop Remover Module (a submodule of L2

Switch) that allows to find out which ports are marked as

forwarding or discarding. Discarding ports will not be

considered in output actions such as flooding. Loop Remover

applies the Spanning Tree Protocol (STP) for its tasks.

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 6

Fig. 6 Flow diagram for MP-TCP Analyzer.

For decreasing the overhead that flooding implies, as part

of processing TCP traffic, reactive rules are installed on

switches when initial MP-TCP messages arrive to the

controller. These rules will have even higher priority than

proactive rules and will avoid doing flooding when TCP

packets arrive to switches but they will still be sent to the

controller and be forwarded to their intended destination.

These reactive rules may also not be compatible with every

peer module’s functionality running in OpenDayLight, but

incompatibility between modules has been reported in other

scenarios [14] (e.g. Link Aggregation Control Protocol- LACP

and L2 Switch).

 The basic idea for the reactive rules is to find out the output

port for a packet for a given destination IP address. This can be

done by simply storing information contained in the arriving

packets forming a key structured by: source IP address, ingress

port and switch ID (identification of the switch that sent the

packet to the controller). Later, when required, a search in the

stored information should be made looking for the association:

destination IP address, output port and switch ID. This will

allow to conform the rule to be installed in a specific switch.

Finally, it should be pointed out that when TCP packets are

sent to the controller, actually only 100 bytes are sent so the

overhead of transmitting the full packet is avoided and this

number of bytes contains the TCP option field with the MP-

TCP message. 100 is a number that was estimated theoretically

considering every MP-TCP message subtype and by

monitoring MP-TCP implementations. TCP packets are stored

in the switches for later use for forwarding them according to

the installed rules.

Fig. 6 shows the flow diagram for the Analyzer which

includes the different aspects that have been described in the

previous paragraphs.

E. GUI for the Analyzer

A GUI for the analyzer was designed and implemented as

shown in Fig.7. The upper area of the window holds a menu

bar. The first menu item (File) allows visualizing previously

saved MP-TCP messages. The second menu item (Actions)

allows filtering MP-TCP messages based on their subtype and

allows cleaning information in the decoded-packet window.

The last menu item (Help) provides basic information about

how to use the Analyzer.

Most of the upper section of the main window (Fig. 7)

allows displaying in real time a list of the decoded MP-TCP

messages which will also be persisted in files. This list for the

decoded messages has been set to handle up to twenty thousand

messages and will be emptied when this limit is reached. The

information that is displayed for each message can be clearly

observed in Fig. 7 (Path, Switch ID, etc.).

The lower left area of the main window is used to display

information of the selected message in the list.

The area in the lower right section of the main window in

Fig. 7 is used for three purposes:

 It is possible to input MAC and IP addresses for filtering

actions. Addresses may be either source or destination.

 By using the upper comboBox, a user can select a specific

switch and filter MP-TCP messages sent by the selected

switch. The lower comboBox allows enabling/disabling

the Analyzer in the selected switch in the upper comboBox.

This is useful when the Analyzer only is required to capture

MP-TCP messages coming from one switch.

 Start/Stop button helps to activate/deactivate the Analyzer.

This option allows removing rules in all switches.

V. RESULTS

For testing the Analyzer, three basic scenarios were used

and they employed two HP ProCurve 3500 switches and several

virtual switches based on the software implementation known

as Open vSwitch (OVS) [16].

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 7

Fig. 7 MP-TCP Analyzer’s main window.

A. Results for ring topology with three switches

 The first topology is presented in Fig. 8. It includes two HP

ProCurve 3500 switches connected to the ftp client (Switch 30)

and ftp server (Switch 20). There is an alternative path that

leads to a virtual switch (Switch 40) based on OVS. The client

and server belong to network 192.168.50.0/24, and each of the

interfaces in the controller belongs to a different network (see

Fig. 8). For avoiding the controller to become overloaded,

wondershaper was used as a tool to limit the data rate to 5Mbps

in every interface.

Fig. 8 First network topology for testing.

 Fig. 8 shows a topology which has a loop, so the Analyzer

and L2 Switch will not consider those ports labeled as

discarding when installing rules on the switches.

 Fig. 9 to 16 show some results obtained when running the

MP-TCP Analyzer with the ring topology. Both L2 Switch and

the Analyzer employ proactive rules. For easing up the task of

distinguishing rules installed by either of these modules, it

should be noted that:

 L2 Switch uses values of 0, 2 and 100 as their priority level.

