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I. INTRODUCTION

The United Nations Office on Drugs and Crime (UNODC)
has a site called Global Study on Homicide where they show
the rate of homicides per 100,000 inhabitants, with 16.3 rate
in America against 3.0 in Europe, in this context we have a big
problem. Morover according to the Institute of Legal Defense
(ILD-Peru) in 2015 the Peruvian people consider crime and
insecurity as their mayor problem [37], the National Institute
of Statistic and Informatic (NISI-Peru)’s technical report of
security in Mar-2015 said that 30,5%-qof people was the victim
of a criminal act'

For all these problems there are a lot of surveillance camera
services, these Sﬁtems can be easily implemented in order to
monitor any stage, but it could be ineffective due to the lack
of trained people who supervise the recording and the natural
ability to pay attention [24].

Having support systems in real time to detect possible
serious violent actions are, very useful in controlling public
safety. In addition, detecting a violent action is challenging due
to the definition of “violence” and the high computational cost
involved. The definition of “violence” varies among different
researches in the state of art, ranging from the detection of fire,
explosions, blood, fighting, etc. This work is based on statistics
of change in the magnitude of the optical flow vectors? [19],

I'We consider the criminal act as an event that threatens the security, violates
the rights of a person and leads to danger, harm or risk [22].

2The optical flow can be defined as the apparent movement of intensity
patterns in an image. The word apparent indicates that the motion of objects
in the space ( range of motion ) may coincide with [irg estimated flow.
However, in situations in which the movement of objects implies a movement
of intensity patterns in the image plane, the optical flow may be directly
related to the movement of objects in the scene [33]
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this usually occurs when there is an abrupt change in a video
sequence such as fighting, theft, accidents, etc. The detection
will be also in real time, we hope to get a system, in future
works, that support surveillance cameras controlling some
criminal events. This work focus on getting a method with
the minor computational cost and acceptable accuracy.

II. RELATED WORK

Detection of violent actions is a particular problem within a
larger that is the recognition of actions, these last are resolved
using the same approach as visual categorization [8], they used
a Harris detector [32] to get key points and Scale Invariant
Feature Transform (SIFT) as descriptor, then they used Bag
of Visual Words (BogVW) to get mid-level features. Space-
time Interest Point (STIP) was used in [14] to recognize
facial expressions, human activities and a mouse’s behavior,
getting 83%, 80% and 72% of accuracy respectively. In [45]
Gaussian Difference [30] is used with Principal Component
Analysis - Scale Invariant Feature Transform (PCA-SIFT) [23]
and BoVW to classify-video scenes, concluding that the size
of the vocabulary used in BoVW depends heavily on the
complexity of scenes classified. Most studies use BoVW, then
[42] presented a BoVW comparison varying the descriptors.
In [40] descriptors as Histogram of Optical Flow (HOF) and
Histogram of Oriented Gradient (HOG) with variations in
optical flow are evaluated using Lucas-Kanade [31], Horn-
Schunck [21], and Farnebick [15] as optical flow algorithms,
they also evaluated the performance of BoVW comparing K-
means against Random Forests—[6] and Fisher Kernel [36],
they concluded that Lucas-Kanade and Horn-Schunck outper-
formed Farnebidck and Fisher kernel outperformed K-means.

One of the first works detecting violence is based on audio
presented by [16] defined violence as those events containing
shots, explosions, fights and screams, whereas nonviolent
content corresponds to audio segments containing music and
speech. The descriptors used were: energy entropy, short-time
energy, zero crossing rate (ZCR), spectral flux, and roll-off
with a polynomial Support Vector Machine (SVM) as the
classifier getting 85.5% of accuracy. Bag of Audio Words
(BoAW) also are used to get mid-level features, [13] used Mel-
Frequency Cepstral Coefficients (MFCC) as audio descriptor
and dynamic Bayesian networks. The main centribution of
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this work is when using BoOAW the noise produced by video
segmentation is remove.

