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Abstract– Currently, many researchers from industry and 

academic institutions are working on the study of electric vehicles, 

battery systems and renewable energy sources (solar, wind, 

geothermal, etc.). In order to carry out research on each of these 

technologies it is required large capital investment for equipment. 

Additionally, problems must be faced such as variability of 

environmental parameters, large space requirements, pollution (in 

some cases), etc. The use of software and hardware to emulate 

different types of actual batteries shows to be a low-cost and 

environmentally friendly option due to some of its features. The 

battery emulator system has the ability to replicate the behavior of 

any kind of actual battery using a virtual battery model (also known 

as battery electric model) and a controllable DC/DC power 

converter to be used in laboratory environments. Moreover, 

emulators are not only used for batteries, these can be used to 

emulate fuel cells, photovoltaic systems, wind generators, 

thermoelectric generator, etc. This survey aims to present the 

technologies to implement battery emulators based on DC/DC 

power converters. This survey is split up into five sections. In the 

first section, as an introduction, we present the advantages offered 

by the use of battery emulators to the scientific community and the 

environment. The second section presents a review about batteries 

(technologies, models, model parameters, etc.) and also it includes 

the virtual battery models, which are the main components of 

battery emulators based on DC/DC power converters. In the third 

section, we present the main DC/DC power converter types used in 

these systems and their operation modes. Additionally, in section 4 

are presented some case studies where different topologies battery 

emulators based on DC/DC power converters with battery model 

are analyzed. These topologies are focused on their use in electric 

vehicles (EV).   
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Abstract– Currently, many researchers from industry and 

academic institutions are working on the study of electric vehicles, 

battery systems and renewable energy sources (solar, wind, 

geothermal, etc.). In order to carry out research on each of these 

technologies it is required large capital investment for equipment. 

Additionally, problems must be faced such as variability of 

environmental parameters, large space requirements, pollution (in 

some cases), etc. The use of software and hardware to emulate 

different types of actual batteries shows to be a low-cost and 

environmentally friendly option due to some of its features. The 

battery emulator system has the ability to replicate the behavior of 

any kind of actual battery using a virtual battery model (also known 

as battery electric model) and a controllable DC/DC power 

converter to be used in laboratory environments. Moreover, 

emulators are not only used for batteries, these can be used to 

emulate fuel cells, photovoltaic systems, wind generators, 

thermoelectric generator, etc. This survey aims to present the 

technologies to implement battery emulators based on DC/DC 

power converters. This survey is split up into five sections. In the 

first section, as an introduction, we present the advantages offered 

by the use of battery emulators to the scientific community and the 

environment. The second section presents a review about batteries 

(technologies, models, model parameters, etc.) and also it includes 

the virtual battery models, which are the main components of 

battery emulators based on DC/DC power converters. In the third 

section, we present the main DC/DC power converter types used in 

these systems and their operation modes. Additionally, in section 4 

are presented some case studies where different topologies battery 

emulators based on DC/DC power converters with battery model 

are analyzed. These topologies are focused on their use in electric 

vehicles (EV).  

Keywords—battery emulator; model; parameters; software; 

hardware; power converter. 

I.  INTRODUCTION  

Currently, the environmental pollution is the major 

concern of governments around the world because of its harm 

consequences. The burning of fossil fuels and their derivatives 

are the main generators of combustion gases. Transportation 

and power generation are the main sectors that use these fuels 

[1]. The environmental pollution is the cause of increasing 

levels of greenhouse gases in the atmosphere [2]. These gases 

are formed by almost 50% of carbon dioxide [3]. In recent 

years, the planet has considerably raised its temperature, this 

has led to an abnormal weather patterns [4]. The emission of 

greenhouse gases, as well as the reduction of areas covered 

with forests are the main causes of the increase in level of CO2 

in the atmosphere [5]. 

Every year, either the private or public sectors make 

efforts to reduce fuel consumption in transportation [6]. EU as 

an important goal for 2020 intend that 10% of energy 

consumption in the transportation proceed from renewable 

energy sources [7]. These efforts are reflected in an increased 

use of higher efficiency vehicles, and the use of motors that are 

powered by electricity rather than fuel [5]. This kind of 

vehicles are known as electric vehicles (EV) and almost all of 

manufacturers have released commercial EVs models [8]. The 

widespread use of EVs will contribute to the reduction of 

pollution in the environment and in this light, the 

manufacturers have started offering commercial options [9]. In 

fact, several countries have been using this type of vehicles, as 

in the case of Seattle City (USA), which has a fleet of 150 

buses covering 14 routes with a distance of 115 miles [10]. In 

Ecuador, as a government initiative, they are betting on the use 

of 100% electric vehicles in public offices [11]. The main 

benefits of using electric vehicles include reducing the use of 

fossil fuels, the fuel imports and environmental pollution as 

well as, the increasing security in the energy sector [10]. The 

electrification of transportation sector is changing the way how 

we generate and use energy. 

