
15
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States.

Lecturer Improvement Program at the National

University of Singapore: A Software Engineering

Approach
Elizabeth Vidal Duarte

Universidad Nacional de San Agustín, Perú evidald@unsa.edu.pe

Abstract— UNU-IIST contributes through Curriculum

development projects, in which courses of software technology for

universities in developing countries are developed and University

development projects, which complement the curriculum

development projects by aiming to strengthen all aspects of

teaching in universities in developing countries. This paper shares

the experience of the Lecturer Improvement Program in the

National University of Singapore sponsored by UNU-IIST. We

stand out the lessons learned about how to teach Software

Engineering courses.

Keywords—cross-cultural project; curriculum improvement

Digital Object Identifier (DOI):

http://dx.doi.org/10.18687/LACCEI2017.1.1.195

ISBN: 978-0-9993443-0-9

ISSN: 2414-6390

mailto:evidald@unsa.edu.pe
http://dx.doi.org/10.18687/LACCEI2017.1.1.195

Lecturer Improvement Program at the National

University of Singapore: A Software Engineering

Approach

Elizabeth Vidal Duarte

Universidad Nacional de San Agustín, Perú evidald@unsa.edu.pe

Abstract— UNU-IIST contributes through Curriculum

development projects, in which courses of software technology

for universities in developing countries are developed and

University development projects, which complement the

curriculum development projects by aiming to strengthen all

aspects of teaching in universities in developing countries. This

paper shares the experience of the Lecturer Improvement

Program in the National University of Singapore sponsored by

UNU-IIST. We stand out the lessons learned about how to teach

Software Engineering courses.

Keywords—cross-cultural project; curriculum improvement

I. INTRODUCTION

The United Nations University International Institute for
Software Technology (UNU-IIST), established in Macau in
1992, was one of the Research and Training Centers of UNU
(United Nations University) [1]. UNU-IIST had provided vital
research on critical software systems while mentoring
academics from around the developing world. Through its
partner universities in developed countries, UNU-IIST
provided off-shore fellowships which aims to strengthen
teaching in universities in developing countries by training
lecturers from these universities at partner universities in
developed countries under the Lecturer Improvement Program
[2].

This paper shares the experience of the author in the
Lecturer Improvement Program (LIP) at the National
University of Singapore (NUS). The objective of the LIP was
to identify possible area that could be improved in the courses,
curriculum and lectures in the Escuela Profesional de
Ingeniería de Sistemas (EPIS) [9], Universidad Nacional de
San Agustín(UNSA) [10] where the author is a full-time
professor. The analysis was based on lessons taken from the
attended courses at the National University of Singapore
(NUS) and discussion with NUS staff.

After a review of the courses and make a comparison
between the current courses taught in EPIS a series of lessons
has been obtained. We point out a set of recommendations
that were classified in three groups: recommendations that will
help EPIS to improve courses, recommendations that will be
helpful in improving lectures and recommendations for sharing
this experience with most of the universities in our country.
These recommendations were implemented in a medium and
long term strategy.

The rest of the paper is organized as follow section II
explains the characteristics of the Lecturer Improvement
Program and a brief description of the National University of
Singapore. Section III describes the lessons learned and
recommendations about course improvement. Section IV
describes the lessons learned and recommendations about
teaching improvement. Finally we share our conclusions.

II. LECTURER IMPROVEMENT PROGRAM

A. Description

Under the Lecturer Improvement Program (LIP) the
lecturers from the developing countries generally spend one
semester at one of the partner universities of UNU-IIST.
During that time lecturers study several (generally four or five)
courses offered by the partner university (Leicester, York,
Belfast and Oxford in the UK, in Brisbane, Australia, Toronto
in Canada and National University of Singapore in Singapore).

These courses may be at either undergraduate or
postgraduate level. For each of these courses, they receive from
the partner university all the appropriate course material
(lecture material, student's notes, course exercises, etc.), and
UNU-IIST provides them with recommended text book(s) for
the course.

When the lecturers return to their home university,
they use the knowledge they have gained on the project,
together with the course material and text books provided to
them, as the basis for improving existing courses or introducing
new courses into the teaching curriculum of their own
university, thereby updating and expanding this curriculum.

In order to maximize the benefits from the project for any
particular developing country, the project is run on a
"knowledge sharing'' basis. It means that as far as possible the
lecturers selected for the project from any given country study
different sets of courses at overseas universities, and when they
return home the knowledge and the course material and text
books they acquire through the project are made available to
other universities in the same country.

B. National University of Singapore

During the LIP the author was assigned to the National
University of Singapore [3]. Specifically to the 4-years
Bachelor in Computer Science [4] which is structured around
the Association of Computing Machinery (ACM) and the IEEE

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2017.1.1.195
ISBN: 978-0-9993443-0-9
ISSN: 2414-6390

15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for

Development and Engineering Education”, 19-21 July 2017, Boca Raton Fl, United States.