Another definition of violence as scenes those containing
fights, regardless of the context and the number of people
involved is used in the work of [9], they proposed Bag
of Visual Words (BoVW) with Space-Time Interest Point
(STIP), based on Laptev’s research [26], as descriptor, they
compared the performance of STIP-based BoVW with SIFT-
based BoVW. Here STIP achieved a better result. A variation
in STIP named Hue Space-Time Interest Points (HueSTIP)
proposed by [39]] take in count pixel colors, in this case
they recognized general actions, for detecting fights HueSTIP
outperforms STIP but with a higher computational cost.

Motion Scale-Invariant Feature Transform (MoSIFT) is used
by [4] (it was proposed by [48]]), to detect fights, they
compared MoSIFT and STIP with BoVW and SVM as the
classifier. In the experiments they used two datasets: Movies
and Hockey games, in Hockey dataset STIP got a 91.7%
of accuracy against 90.9% of MoSIFT, but in Movie dataset
MOoSIFT outperforms STIP with 89.5% of accuracy against
44.5% of STIP. In this context, we cannot decide which
descriptor is better, but we can infer that both require a high
computational cost doing it difficult to use in real time.

A real time model is presented in [19], here they detect
violence in crowded scenes. They define “violence” as sudden
changes in motion in a video footage. Their model basically
considers statistics of magnitude changes of flow vectors over
time, this es named Violent Flow (ViF). They also introduced a
new dataset of crowded scenes. In the results ViF outperforms
Local Trinary Patterns (LPT) [47], histogram of oriented gradi-
ent (HoG) [27], histogram of oriented optical flow (HoF) [27]]
and histogram of oriented gradient and optical flow(HNF)[27]].
The model is also evaluated in other datasets, as Hockey
[4] and ASLAN [25] to evaluated the ViF’s performance in
action recognition, here ViF outperforms STIP while with
larger vocabularies, STIP outperforms ViF. The good thing
to mention about this new descriptor is that it is one of the
fastest enabling its use in real time.

MOoSIFT is also used in [43]] with characteristics based on
Kernel Density Estimation (KDE) to improve efficiency, also
instead of using BoVW they used Sparse coding, then they
compared their proposal with HOG [27]], HOF [27], HNF [27]]
and ViF [19] outperforming them in the Crowded and Hockey
datasets.

Other work based in optical flow is presented in [46] where
in addition to detect violent scenes it locates in what part
of the scene occurred the violence, Gaussian Mixed Model
is extended to the domain of optical flow to detect regions
that may contain violent actions in each region, Histogram of
Optical Flow Orientation HOFO is used as descriptor.

Recently [[11] proposed a model inspired in psychology
which suggests that the kinematic characteristics are dis-
criminating for specific actions, they named it “Extreme
Acceleration”. In the work of [3], they concluded that the
kinematic patterns are sufficient for the perception of actions,
and this idea was validated in the research of [34], more

specifically studies in this field show that simple kinematic
characteristics like speed and acceleration are correlated to
emotional attributes [20], thereby detecting the change in
acceleration is based on the blur of the image when motion
occurs, by calculating the spectral power as evidenced [3]. The
results were evaluated in the Movies and Hockey [4] datasets.
As a result, the new proposal outperformed STIP and MoSIFT
as well as being 15 times faster. This new approach has a very
low computational cost, enabling use in real time.

In the case of detecting horror in movies, [41]] used Multiple
Instance Learning (MIL; MI-SVM [2]] ) using color and texture
and visual features and MFCC as audio features. From the
results it is concluded that the audio features to this context,
are most relevant.

In [17] the work of [16] is extended where they used a
multimodal two-stage approach, in the first step, they perform
audio and visual analysis of the segments of one-second
duration. In the audio analysis part, audio features such as
energy entropy, ZCR, and MFCC are extracted and the mean
and standard deviation of these features are used to classify
scenes into one of seven classes (shots, fights, screams, etc.)
In the visual analysis part, average motion, motion variance,
and average motion of individuals in a scene are used to
classify segments as having either high or low activity. The
results obtained in this first step are then used to train a k-NN
classifier. This method was evaluated in a movie dataset where
they concluded that audio features are more relevant.

A three-stage method is proposed in [18]], they used a semi-
supervised cross-feature learning algorithm [44]], in the first
stage they use audio-visual features such as motion activity,
ZCR, MFCC, then in a second stage features as screams, shots
and explosions are detected with a SVM as the classifier, in the
last stage, the result of previous stages are lineally weighted
for the classification. This work was evaluated only in action
movies with probably a poor performance in other contexts.

