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Abstract– Today data-intensive systems, such as e-business. e-
procurement e-government, e-commerce etc. systems present a 
huge amount of available data. One of the main issues of query 
processing is how to process queries efficiently. In many cases, it is 
impossible or too expensive for users to get exact answers in a short 
query response time. Approximate query processing (AQP) is an 
alternative way that returns approximate answer and is 
increasingly used, as millions of data are processed daily in a 
database. In this paper, we evaluate two of the latest AQP systems 
with the best results in the literature: VerdictDB and XDB. We test 
these systems according to the query response time and accuracy of 
results returned, using queries of the TPC-H benchmark with 
different sizes. The VerdictDB and XDB are good tools for large 
volumes of data. The experiments demonstrate that VerdictDB 
results can be 76x faster than MySQL. However, with the same 
query response time, XDB returns results with more accuracy. 

Keywords-- Approximate query processing, error rate, query 
response time. 

 
I.  INTRODUCTION 

In recent years Approximate Query Processing (AQP) is 
increasingly used, since the social media, mobile devices, and 
wireless sensors continue to create massive data volumes [1]. 
In a large company where this data increases daily is 
necessary to get answers quickly and accurately, in order to 
allow better decision making. The time to execute large data is 
too long. Currently users are waiting too long to get accurate 
results in large-scale data. Some users consider this time 
unacceptable, since the productivity of them is inhibited by 
slow and expensive data interaction. The goal of an AQP 
system is returning an answer in short response time. Thus, an 
approximate aggregate with a specified error warranty is an 
option to improve the productivity [2]. The AQP system 
allows users to change the accuracy of the query by the speed 
with which a response is returned in large data sets and using 
complex aggregation queries [3]. 

The applications of decision support and data mining 
often turn to aggregate functions, such as "SUM" and "AVG" 
to formulate a query. As these queries are performed in large 
databases, the time consumed is very high. In this type of 
systems, the accuracy of the results of the queries is not so 
relevant, as far as users prefer to know an approximate 
response instead of waiting too long to get an exact answer 
[4]. Approximate answers in these systems allow users to 
analyse data quickly and effectively. 

To analyse data quickly, it is necessary to get an answer 
as accurately as possible in a short period of time. This is 

possible using approximate query processing techniques, once 
that reduce the response time of queries on online support 
systems, when it is not required nor important to obtain a very 
precise answer [5].  

There are numerous techniques for processing 
approximate queries and can be categorized into two 
categories: online aggregation and offline synopses generation 
[6]. The AQP with random sampling as a basis is one of the 
most useful methods for the calculated of large quantities of 
data in databases efficiently [7]. The first generation of AQP 
was focused on online aggregation for simple OLAP queries. 
The second extended the scope to more complex workflows 
mainly by taking pre-calculated samples of costs, if most or all 
queries are beforehand known. The third generation cannot 
assume that most queries are known in advance, but instead 
can leverage that data exploration pipelines are incrementally 
created by the user with a visual interface [8]. 

For a large-scale data, a less accurate but instantaneous 
result is desirable. Query processing is the process that 
deduces information presented in the database. In many cases 
is impossible know how to process queries efficiently and 
obtain the exact answers as soon as possible [9]. The AQP 
consists in using a sample of the total data and processing 
queries with those sampled data.  

The results of the approximate answer are better as more 
data is available and, if have time for the continue the 
processing the data converges for an exact answer [10]. The 
AQP is designed for aggregate queries such as using the 
AVERAGE, COUNT and SUM functions [11, 12]. 

We selected two of latest tools of AQP with better results 
in the literature review: VerdictDB and the XDB. Using TPC-
H benchmark queries, we compare these tools using different 
database sizes of 1, 10, and 50 GB. We also compared the 
tools with the original DBMSs that support them, in order to 
understand the differences in speedup and data accuracy.  

The main contributions of this paper are as follows: 
analyse the differences in terms of performance and error rate 
(accuracy) between the two tools and compare the 
performance of the tools in relation to MySQL and 
PostgreSQL. 

The rest of this paper is structured as follows. Section 2 
presents a literature review on approximate query processing 
and Section 3 describes the experimental setup, included the 
results of the experiment. Finally, Section 4 states the 
conclusions and proposes some future work. 
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II.  RELATED WORK 

The sampling techniques from base relations in order to 
quickly estimate the answer to an aggregation query are the 
first that appear described in the research. However, these 
sampling techniques are not directly applicable to online 
aggregation. In online aggregation, an execution estimate is 
continuously updated based on the data known up to now. The 
error in this estimate is specified through a confidence interval 
[13]. One of the first proposals was ripple join, an online 
aggregation interface that permits users to observe in real time 
the progress of their aggregation queries and control the 
execution [14]. The wander join chooses the optimal plan for 
conducting the random walks without having to use and 
collect any statistics initially. Compared with ripple join, the 
wander join is more efficient for joins [15].  