Computer Society’s Computing Curriculum recommendations
[5]. The curriculum structure is shown in Table 1.

TABLE I. NUS COMPUTER SCIENCE COURSES

The first year of the degree courses introduces the fundamental
concepts of programming, starting with well-structured object-
oriented programs. They learn how to develop algorithms and
efficient data structures to solve problems. In the second year
students are provided with the basic understanding and

appreciation of the various essential programming languages
constructs. Students learn that software engineering is also
about programming in the large by carrying out a “simple”
project that covers all the phases of software development.
 In the third and fourth years students are able to select
different courses in order to specialize themselves. Students
have to take a minimum of two courses from the Elective I
section in Table 1. Additionally, either they have to take
CS4101 Honours Project and four courses at Elective II
section, or to take seven courses at Elective II section.

According to the specifics needs of EPIS determined by
discussion with the Head of EPIS, EPIS’s Faculty and
recommendations provided by the supervisor assigned by
NUS, the attended courses were: Programming Methodology,
Software Engineering, Software Engineering Project,
Programming Languages Concepts and Programming
Languages.

This paper present a detailed description of the courses
related to the Software Engineering area. Additionally, we
analyze the key features of these courses. As a result of the
analysis we present the valuable lessons that were taken as
guideline for EPIS curriculum and lecturer improvement.

III. NUS SOFTWARE ENGINEERING COURSE DESCRIPTION

A. Software Engineering (CS2103)

This course introduces the necessary conceptual and
analytical tools for systematic and rigorous development of
software systems. It covers four main areas of software
development, namely object-oriented analysis, object-oriented
design, implementation, and testing, with emphasis on the
design and implementation of software modules that work
cooperatively to fulfill the requirements of a system.

Tools and techniques for software development, such as
Unified Modeling Language (UML), program specification,
and testing methods, are taught too. Major software
engineering issues such as modularization criteria, program
correctness, and software quality are also covered.

The course is considered as an introductory course. Topics
covered include an overview of software process, methodology
and software development models. Requirement phase: use
case and domain modeling and activity diagram. Analysis
phase: software system architecture, use case realization, class
and object models. Design phase: class and object diagrams,
interactions diagrams, state-charts, design patterns.
Implementation and Testing phase: unit testing, integration
testing and automated test driver.

The final aim of this course is to produce a “simple”
software. It is done in tree submissions (1) Requirement and
Analysis, (2) Design and (3) Implementation and Testing.

The structure of the course is shown in Table II.

TABLE II. CS2103 SOFTWARE ENGINEERING

The objective is to teach the understanding and use of object-

oriented methods to analyze, specify design and implement

large computer systems. Lectures gives the theory

background. Tutorial allows students to explore the theory.

Project is a tool for students to apply what they have learned.

B. Software Engineering Project(CS3215)

In this course, students design and implement a tool called
Static Program Analyzer (SPA). SPA is an interactive tool that
automatically answers queries about programs. It tries to locate
code relevant to the maintenance phase.

Project stages include analysis and architectural design and
three iterations in which students develop SPA incrementally.
The details of what students should deliver in each stage are
described in five assignments. The SPA project is developed in
teams of 4-6 students. Each team is further divided into two
groups of 2-3 students. Each group delivers a different
subsystem of the SPA. These subsystems communicate
through a non-trivial interface. While each group will have to
complete an independent piece of work, groups in a team will
have to communicate a lot to integrate their work and to get the
SPA product right. The structure of the course is shown in
Table III

TABLE III. CS3215 SOFTWARE ENGINEERING PROJECT

The objective is that students work through the Software
Development Life Cycle (SDLC) to complete a team project.
Specific objectives are: To prepare students for industrial
projects, to develop the ability to work in groups in a project of
substantial size and complexity, to enhance project planning
skills, to develop communication and writing skills, to apply
and consolidate what students have learned in CS1101,
CS1102 and CS2103 and To follow the SDLC according to the
"best software engineering practices", to develop a well-tested
production quality software system.

Regarding to the method class there are only 5 lectures in
this course. During the lectures, students discuss the team
project “Static Program Analyzer” from the functional,
architecture and technical point of view and explain the SDLC
for the project. There are five assignments leading to project
completion. In the last assignment, at the end of the course,
students submit a final project report and demo the system they
have implemented. For each assignment, students submit a
documented solution and present their solution during tutorial
hours.

IV. COURSE IMPROVEMENT RECOMENDATIONS

After attending the courses for a whole semester and
continues discussions with NUS staff important lessons and
recommendations have been obtained.

A. Improving Software Engineering Courses

EPIS should cover the topics of the software development

process in a single course namely Software Engineering I.