Generally, the energy required by EVs comes from a 

battery bank included in their fuselage. The EVs efficiency 

depends mainly on the performance of their battery bank [12]. 

This efficiency depends on parameters such as: autonomy, 

acceleration, energy recovery, etc. [13] [14] [15]. Over the 

years EVs are becoming more efficient and modern (due to 

mechanical parts are replaced by electric). Generally, the 

charging process for EVs is done through the power grid. 

Effects of this process on these electrical networks are subject 

of analysis in the scientific community [16] [17] [18]. The 

battery technology and its cost are the major impediment to the 

massive use of EVs in our society. Now, there are different 

types of battery technologies available for EVs such as lead 

acid, NiMH, Li-Ion etc. [19]. Technology of Li-Ion batteries 

presents advantages regarding other types, such as fast loading, 

high energy density, durability, high voltage, low weight, low 

self-discharge, longer life cycle and others [20], however its 

major disadvantage is its high cost. Li-Ion battery technology 
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allow greater savings and efficiencies, but this technology still 

remain very costly to produce. 

Currently, many researchers from industry and academic 

institutions are studying about electric vehicles, batteries and 

renewable energy sources (solar, wind, geothermal, etc.), 

however, the study of these technologies require big capital 

investments for equipment and trials [21]. There are also 

problems in variability of environmental parameters, large 

space requirements, etc. [22]. In the research of batteries, the 

analysis focuses on areas such as power density, internal 

resistance, operating temperature, discharge process and life 

cycle [23]. In order to carry out experiments with batteries for 

any equipment or EV, researchers draw upon either real 

batteries or simulation. The most accurate way to perform an 

experiment is by using real batteries, loads and generators [24]. 

Real battery can be rechargeable or non-rechargeable [25], 

being the second type discarded and replaced in each test 

during experiments. On the other hand, rechargeable batteries 

also produce problems since the real battery charge capacity 

varies after each test, due to: the state of charge (SOC), age and 

temperature [24]. Other problem presented is the assembly and 

disassembly of the battery in test vehicle. As a result, the use of 

real batteries for testing may increase the time to release and 

become expensive and polluting. 

Using virtual battery model and controllable DC power 

converter to replicate the behavior of different battery types is 

an alternative option of low-cost and environmentally friendly 

for laboratory settle, even to demonstrate the effectiveness of 

complete test systems [26]. The battery emulators provide 

reproducible experimental settings by using programmable 

converters [27], which can be used for unlimited number of 

trials. They can also be used to emulate fuel cells, photovoltaic 

systems, thermoelectric generators [28] [29], etc. The 

emulators can replicate scenarios in stable or dynamic state by 

loading characteristic curves of voltage and current (VI) of 

different battery types [22]. Using weather data (wind, sun, 

etc.), any battery behavior can be replicated countless times 

under laboratory conditions without depending on the 

variability of these resources. Commonly, emulators are 

formed by a combination of hardware and software. Handling 

high voltages and currents are required for hardware because 

the energy used to emulate a source is taken from the power 

supply [30]. Thus, to conduct research, primarily for the use of 

renewable energy sources and battery systems are highly 

convenient the use of emulators. 

This survey aims to present the technologies to implement 

battery emulators based on DC/DC power converters. This 

survey is split up into five sections. In the first section, as an 

introduction, we present the advantages offered by the use of 

battery emulators to the scientific community and the 

environment. The second section presents a review about 

batteries (technologies, models, model parameters, etc.) and 

also it includes the virtual battery models, which are the main 

components of battery emulators based on DC/DC power 

converters. In the third section, we present the main DC/DC 

power converter types used in these systems and their 

operation modes. Additionally, in section 4 are presented some 

case studies where different topologies battery emulators based 

on DC/DC power converters with battery model are analyzed. 

These topologies are focused on their use in electric vehicles 

(EV). 