In the work of [28] two classifiers are used in co-training.
They used mid-level features with BoAW on MFCC, spectrum
flux and ZCR, in the visual classification they detected motion
intensity, the (non-)existence of flame, explosion, and blood.
They considered fights, explosions, murders and shots as
violence concept. As other multimodal methods they evaluated
their results just in movies.

In [7] used the same concept of violence that [28] where
violence is any action scene with blood, they used average
motion, camera motion, and average shot length are used for
scene representation and SVM as the classifier, then they used
the “Viola-Jones” face detector, to detect faces and blood near.
They outperform the work of [28] but they just used a movie
dataset where we have good conditions.

The next paragraphs consider the same concept of vio-
lence adopted in “MediaEval 2013 VSD task” (objective and
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subjective definition E[) [33] used temporal information and
multimodal evaluating their results in Bayesian Networks,
they also used the “MediaEval 2011 VSD task” dataset.
They demonstrated that both multimodality and temporality
add valuable information into the system and improve the
performance in terms of MediaEval cost function [10]], in
addition, we have to mentions that the MediaEval 2013 dataset
is a collection of movies where the conditions as illumination,
resolution, etc. are ideal.

The dependencies between audio and visual features are
studied in [12]], They combined the audio and the visual
features and then determined statistically joint multimodal
patterns using audio-visual BoW, they also used the MediaEval
2013 dataset. They outperformed the majority of methods
using the audio and visual features separately.

Recently have proposed the use of audio and visual
features also, as audio feature they use MFCC and for visual
features they use HOF, ViF and color descriptors, they also
evaluated their results in the MediaEval 2014 dataset. They
concluded that the audio features are more relevant than the
visual features, they also combined both features getting even
betters results.

The used of Lagrangian theory show the applicability for
video analysis in several aspects. In this context [38] utilized
the concept of Lagrangian measures to detect violent scenes.
They proposed a local feature based on the SIFT algorithm
that incorporates appearance and Lagrangian based motion
models, they named it as LaSIFT. They compared their results
with HOG, HOF and MoSIFT in the Crowded and Hockey
datasets. In the case of Hockey dataset, the LaSIFT feature
outperforms current state of the art methods in terms of AUC,
however, the performance in terms of accuracy is less than
the improved feature coding scheme proposed by [43]. For
Crowded dataset the LaSIFT feature outperforms state-of-the-
art methods in terms of accuracy and AUC measures. LaSIFT
seems to be very promising, but the authors didn’t mention
the computational cost, we could consider that by the used of
BoVW it could have a high cost, a comparison of it with ViF
in terms of accuracy and cost could be interesting.

III. THE VIOLENCE DETECTION METHOD
A. Evaluating different optical flow algorithms

ViF consider the statistics of magnitude changes of flow
vectors over time as we see in Figure [T} In order to get
these vectors [19] used the optical flow algorithm proposed
by [29] named Iterative Reweighted Least Squares (IRLS), but
nowadays we have a lot of different optical flow algorithms,
in this context, we propose to evaluate the ViF’s performance
with Lucas-Kanade and Horn-Schunck [21] as optical
flow algorithm in the same way as [40] did it, evaluating
different optical flow algorithms in HOF to detect behaviors

3Subtask 1: objective definition The previous definition from 2012: Vio-
lence is defined as “physical violence or accident resulting in human injury or
pain”. Subtask 2: subjective definition For this subtask, the targeted violent
segments are those “one would not let an 8 years old child see in a movie
because they contain physical violence”.

in video. We are going to evaluate the accuracy and the
computational cost, so in the future, it will be used in real
time. In this work we are not going to use any pre-processing
step.

Frames

Optic Flow Algorithms:
IRLS, Horn-Schunck, Lucas Kanade

Figure 1: ViF descriptor in video.

B. Optical flow algorithm

ViF depends heavily on the magnitude of optical flow
vectors, these vectors are calculated for each pixel in two
consecutive frames as we see in Figure [I] these vectors could
represent the motion of objects in a video scene, where the
bigger vectors represent the objects with more movement, in
Figure 2] we see two consecutive frames, and in Figure [3] we
see the optical flow vectors computed. Actually there is a lot
of different algorithms to get these vectors, in this work we
evaluated the performance of Horn-Schunck, Lucas-Kanade
and IRLS.