Topics must include: software engineering principles, software

development process, object-oriented requirement capture and

analysis, object-oriented design, implementing and testing. In

order to give students a practical experience about how models

become into code it is necessary to implement a small project.

EPIS should also include a course like the Software

Engineering Project (CS3215) from NUS. In this course,

students design and implement a tool called Static Program

Analyzer (SPA). SPA is an interactive tool that automatically

answers queries about programs. It tries to locate code

relevant to the maintenance phase.

Project stages include analysis and architectural design and

three iterations in which students develop SPA incrementally.

The details of what students should deliver in each stage are

described in five assignments. The SPA project is developed

in teams of 4-6 students. Each team is further divided into two

groups of 2-3 students. Each group delivers a different

subsystem of the SPA. These subsystems communicate

through a non-trivial interface. While each group will have to

complete an independent piece of work, groups in a team will

have to communicate a lot to integrate their work and to get

the SPA product right.

This course follows the Software Engineering course

(CS2103) where students got a broad view of the software

development process. In CS3215 students develop a software

tool, with much emphasis on architecture, complex design

problems, data structures, algorithms and incremental

development.

Since it is an eight-credit course, students are expected to

spend the equivalent time to two courses on the project work.

Time management is a critical success factor for this course.

Attitude “just get a program run” doesn’t work on this course.

They have to consider reliability, high quality of

documentation and report, flexibility and reusability. Also

they have to demonstrate some degree of innovation in terms

of features and design solutions and demonstrate maturity of

skills in areas of team work, design, incremental development,

and testing.

As mentioned in the course description, each team project

is further divided into two groups that deliver a different

subsystem of the SPA. As the team progresses into the project,

students create more and more source code. As each of them

is working independently on different parts of the system,

they occasionally need to pass their set of codes to other

members for integration. Students are strongly encouraged to

use control-version system software. Students are required to

test their software during the development process. How much

testing they need to do depends on how much they need to

verify the code. In order to facilitate the project development

NUS uses CVS [7] and CPP Unit [8] tools.

It is interesting for our analysis to observe how NUS

students put into practical use the techniques of Software

Engineering that have been studied so far. But additionally,

this module is indeed a good practice for students to learn

about software project management. Student experience that

time management is extremely important during the

development of the project. It is the responsibility of every

member to adhere strictly to any deadlines that have been set.

Since modular programming is adopted as a practice, all the

modules are not exactly independent of one another. Hence, it

would be impossible to integrate the entire project together if

any one of the modules were not ready. It is very important

that every member in the group cooperates and communicates

extensively. Another point is that students have to plan their

working schedule for this project. Tasks should be distributed

clearly, and an agenda should be planned for the group

meetings to achieve effective, focused discussion.

V. TEACHING IMPROVEMENT RECOMENDATIONS

A. Covering more body of knowledge

One of the features of world-class universities is that they
use less lecture-hours per-week to cover the body of
knowledge. The average time assigned is two lecture-hours and
two tutorial-hours per course – per week. For the purpose of
this recommendation, we will focus on why our lecturers do no
cover all the topics considered in the courses they currently

teach, considering that our curriculum has twice as much the
assigned hours per course-per week.

 One of the best practices of lecturing at NUS was that
Lecture notes and lecture slides ought to be uploaded to the
course web-page at least two days before the lecture. Students
must read the lecturer notes and bring them printed to class.

This practice allows lecturers to cover more body of
knowledge since students do not spend much time taking notes.
Additionally, students get a general idea about the topics before
the lecture.

B. Filling the Gap between Theory and Practice

Tutorials and Labs form the practical element of NUS
courses. NUS attaches great importance to developing good
programming skills in students. NUS closely monitors
students’ progress through the tutorial hours. The tutorials are
used to discuss the assignments given in class. It is not enough
to work on the assignments during the lab or tutorial sessions.
NUS students have to work on the assignments before the lab
sessions. They use the lab to have a focused question-answer
session about the assignments.

In order to reinforce and ensure students learning, we
suggest some changes and a new organization in the laboratory
sessions at our university:

• The assignments should be proposed by the lecturer in
charge of the theory

• To have a better communication with the lab staff in
order to make sure that assignments are strongly
related to the theory.

• To encourage students to make more challenging
assignments.

• To make sure students use the lab hours to have
focused answer-question sessions.

C. Using Technology

NUS lecturers make intensive use of technology in their
courses. Every course has an official webpage. Additionally,
they make use of and Integrated Virtual Learning Environment
(IVLE). This web environment allows NUS lecturers to post
their notes, announcement, assignments, forum discussions,
etc. We can assure that 100% of NUS lecturers make good use
of IVLE or course web pages.

Since 2015 UNSA has been working with Google
ClassRoom. The use has been very light; just some lecturers
have been using it to upload their lectures notes. But these
notes have been posted after the lecture sessions in most of the
cases.