II. BATTERIES 

The batteries allow to supply electric power to any device 

or flexible electronic systems [31], electric vehicles and power 

distribution network [32] [33]. Additionally, it is able to store 

energy from any generating source (conventional and 

renewable) [34]. In [35] a battery is defined as an 

electrochemical generator that transforms chemical energy into 

electricity through oxidation reactions - reduction. It is made 

up of cells, which are connected in series and parallel to obtain 

desired voltages and currents [36] [37]. Energy is stored at 

those cells [38]. The battery life depends on the rate of energy 

consumption [38] so it is important to investigate the behavior 

of battery at different discharge rates. Similarly, the accuracy 

of estimating the state of charge (SOC) in battery is one of the 

biggest challenges for researchers [39] [40], to maximize the 

battery use efficiency and prevent over discharge and overload 

[41] [42]. 

A. Basic theoretical concepts in the electrical behavior of 

batteries. 

 In the analysis of a battery is important to have clear the 

basic theoretical concepts for an understanding of its electrical 

behavior. These concepts are found in all the papers related to 

battery emulators. Some of these concepts can be summarized 

as follows: 

 

 Internal resistance: In the virtual battery models, to be 

discussed later, the internal resistance is a parameter 

representing the voltage drop caused by current 

variation in battery [43]. 

 State of charge (SOC): Amount of energy that can be 

taken from the battery in relation to the maximum 

load that can be stored in the battery [44]. 

 Depth of discharge (DoD): It measures the fraction of 

permanent load used, since the average discharge 

current [45]. 

 Open circuit voltage: it is the battery voltage without 

load, when it is fully charged [43]. 

 Battery capacity: it is measured in amp-hours and 

represents the amount of energy stored [46]. 

 Rate of charge / discharge: Velocity of the charge 

process or delivers its power (discharge current) [46].  

 Transient Response: Change of battery voltage caused 

by an alteration in its load current. The transient 

response can be characterized by RC networks 

(resistance - capacitance) [47]. 
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 Lifecycle: Number of times the battery can be charged 

/ discharged [48]. 

B. Battery types. 

 

Nowadays, there are a variety of battery types available on 

market. The four most commonly models used include Nickel-

Metal Hybrid Lithium-ion, Lead Acid and Lithium Polymer 

[49]. In Table I can be seen the basic technical parameters of 

these battery types [50]. 

TABLE I 
TYPES OF BATTERIES. 

Battery Type Lead 

acid 

Ni-Cd Ni-MH Lithium-

ion 

Energy densitya 

(W/Kg) 
30-50 45-80 60-120 110-160 

Power densityb 180 150 250-1000 1800 

Nominal 

voltage 
2V 1.25V 1.25V 3.6V 

Overcharge 

tolerance 
High Moderate Low Very low 

Self-discharge Low Moderate High Very low 

Operating 

temperature 
-20-60oC -40-60oC -20-60oC -20-60oC 

Cycle lifec 200-300 1500 300-500 500-1000 

a: Chargeable electric energy per weight of battery pack. 

b: Proportion of dischargeable electric energy to charged energy.  

c: The number of charging/discharging cycles in battery’s entire life. 

 

Although all batteries handle the same range of operating 

temperatures, the Li-Ion batteries are those with better benefits 

than the rest. Among the main advantages are: higher average 

nominal output voltage, high energy density and power, low 

energy loss by self-discharge, no memory effect and longer 

service life [50] [51] [52]. This battery is used in a variety of 

applications such as power tools, medical equipment, EVs, 

satellites, etc. Due to its high energy density and storage 

efficiency (around 90%), the Li-Ion batteries are ideal for use 

in EVs [12]. 

In Table II, different types of Li-ion batteries [46] are 

summarized. Currently, researchers have focused their studies 

in Lithium iron phosphate (LFP - LiFePO4) as the main 

chemistry composition for batteries [51] [53] [54] [55]. A great 

advantage of these batteries is the operating temperature range 

(ranging from -20 to +60 °C) and its high power density. 

 

 

 

 

 

 

 

 

TABLE II 
TYPES OF LI-ION BATTERIES. 