Rules with priority values of 200 (proactive) and 5000

(reactive) are installed by the Analyzer.

 The proactive rules include a matching condition on TCP.

 Fig. 9, 11 and 13 show proactive rules installed by L2

Switch and Fig. 10, 12 and 13 show proactive rules installed by

the Analyzer and are marked in green.

 The proactive rules installed by L2 Switch and the

Analyzer make flooding to the port that connects the switch to

the controller and all Openflow ports unless a port is marked as

discarding. For Switch 30 in Fig. 11, there is not any rule

installed by L2 Switch whose flooding action includes port 1.

 Something similar applies to Switch 40 in Fig. 13, there is

not any rule associated with port 2 as an output port. This

happens since both L2 Switch and the Analyzer use Loop

Remover for installing their proactive flows and consider the

STP status port.

Fig. 9 Proactive rules installed by L2 Switch in Switch 20.

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 8

Fig. 10 MP-TCP Analyzer rules are added in switch 20.

Fig. 11 Proactive rules installed by L2 Switch in Switch 30.

Fig. 12 MP-TCP Analyzer rules are added in Switch 30.

 Examples of reactive rules installed by the Analyzer are

presented in red color in Fig. 10 and 12. These rules do

matching with the input port, TCP, and destination IP address

and do not do flooding, the actions are sending the full packet

to an output port and sending packets to the controller.

Fig. 13. Proactive rules installed by L2 Switch and the Analyzer in Switch 40.

 There is not any reactive rule in the OVS (Fig. 13) installed

by the Analyzer since the virtual switch never sends any TCP

packet to the controller given that the path using OVS is not

used, as some ports are marked as discarding (both in OVS and

Switch 30), hence the Analyzer only gets to install proactive

rules.

Fig. 14 Network topology in DLUX.

 Fig. 14 shows the graphical representation of the topology

provided by DLUX for the network being tested. Something to

pay attention is that DLUX draws multihomed hosts as if they

were different computers, considering the number of interfaces.

 Fig. 15 shows an MP-CAPABLE message with its A-H

flag bits and the key of the transmitter. Fig. 16 shows the

information of a DSS message, including the DSN, the subflow

sequence number, flags, data length, ACK and checksum.

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 9

Fig. 15 A captured MP-CAPABLE message.

Fig. 16 A captured DSS message.

B. Linear topology used for testing

 Fig.17 presents a linear topology using the two HP devices

and an OVS. In Fig. 18, the whole network is simulated on a

computer running Mininet. The computer uses Ubuntu 14 as the

operating system with MP-TCP enabled. Due to the way

Mininet is built, the protocols’ implementations enabled in

Ubuntu will be used during simulation.

 Proactive rules do not discard any port for the output

actions because this linear topology does not have any loop;

besides, when the first TCP packets arrive to the controller, the

Analyzer will install reactive rules.

 In every case, the expected results were obtained using the

Analyzer.

Opendaylight ControllerOpendaylight Controller

 FTP SERVERFTP CLIENT

PATHID:2859358547106752PATHID:3065512966066880

ETH2

ETH0ETH7

ETH2ETH0

SYMBOLOGY

NO OPENFLOW

PORT

 OPENFLOW

PORT

95 8 122 5 2

ETH1

PATHID:1680822740788538PATHID:1680822740788538

9

3 3

ETH5

SWITCH HP SWITCH HP

SWITCH OVS

ETH0:192.168.30.10
ETH1:192.168.40.10
ETH2:192.168.20.10

Controller IP directions

LAN:192.168.50.0/24

.1

.2

.3

.4

Fig. 17 Linear topology with two physical switches and one OVS.

VI. CONCLUSIONS AND FUTURE WORK

 This paper describes several aspects on how a MP-TCP

Analyzer was developed using the architecture of SDN and the

positive results that were obtained.

Ubuntu 14.04Ubuntu 14.04

MininetMininet

Virtual
Web Server

Virtual
Web Client

PATHID:1PATHID:3

ET
H

2

ET
H

6

SYMBOLOGY

PORT OPENFLOW

1 23 1

PATHID:2PATHID:2

2 2

OpenDayLight Controller

VIRTUAL LINK

127.0.0.1:6633
Controller IP directions

Web Server IP directions

Web Client IP directions
ETH2:10.0.0.1/24

ETH6:10.0.0.3/24

Fig. 18 Linear topology simulated with Mininet using MP-TCP.