The use of technology will allow our lecturers to cover
more body of knowledge. Since there is already a Virtual
Learning Environment tool lecturers should upload their
lecture material before the class session.

NUS students are encouraged to use IVLE Forum. Forums
are good for understanding the course material since students

can post example codes or test programs. Forums open
discussions about course materials and assignments that were
not clear enough. It is a vehicle for sharing information and
helping each other. It allows lecturers to offload a lot of
subsidiary discussions out of the classroom.

Forums are also good platforms to gauge how much
students have understood the course materials, and what
problems they are facing. Also lecturers will be able to check
whether students have done the reading assignments or
exploratory questions that lecturers have told them to do.

VI. SHARING RECOMENDATIONS

Many universities in Peru suffer from isolation from the
international academic community: mostly because they have
very little money available for international travel. This makes
it very difficult for universities to keep abreast of advances in
the subjects they teach, particularly in a field such as software
engineering which changes so rapidly.

In order to maximize the benefits from this experience, it
was necessary to share the lessons obtained from NUS with
any university in Peru. It means to share the course materials as
well as the knowledge obtained in the new courses studied.
Additionally, it was important to point out the best teaching
practices learned in a world-class university like NUS. For
these purposes we proposed a series of seminars for lecturers in
our University and other two Universities in our city. These
seminars considered the following topics: (1) Teaching the
Capstone Project in Software Engineering (2) General
Teaching and Research experiences in a World-Class
University.

Conclusions

This paper has presented the experience in the Lecturer

Improvement Program sponsored by the UNU-IIS. We have

suggested a series of recommendations in order to improve

Software Engineering courses and teaching skill. The

recommendations were based on the courses attended for the

author at the National University of Singapore and discussions

with NUS faculty.

From the comparative analysis made between courses at NUS

and courses at EPIS, our analysis has shown that there are

some core-units missing in Software Engineering courses.

Also our analysis pointed out that it is necessary to reassign

some units in the Software Engineering course in order to

give students a deeper theory and practical understanding of

the software development process.

Additionally, we have presented a series of recommendations

related to the improve teaching. We have proposed the

intensive use of an Internet Learning Environment. This tool

will help lecturers to cover more body of knowledge by

uploading the material before the class.

All the recommendations were. After ten year of the

fellowship we are still in touch with NUS faculty. They share

new material with us and they keep us updated about new

material for the courses.

Finally, for nearly a generation, UNU-IIST has been

committed to providing vital research on critical software

systems while mentoring exceptional academics from around

the developing world. As the world of information and

communication technology (ICT) has changed immensely

over the decades, it has defined a new mission along with a

four-year strategic plan in 2010. The plan calls for UNU-IIST

to embark on a more dramatic and focused response to the

new computing environment and its potential to serve the

cause of sustainable development. UNU decided to evolve the

former IIST into a new Institute on Computing and Society

(ICS). The mission of UNU Computing and Society (UNU-

CS) is to focus on the key challenges faced by developing

societies through high-impact innovations in computing and

information technologies.

ACKNOWLEDGMENT

The author is deeply grateful to UNU-IIST for giving her the

opportunity to be part of the Lecture Improvement Program at

the National University of Singapore

Sincere thanks to Dr. Soo Yuen Jien and Dr. Damith C.

Rajapakse whom gave me the opportunity to learn a better

way of teaching. The author is deeply grateful to her

supervisor at NUS Dr. Chin Wei-Ngan, for his extensive

support, discussions and guidance throughout her work.

REFERENCES

[1] United Nations University https://unu.edu/

[2] Z. Chaochen, How UNU/IIST Serves Developing
Countries?http://unpan1.un.org/intradoc/groups/public/documents/apcity
/unpan001464.pdf

[3] National University of Singapore. http://www.nus.edu.sg/

[4] Bachelor of Computer Science – National University of Singapore.
http://www.comp.nus.edu.sg/programmes/ug/cs/

[5] ACM/IEEE Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science. https://www.acm.org/education/CS2013-final-
report.pdf

[6] Java Programming Style, Design and Marking Guidelines
http://www.comp.nus.edu.sg/~cs1101x/3_ca/labs/styleguide/styleguide.h
tml

[7] CVS - Concurrent Versions System. http://www.nongnu.org/cvs/

[8] CppUnit. https://sourceforge.net/projects/cppunit/

[9] Escuela Profesional de Ingeniería de Sistemas
http://www.episunsa.edu.pe

[10] Universidad Nacional de San Agustín http://www.unsa.edu.pe

https://www.acm.org/education/CS2013-final-report.pdf
https://www.acm.org/education/CS2013-final-report.pdf
https://sourceforge.net/projects/cppunit/
http://www.episunsa.edu.pe/
http://www.unsa.edu.pe/