The XDB [16] integrates the wander join in PostgreSQL 
and comparing XDB with Turbo DBO. The comparing was 
made when there is enough memory and when there is no 
enough memory.  

In [17] the authors presented a BlinkDB allows users to 
trade off query accuracy for response time, since it allows 
interactive queries with over massive data. BlinkDB presented 
results with error rating, being 200x faster than Hive within an 
error of 2-10%. 

The VerdictDB [18] makes all communications with the 
backend database in SQL and return a very fast result. The 
authors show how this tool is being in 171x faster than other 
existing engines, for example, Spark SQL. 

In [19] the authors proposed a framework for creating and 
running approximation-enable MapReduce programs. The 
ApproxHadoop reduces application runtime and energy 
consumption, returning answers with very small errors. This 
framework reduces runtimes by up to 32x with an error of 1% 
and 95% confidence. 

In [20] the authors proposed the use of multi-dimensional 
wavelets as an effective tool for general-purpose approximate 
query processing. They compared the wavelets with sampling 
techniques and histograms. The performance of histograms is 
worse than that of wavelets. Comparing histograms and 
sampling, wavelets exhibit more than an improvement on the 
magnitude of the relative error. 

Unlike previous papers, besides a comparison between 
two recent tools for AQP, in our work it is also a comparison 
with these tools and the original DBMS that support them. 

 
 

III.  EXPERIMENTAL EVALUATION 

In this section, we present the results of the experimental 
study conducted to evaluate the two selected tools: VerdictDB 
and XDB. Using different data from the TPC-H benchmark 
show what the best tool. We start this section with a 
description of the tools evaluated. Then we describe the 
experimental scenario used, being then presented the results 
and conclusions of the respective evaluation. 

A. Analyzed Tools 
We selected two recent AQP tools with better results in 

the literature review: VerdictDB [21] and XDB [22]. Although 
both tools provide approximate answers, they have differences 
and constraints. The XDB only support online aggregation and 
not support the ORDER BY or LIMIT clause. In this tool is 
mandatory to define a confidence interval and the time we 
want to wait until we get a query result. But also, is possible 
visualizing various results and stop the query when a response 
very close to the original is shown. In contrast, the VerdictDB 
support the normal syntax of query, including also the 
ORDER BY or LIMIT. 

VerdictDB [23] is an AQP system that uses a middleware 
architecture that does not require changes to the database and 
can work with all the data management systems available in 
the market. The user sends the queries to the VerdictDB and 
gets the result from them without interacting with the 
database. VerdictDB then communicates with the database to 
obtain metadata and to access and process data. If there is a set 
of sample tables that can be used in place of each of the base 
tables, the sample tables in the query are used. Each query is 
converted into logical operators and then converted to another 
logical expression capable of executing in the AQP, in the end 
it is rewritten in an SQL statement, to be executed. VerdictDB 
uses sub-sampling as a technique to estimate error through 
variational subsampling. In variational subsampling the same 
row of the table may belong to several subsamples and all 
subsamples must be the same size. For each row of the sub-
sample, only a random number is generated to determine 
which sub-sample belongs to, and then the aggregation is 
performed only once per row. You define which tables you 
want to build samples of, which are usually those that contain 
a larger set of data. When a query is performed, the Query 
Parser converts it to logical expressions such as joins, which 
are then converted by the AQP Rewriter into another logical 
expression that can be executed with AQP. The Syntax 
Changer converts this rewritten logical expression into an 
SQL statement that can be executed in the underlying 
database. At the end, after this rewritten query is executed, 
Answer Rewriter returns an approximate response to the 
original query. 

XDB is an engine developed into PostgreSQL 9.4.2 to 
support the wander join algorithm in online aggregation 
queries. The idea for wander join is to model a join over k 
tables as a join graph, and then perform random walks in this 
graph. In this graph, each tuple is modelled as a vertex and 
there is an edge between two tuples if they can join, are have 
the same value on their common attribute. How can they exist 
various random walks for the same query, XDB have a 
mechanism who chooses the best walking plan. This 
mechanism consists of the execution of a series of trial runs, 
using multiple paths in order to find the best. After selecting 
the best walk path, are extracted samples of B-tree indexes, 
one by one. The counts of the subtrees of the internal nodes of 
indices are used to extract samples. The selection predicates 
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are applied when the related tuples are sampled. When the 
walk is complete, the executor returns the current estimators 
and confidence intervals. It returns an empty tuple when the 
time set in the query is reached, stating to PostgreSQL that no 
longer exist tuples available. XDB stores relationships 
between tables and indexes in main memory, which will affect 
their performance if there are too many tables of data. 

 
B. Experimental Setup 

To enable the public sharing of the results, we use the 
modified queries in [24] on the data set of the TPC-H 
benchmark [25]. These queries are presented in Table I.   
 