 
Lithium 

Iron 

Phosphate 

Lithium 

Manganese 

Oxide 

Lithium 

Titanate 

Lithium 

Cobalt 

Oxide 

Lithium 

Nickel 

Cobalt 

Aluminum 

Lithium 

Nickel 

Manganese 

Cobalt 

Cathode 

chemistry 

descriptor 

LFP LMO LTO LCO NCA NMC 

Specific energy 

(Wh/Kg) 
80-130 105-120 70 120-150 80-220 140-180 

Energy density 

(Wh/L) 
220-250 250-265 130 250-450 210-600 325 

Specific power 

(W/Kg) 
1400-2400 1000 750 600 1500-1900 500-3000 

Power density 

(W/L) 
4500 2000 1400 

1200-

3000 
4000-5000 6500 

Volts (per cell) 

(V) 
3.2-3.3 3.8 2.2-2.3 3.6-3.8 3.6 3.6-3.7 

Cycle life 

Self-discharge 

(% per month) 

1000-2000 

<1% 

>500 

5% 

>4000 

2-10% 

>700 

1-5% 

>1000 

2-10% 

1000-4000 

1% 

Cost (per kWh) $400-

$1200 
$400-$900 

$600-

$2000 

$250-

$450 

$600-

$1000 
$500-$900 

Operating 

temperature 

range (
o
C) 

-20 to +60 -20 to +60 -40 to +55 
-20 to 

+60 
-20 to +60 -20 to +55 

 

C. Battery models. 

The battery model is the key part of an emulator. The 

model can be used to vary the parameters of actual batteries 

(next section) and simulate different scenarios of charge and 

discharge. In these scenarios, we can obtain VI (Voltage-

current) characteristic curves corresponding to actual batteries 

[56]. These results are transferred via software to the emulator, 

which behaves similar to the actual battery in study. Therefore 

emulators can behave as an actual battery, additionally the 

researchers can use them in another test sceneries (i.e. with 

different charge/discharge rates) [57]. 

1) Model types: There are different kind of battery models 

with varying degrees of complexity. According to [47], there 

are 3 groups of battery models: mathematicians, 

electrochemical and electrical. Mathematical models are very 

complex, which can use equations, mathematical methods and 

stochastic approaches to represent the battery runtime behavior 

[58], its efficiency and capacity [59] [60]. In another hand, 

electrochemical models optimize physical aspects of battery 

design. These models need long time for analysis because they 

implement complex numerical algorithms and require specific 

information from batteries (which is difficult to obtain [61]). In 

[49] it is defined another classification of models: 

Electrochemical, analytical, stochastic and electric. Analytical 

and stochastic models are handled on the basis of equations 

and probability. Electric models use a combination of resistors, 

capacitors and voltage/current sources to reproduce the 

behavior of batteries [62]. These models are easy to use for 

power sector researchers because they can be designed in 

simulators (Matlab, Plecs, etc.). Battery electric models can be 

classified into 3 categories: Thevenin based, impedance based 

and runtime based [63]. In this survey the battery electric 

models are called virtual battery models. 

According to [64], electric models are also classified as 

ideal model, linear model and Thevenin model (Fig. 1). 
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Fig. 1 Electrical models of batteries, a) Ideal, b) Linear and c) Thevenin, 

[64]. 

 

Fig. 1a) shows the ideal battery model, which consists just 

of a voltage source. In this model all battery internal 

parameters are ignored. Fig. 1b) represents a linear model. This 

model takes into account the internal resistance. The battery 

voltage (E) and the internal resistance (R) can be represented 

by expressions (1) and (2). 

                                                             

fkEE o   (1) 

fK
o

RR R   (2) 
 

Where Eo is the battery voltage without load when it is 

fully loaded; f is the state of discharge; Ro is the internal 

resistance when the battery is fully charged; k, KR are constants 

used for experiments. Vb is a voltage close to E measured when 

the circuit current and the capacitor voltage are zero [53].  

Fig. 1c) shows a Thevenin electrical model that uses a 

resistor in series with a parallel RC network. R1 represents the 

contact resistance and C is the behavior of electrodes and 

electrolyte [65]. This model is used to predict the battery 

response to load transient events in a particular state of charge 

(SOC), assuming the open circuit voltage is constant [12] [64]. 

This model is more accurate compared to the ideal and linear 

models because it takes into account internal battery 

parameters. In many publications, the Li-ion batteries are 

modeled by Thevenin equivalent [66]. As more RC networks 

are added in series, the complexity increases but greater 

accuracy for representing battery is achieved [67]. Fig. 2 shows 

a Thevenin electrical model for a Li-ion battery with 2 network 

RC [68]. This model also represents the transient response of 

the battery electrodes. 