C. ViF descriptor

The ViF descriptor is presented in algorithm [I] here we
get a binary, magnitude-change, significance map b; for each
frame f;. Then we get a mean magnitude-change map, for
each pixel, over all the frames with the equation [T}

bay = (1/T) waﬁ/,t ()
t

Then the ViF descriptor is a vector of frequencies of quantized
values b, . For more details you could see the work of [19].

D. Subsampling video frames

Subsequent video frames could contain the same infor-
mation. As the time for descriptor extraction is the largest
bottleneck in this work, we sample every 3 frames the video.
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Figure 2: Two consecutive frames.
Source: Matlab examples.

Figure 3: Optical flow vectors get by Lucas-Kanade algorithm.
Source: Matlab examples.

E. Classification

SVM is used as a classifier with a lineal kernel, taking as
input the result of ViF descriptor ( feature vector with 336
values ). In the experiments we use cross-validation with k=10.
In Figure ] we can see the architect of the whole model.

IV. EXPERIMENT AND RESULTS
A. Datasets

We evaluated the performance in the Hockey and
Crowded [19] datasets, some frames are shown in Figures
[] and [6] respectively. In addition, we built a new dataset
with videos containing fights from surveillance cameras, these
videos are in real conditions as we can see in Figure [7] we
named it Surveillance Videos (SV) dataset. In Table |I| we can
see a comparison of the three datasets, we have to mention

Data: S = Sequence of gray scale images.

Each image in S is denoted as f; , :, where

x=1,2,.,N,y=1,2,.., Mand t =1,2,..,T.

Result: Histogram(b,, ,; n_bins = 336)

fort =11t T do

1. Get optical flow (ug 4.+, Vs,y,t) Of each pixel py 4 ¢
where ¢ is the frame index.

2. Get magnitude vector: mg ¢ = \/u3 , , + V2,

3. For each pixel we get:

1 if |m$7y7t — mw,y7t_1| >=10

0 other case

where 6 is a threshold adaptively set in each frame to
the average value of |mg  — mx,y’t,l\.

bm,y,t =

end
Algorithm 1: ViF descriptor

Input video -h

D

Video
D segmentation

Violent actions model

[mN] -
. Optical
ViF Lesws > S output video with
(mn| flow : :
violent actions
R recognized
SVM

Figure 4: Model architect.

that actually the changeling dataset for violent detection is the
Hockey, it’s because it is so difficult to distinguish a fight in
this game.

. Framerate Duration Number
Resolution X
per second | (seconds) | of videos
SV 480 x 360 | 25 2 100
Hockey 360 x 288 | 25 2 1000
Crowded | 320 x 240 25 4 246
Table I: Datasets features.
B. Results

We evaluate the performance of ViF in a SVM classifier
with a linear kernel and cross-validation (k=10). In Table [[I|
we can see the Accuracy (ACC) and Standard Deviation (SD)
of the classifier, we also have included the Area Under the
Curve (AUC) of the best model. As we can see for the SV
and Hockey datasets, we get better results using the IRLS
algorithm, but in the case of Hockey dataset we get better
result with Horn-Schunck as optic flow algorithm.

The Receiver Operating Characteristic (ROC) of the clas-
sifier with ViF using IRLS as optic flow algorithm is shown
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Figure 6: Some frames taken from the Crowded dataset.

in Figure 8] Moreover the ROC curves for Lucas-Kanade and
Horn-Schunck are shown in Figures [9] and [I0] respectively.
We also evaluated the ViF performance with the three
datasets together, in this case we take randomly 200 videos
from the Hockey dataset, 200 from Crowded and 100 from

Figure 7: Some frames taken from the SV dataset.