 The basic idea for deriving TCP traffic to the controller is

to install proactive rules that send all TCP packets to the

controller and flooding the packets to all other ports. From the

received TCP packets in the controller, MP-TCP messages

must be discriminated and decoded.

The Analyzer works with topologies that can produce

loops by using services provided by OpenDayLight and based

on STP. If ports are marked as discarding, they will not be

included in the flooding process in proactive rules.

 For decreasing overhead and improving performance in the

network due to flooding, reactive rules were also used. In any

case, what is finally sent to the controller is only 100 bytes that

hold MP-TCP messages. However, these bytes allow the

analyzer to perform a bit level analysis which provides a degree

of detail on MP-TCP messages that is not found in similar

solutions using SDN architecture.

 One limitation of the Analyzer is CPU consumption due

to all the processing done over each packet that is received. If

the data rate is higher than 5Mbps in each of the three switches,

the controller crashes since it must handle three physical

interfaces and more messages per second. The implementation

of the Analyzer must be optimized and new tests should be done

using machines with more powerful processors and memory.

 The Analyzer was proofed to work with a few modules

included in OpenDayLight such as L2 Switch without

interfering with its functionality. On the other hand, additional

tests with different kind of modules should be made since the

proactive and reactive rules installed by the Analyzer may

become incompatible with them and alternatives to overcome

these problems should be proposed.

 Finally, the Analyzer could be the basis to develop other

modules for OpenDayLight related to MP-TCP such as the one

presented in [8] and code for additional protocols could be

added.

ACKNOWLEDGMENT

The authors would like to thank our university, Escuela

Politécnica Nacional, for supporting our research.

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton FL, United States. 10

REFERENCES

[1] C. Raiciu, C. Paasch, et al, “How hard can it be? Designing and

implementing a deployable multipath TCP,” Usenix., vol.0, pp. 29–29,

April 2012.

[2] MD-SAL: L2 Switch, opendaylight wiki,

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-

SAL:L2_Switch/

[3] Allied Telesis, Mirroring, Feature Overview and Configuration Guide,

United States of America, 2016, pp.3-5.

[4] D. Jhatakia, Network Packet Monitoring Optimizations in Data Centre,

United States of America: Happiest Mind Technologies, pp.4-9.

[5] Taps, Bypass and NTO Solutions, Empowered,

https://empowerednetworks.com/visibility/network-visibility.

[6] Using SDN to Create a Packet Monitoring System, NetworkWorld,

http://www.networkworld.com/article/2226003/cisco-subnet/using-sdn-

to-create-a-packet-monitoring-system.html.

[7] Skydive: a real-time network analyzer, RDO,

https://blogs.rdoproject.org/7874/skydive-a-real-time-network-analyzer.

[8] M. Sandri, A. Silva, L. Rocha, F. Verdi, "On the Benefits of Using

Multipath TCP and Openflow in Shared Bottlenecks," IEEE Trans. Magn. ,

vol. 0 , pp. 9-16, March 2015.

[9] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for

Multipath Operation with Multiple Addresses,” IETF RFC, 2013.

[10] I. Bernal “A Friendly Introduction to the Requirements and Supporting

Technologies for 5G Cellular Networks,” Revista Politécnica, vol. 37, No.

1, March 2016.

[11] What is Openflow, A. Bregma,

http://abregman.com/2016/11/30/openflow-introduction/

[12] J. Medved, R. Varga, A. Tkacik, K. Gray, “OpenDaylight: Towards a

Model-Driven SDN Controller architecture,” IEEE Trans. Magn., vol. 0,

pp. 1-6. June 2014.

[13] Linux Foundation, OpenDaylight Developer Guide, 1st ed., San Francisco:

Linux Foundation, 2015, pp.40-50.

[14] Installing OpenDaylight, OpenDaylight Project,

http://docs.opendaylight.org/en/stable-boron/getting-started.

[15] SDNHub Opendaylight Tutorial, SDNHub,

https://github.com/sdnhub/SDNHub_Opendaylight_Tutorial

guide/installing_opendaylight.html#install-the-karaf-features

[16] Open vSwitch, Linux Foundation, http://openvswitch.org/