 
Fig. 2 Thevenin model for Li-Ion battery, [68]. 

 

2) Key assumptions in battery models: According to [43], 

designing battery models requires certain assumptions for 

analysis and research. Some of them are described as follow: 

 Internal resistance is considered constant during the 

cycles of charge and discharge. 

 The load is constant impedance type. 

 Internal resistance does not vary with current 

amplitude. 

 Model parameters are obtained from the discharge 

characteristics and these are assumed equal to the 

load. 

 Battery capacity does not change with the current 

amplitude. 

 Temperature does not affect the model behavior. 

 The self-discharge of the battery is not represented. 

 Battery has no memory effect. 

 Do not take into account the effects of gasification and 

overload [24]. 

 Open circuit voltage is constant [12] [64]. 

D. Battery model parameters 

The battery model parameters represent the behavior of an 

actual battery during either charging or discharging processes. 

In the analysis of a particular battery type is very important to 

know these parameters. Many times these parameters are 

deducted from the discharge curve provided by the 

manufacturer. After getting these parameters, we can build the 

virtual battery model and replicate the battery behavior inside a 

simulation platform. A good representation of a battery can 

implement a Thevenin model together with a Shepherd model. 

The Shepherd model describes the behavior of the terminal 

voltage during a change in load current. This type of VI model 

is discussed in [43] [69] [70] [71]. The combination of models 

is suitable for a better representation of Li-Ion batteries. 

The Shepherd-Thevenin model is shown in Fig. 3, which 

is governed by the expressions 3, 4 and 5: 
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Fig. 3 Shepherd Thevenin battery model, [43]. 
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Where: 

 Eo represents the open circuit voltage (OCV) of the 

battery to full capacity. 

 K is the coefficient of polarization resistance (Ω). 

 Q is the battery capacity (Ah). 

 I is the battery current (A). 

 Rint is the internal resistance (Ω). 

 A is the amplitude of the exponential region (V). 

 B is the inverse constant of time of exponential area           

(Ah-1). 

The nonlinear term (Q / (Q - ∫i)) represents the variation 

of the voltage with the current amplitude and the state of 

battery charge [69]. The expression 5 has been modified to 

eliminate the phenomenon of algebraic loop and instability 

[43]. Therefore, this battery model can replicate the actual 

battery behavior. 

As shown in the above expressions, this model does not 

take into account the temperature influence on battery behavior 

and it does not characterize the phenomenon of self-discharge 

[43]. The temperature influence strongly affects on the battery 

chemistry. The internal resistance can decrease its value when 

a battery works at high temperatures [72]. Additionally, 

continuous exposure to high temperatures can lead to reduce 

service life and increase the rate of self-discharge [72]. 

Fig. 4 shows a typical discharge curve of an actual battery. 

In this curve are highlighted the zones where we can get the 

parameters A, B, K and Eo, according to the expressions in [43] 

[71]. 

 
Fig. 4 Typical discharge curve, [43]. 

 

A, B, K and Eo can be calculated for other battery types, as 

shown in Table III. 

 

TABLE III 
BATTERY PARAMETERS, [43]. 

Type 

Parameters 

Lead- 

Acid 

12V 1.2Ah 

Nickel 

Cadmium 

1.2V 1.3Ah 

Lithium 

-Ion 

3.6V 1Ah 

Nickel 

Metal-Hydrid 

1.2V 6.5Ah 

Eo (V) 12.6463 1.2505 3.7348 1.2848 

R (Ω) 0.25 0.023 0.09 0.0046 

K (V) 0.33 0.00852 0.00876 0.01875 

A (V) 0.66 0.144 0.468 0.144 

B (Ah)-1 2884.61 5.7692 3.5294 2.3077 

 

III. DC/DC POWER CONVERTERS  

Power converters have become highly popular in recent 

years because of their developed efficiency, flexibility and the 

capability of connecting various sources of energy at time [73]. 

The design, modeling and control of converters are fields of 

extensive research by the scientific community. These devices 

are able to transfer energy between its ports bi-directionally, 

enduring positive and negative currents [74]. In addition, they 

are used as interface between power sources and energy 

storage systems [75]. One of its main features is the constant 

output voltage despite variations in their input or load [76]. 

The DC/DC power converters are connected to the load via a 

DC-link, as shown in Fig. 5. These characteristics make them 

suitable for use in EVs. 