ViF with IRLS

Dataset ACC + SD AUC
SV 0.7400 4+ 0.1265 | 0.9000
Hockey 0.7190 4+ 0.0848 | 0.8000
Crowded | 0.7881 =+ 0.1429 | 0.9583
ViF with Lucas-Kanade
Dataset ACC + SD AUC
N 0.6300 4+ 0.1494 | 0.8000
Hockey 0.6220 4+ 0.0894 | 0.7100
Crowded | 0.6614 + 0.1022 | 0.8397
ViF with Horn-Schunck
Dataset ACC + SD AUC
N 0.5900 4+ 0.1524 | 0.8000
Hockey 0.7980 4+ 0.0349 | 0.8400
Crowded | 0.7375 4+ 0.1092 | 0.8782

Table II: The performance of ViF with different optic flow
algorithms. The Accuracy (ACC) and Standard Deviation (SD)
of the classifier were evaluated by cross-validation (k=10) and
also the Area Under the Curve (AUC) of the best model is
included.

SV, the result is shown in Table [ITl] and the ROC curve in
[IT] In this case we see that the IRLS algorithm works well in
these surveillance datasets, in second place is Horn-Schunck
and then Lucas-Kanade. In addition, the accuracy could be
improved by adjusting the SVM’s kernel and parameters but
we didn’t focus on that. We have to mention that all the
datasets are videos in real conditions with poor resolution and
noisy, and also the videos from Crowded and SV datasets were
taken from surveillance cameras with really poor conditions
you could have ever seen. We focus on these videos because
of the future applications of the method in security cameras.

A comparison of the computational cost of the different
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Figure 8: ROC curve of a SVM classifier with ViF and IRLS as
optic flow algorithm in the SV, Hockey and Crowded datasets.
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Figure 9: ROC curve of a SVM classifier with ViF and
Lucas-Kanade as optic flow algorithm in the SV, Hockey and

Crowded datasets.

Optic Flow ACC + SD AUC

IRLS 0.7140 + 0.0737 | 0.8400
Horn-Schunck | 0.7120 £ 0.0391 | 0.7800
Lucas-Kanade | 0.5680 + 0.0444 | 0.6283

Table III: The performance of ViF with different optic flow
algorithms with the three datasets together. The Accuracy
(ACC) and Standard Deviation (SD) of the classifier were
evaluated by cross-validation (k=10) and also the Area Under
the Curve (AUC) of the best model is included.

optical flow algorithms evaluated by processing two frames
is shown in Figure [12] unlike Lucas-Kanade and IRLS, Horn-

Figure 10: ROC curve of a SVM classifier with ViF and
Horn-Schunck as optic flow algorithm in the SV, Hockey and
Crowded datasets.
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Figure 11: ROC curve of a SVM classifier with the joined
dataset (Crowded, Hockey and SV). We compared the IRLS,
Lucas-Kanade and Horn-Schunck optic flow algorithms in ViF
descriptor.

Schunck presents a low cost, enabling its use in real time. The
measurement was evaluated in a computer with a 1.8 GHz
processor.

V. CONCLUSIONS

In this study, we sought to improve ViF using different
optical flow algorithms as IRLS, Horn-Schunck and Lucas-
Kanade, their performance in different datasets were evaluated.
This evaluation concluded that the ViF’s accuracy with the
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Figure 12: Comparison of computational cost of IRLS, Horn-
Schunck and Lucas-Kanade.

IRLS optic flow algorithm had better results, but in the case
of Hockey dataset ViF’s with Horn-Schunck was better.

We also joined all the datasets and evaluates the ViF’s
performance, here IRLS outperformed the others. In this case
we have to mention that we just took 200 videos of 1000
from Hockey dataset in order to have a balance dataset. In
conclusion to have better results we need a Hockey-sized
comparable dataset for a more accurate comparison.

On the other hand the computational cost of the optical
flow algorithms was evaluated, the top performer was Horn-
Schunck with only 0.25 seconds to process two frames,
compared to 16.95 and 7.80 seconds of Lucas-Kanade and
IRLS respectively.

Thus use ViF with Horn-Schunck is highly acceptable due
to its low computational cost and have better results for certain
datasets such as Hockey enabling its use in real time.

VI. FUTURE WORK

We planned to use the proposed method in surveillance
cameras, the main goal is to have a method that work in real
time, so we could alert the police officers if a criminal or
violent act occurs, in this context we need a real surveillance
videos that actually we are collecting in our SV dataset.
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