 

 
Fig. 5 Diagram of Bidirectional DC/DC converter, [75]. 
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Fig. 6 Bidirectional converters not-isolated a) cascade buck-boost, b) 

half-bridge, c) cúk, d) sepic y e) split-pi., [79] 
 

Bidirectional converters can be classified into two groups: 

isolated (galvanic isolation) and not isolated [77]. Distributed 

generation and storage systems should use isolated converters, 

when these are connected to the network [78]. Advantage of 

using galvanic isolation is that it increases the flexibility of the 

system (meeting required voltage) but also it increase the cost 

of system. Furthermore, it could be a bit more complicated to 

design and implement [77]. Not isolated converters are 

commonly used in battery emulators. Among the most 

important features we can mention compact size, higher 

efficiency and use of low voltages. The most used DC/DC 

power converters in EVs (within the category not isolated) are: 

buck-boost, half-bridge, cúk, SEPIC and split-pi (Fig. 6) [79]. 

Despite of the advantages of not insolated converter, some 

problems can appear, such as pulsating output currents and 

voltage ripples [76]. In another hand, multiphase converters are 

formed from buck-boost converter. This survey is focused on 

buck-boost and multiphase converters.  

A. Bidirectional DC/DC power converter: Buck-boost type 

In [80] [81] [82] [83] the operation of buck-boost power 

converter is shown. This is a bidirectional converter which can 

have an output voltage either great or less than its input 

voltage. In Fig. 7, when the converter works in boost mode, the 

voltage V2 (output) is equal to the sum of V1 + VL (increasing). 

In this case V1 is the power source. But when this works in the 

buck mode (reducing), the voltage V1 (output) is equal to VC1 

and VL (reducer). In this case V2 is the power source. 

 
Fig. 7 Buck-boost converter, [74] 

 

C2 (Fig. 7) is the DC-link capacitor when it works in mode 

of boots. This capacitor can reduce the current ripple to 

maintain a constant output voltage, and suppress voltage rises 

caused by switching operations thus providing reactive power 

[84] [85]. The ideal sizing of this element is crucial because it 

can become bulky, heavy and expensive [86]. Similarly, the 

capacitor C1 has the same function and characteristics when 

the converter is working in buck mode. In another hand, 

inductors configurations allow store energy and deliver power 

to the load during switching process [75]. 

 

B. Bidirectional DC/DC power converter: Multiphase type 

Multiphase converters are widely used in many 

applications such as voltage regulator modules, EVs, etc., due 

to their high efficiency and ability to reduce ripples [87]. In 

Fig. 8, a multiphase bidirectional voltage converter can be 

observed (8 phases or 8 legs). 

 
Fig. 8 Bidirectional DC/DC converter: multiphase type, [24]. 

 

In the case of buck-boost converter is necessary to 

increase the switching frequency and to keep low inductance 

values in order to achieve reduced levels of current ripple, 

even in small voltage variations between the input and output 

[24]. Higher switches frequencies can increase energy losses 

and noise. Thus, to increase the power density, reducing 

current ripple without increasing the switching frequency, 

multiphase bidirectional converter are used [88] [89] [90]. 

These converters are composed of a part that increases the 

voltage (boost mode) and another that reduces it (buck) [91]. 

Fig. 9, shows a multiphase converter [92]. As it can be 

seen in the figure it has three legs. To implement it, firstly the 
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converter operating mode must be selected (boost or buck). In 

this configuration, the commutation time for every leg is done 

sequentially and for this case (Fig. 9) it should be one third of 

the switching period. The control of switching devices can be 

performed by PI (Proportional-Integral) controllers [91] or 

another more advanced control techniques. 

 
Fig. 9 Multiphase converter, topology 3 legs, [92]. 

 

Controlling a larger number of phases can involve the use 

of specific control schemes. These control techniques should 

allow synchronization between phases in order to reduce the 

output voltage ripple and to distribute symmetrically the 

current between all phases [93] [94]. 

IV. SOME CASE STUDIES 

In this section, we analyze some of topologies of battery 

emulators that exist in the literature. Initially we expand a little 

more the concept of battery emulator. Topologies include 

virtual battery models and power converters that were 

discussed in the previous sections. 

According to [95] the battery emulators can perform 

automatic and deterministic testing of EVs propulsion systems 

within a test bench. These devices can emulate different actual 

battery types without the need of expensive battery systems. In 

addition, one of the main advantages is that the state of charge 

(SOC) and state of health (SoH) can be changed at any time. 

According to [25] [96], a battery emulator is formed by a 

controllable power source (controlled by a microcontroller) 

and a server computer. The emulator is capable to collect 

power profiles through real-time measurements, and it can 

save data in a file in the emulator profile mode [27]. 

 

 
Fig. 10. Circuit model of a battery emulator with load [27]. 

 

Fig. 10 shows a battery emulator model circuit [27]. This 

circuit consists of: a battery linear model, battery simulator, 

DC-link capacitor and an electrical load. In this study the 

current and temperature in the battery were measured. Current 

and temperature measurements determined the set-point of 

VOC and Ri using DSP (digital signal processor).  

In [63], a battery emulator system with a power electronics 

interface is implemented (Fig. 11). The converter operates with 

40V input voltage and is tuned to 20V output voltage with 6A 

current load. 

 
Fig. 11 A circuit model of a battery emulator, [63]. 

 

This system consists of an impedance-based battery 

model. The battery model has as input the emulator current 

measured (IB). The battery model, based on IB calculates the 

battery voltage VB, which in turn it is the set point for DC/DC 

power converter. When the system is in operation, it behaves 

as an electrochemical storage device which could be integrated 

into a test bench of electric vehicles or electric traction 

systems. The power converter is multiphase type (three legs), 

which can work with voltages and currents up to 400V and 

400A, respectively. The multiphase power converter can hold a 

symmetrical distribution of current load avoiding overloading 

any leg [93]. In this work, every phase has independent PI 

control loops. These are part of a decentralized control system. 

As result, the current is distributed in a symmetrical manner in 

each leg and the system has a good dynamic behavior 

according to settings used. 

In [24], an emulator with 8 legs multiphase type DC / DC 

converter is studied. The impedance-based battery model 

represents a lead-acid battery. This model takes into account 

the temperature. The control of 8 phases is performed by 

means of PWM modulation. The modulation frequency is 125 

KHz which is generated by an FPGA (Field Programmable 

Gate Array) board. The controller is based on PID control. This 

emulator is used for EV testing.  The cranking motor was 

simulated with various types of batteries and with different 

temperatures. 

In Fig. 12, an emulator for Li-Ion battery is shown [12] 

with a Thevenin-Shepherd battery model. In the power 

interface a bidirectional buck-boost type DC/DC converter is 

employed, which is controlled by a PWM generator. In the 

converter part, a resistance was placed to emulate the battery 

charging process, as seen in Fig. 13. In charging process, a 

diode protects the power supply system. To improve the 

quality of current and voltage ripple, the capacitors CA and CD 

were harnessed. An electric vehicle model run as load (similar 

to [97]). For the battery emulator test, a speed profile was 

defined. The simulation was performed using Matlab / 

Simulink. One of the most important outcomes of this 

experience was the cost reduction for EV trials. 
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Fig. 12 Battery emulator design, [12]. 

 

 
Fig. 13 Buck-boost converter with resistance of charge process, [12]. 

V. CONCLUSIONS 

Battery emulators are technological solutions that allow to 

study of actual battery behavior in EVs and any other types of 

electric traction systems. Furthermore, it avoids the risks of 

working with actual batteries. 

The use of battery emulators to replicate either the charge 

or discharge of any actual battery type in a laboratory setting 

can be a low-cost alternative and environmentally friendly. 

Virtual battery model is the main component of battery 

emulator based on power electronics. The more precise is the 

virtual battery model, better results are obtained in the 

emulation process. It is important to note that the general 

behavior of the actual battery in analysis can be emulated to 

countless scenarios with different operating conditions.  

The more electrochemical variables are taken into account 

in models, better dynamic performance characteristics of the 

battery are captured; characteristics such as non-linear open 

circuit voltage, charge/discharge current, degradation 

temperature, number of cycles, storage, etc. The addition of 

RC networks increase the complexity of virtual models but it 

increase its accuracy. 

The battery model parameters represent the behavior of an 

actual battery during either charging or discharging processes. 

With these parameters can be built the virtual battery model for 

replicating the battery behavior inside a simulation platform. 

Many times these parameters are deducted from the 

information provided by the manufacturer discharge curve. 

The use of multiphase type DC / DC converters in battery 

emulators involves specific control schemes. These schemes 

allow the symmetrical distribution of current load between 

phases in order to reduce the output current ripple. 
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