TABLE I 
TPC-H QUERIES MODIFIED. 

Query 
number Query 

Q3 

SELECT SUM(l_extendedprice * (1 - 
l_discount)) 

FROM customer, orders, lineitem 
WHERE   c_mktsegment = 'BUILDING' 

AND c_custkey = o_custkey 
AND l_orderkey = o_orderkey; 

Q7 

SELECT SUM(l_extendedprice * (1 - 
l_discount)) 

FROM supplier, lineitem, orders, customer, 
nation n1, nation n2 

WHERE   s_suppkey = l_suppkey 
AND o_orderkey = l_orderkey 
AND c_custkey = o_custkey 

AND s_nationkey = n1.n_nationkey 
AND c_nationkey = n2.n_nationkey 

AND n1.n_name = 'CHINA'; 

Q10 

SELECT SUM(l_extendedprice * (1 - 
l_discount)) 

FROM customer, lineitem, orders, nation 
WHERE c_custkey = o_custkey 

AND l_orderkey = o_orderkey 
AND l_returnflag = 'R' 

AND c_nationkey = n_nationkey; 
 
 

There experiments were running on a virtual machine 
with Ubuntu 16.04. This machine has 4GB of memory and 
125GB of disk.  

We used a three scale factors of the TPCH- benchmark: 1, 
10 and 50 for generating our test data. This results in a 
database that is approximately 1, 10 and 50GB respectively. 
The queries in the XDB were defined with the same execution 
time as returned in the VerdictDB, in order to compare the 
accuracy of the results in the same amount of time. Each query 
was executed five times in PostgreSQL, MySQL, VerdictDB 
and XDB. For each one of them have been the result of each 
query and the time each took to return a result. Then, with 
these values were calculated the speedup and the error rate. 
 
 
 
 

C. Discussion of results 
MySQL was the database engine chosen to assist the 

VerdictDB in AQP, because the data were stored in MySQL. 
The speedup ratio is a number that measures the relative 
performance gain of two systems processing the same 
problem. In our case it is the improvement in speed of query 
response time on VerdictDB compared to MySQL and is 
calculated as follows: 
 

 	Speedup= MySQL query response time
    VerdictDB	query response time

   (1) 

 
Table II presents the speedup of the VerdictDB compared 

to MySQL. The VerdictDB was nearly 76x faster than 
MySQL in executing the query Q7 with 50 GB of data. This 
result is related to the sampling of the VerdictDB. The query 
Q7 is the query that joins more tables, and all are sampled. So, 
after the query rewriting with these tables sampled, the 
response is returned in a short period of time. 
 

TABLE II 
VERDICTDB SPEEDUP COMPARED TO MYSQL. 

Query number Size of TPC-H data 
1GB 10GB 50GB 

Q3 1.44 16.42 17.87 
Q7 2.84 43.29 76.13 

Q10 2.60 22.85 29.08 
 

According to the results presented in Figure 1, you can 
see that the speedup increases with the increase of the quantity 
of data. The speedup also increases when the query has several 
larger joins, as we can see through the queries Q7 and Q10. 
This is because MySQL uses a simple multi-join method that 
looks for rows that match a given column. As such, your disk 
I/O cost is higher than in VerdictDB, which only uses a 
sample of the data. 
 

 
 

Fig. 1 Speedup in VerdictDB compared to MySQL. 
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The response returned by the VerdictDB was used in the 
parameter "WITHTIME" of XDB, being also used a 
confidence interval of 95%. Figure 2 shows the error rate of 
both tools for Q3, with the different sizes of TPC-H data. 
According to this figure, the VerdictDB presents higher error 
rates than the XDB for large volumes of data. The query Q3 is 
very simple and only involves the join between three tables, 
but the difference in results for 1 GB of data can be related to 
memory issues at the time of execution of the query. 
 

	
 

 
Fig. 2 Error rate in Q3. 

 
Figure 3 shows the error rate of both tools for Q7, with 

the different sizes of TPC-H data. This is the query more 
complex, involving six joins. The error rate greatly increases 
compared to the query Q3, because information is required a 
larger number of tables. The high error rate of VerdictDB in 
relation to the XDB can be may be related to the fact that 
VerdictDB has a middleware architecture, all of which 
calculations about the sampling data are based on SQL. 
 

 
Fig. 3 Error rate in Q7. 

Figure 4 shows the error rate of both tools for Q10, with 
the different sizes of TPC-H data. The error rate is still very 
low in both tools, because there is a very small amount of data 
to be sampled and are used a few tables. With 50 GB of data 
error rate is very low in XDB, since this only makes the 
sampling of a table with selection predicates. VerdictDB uses 
variational subsampling, in which case only one table is 
sampled, where the rows of the table belong to several 
subsamples. This causes a repetition of the data in the 
samples, increasing the error of the response to the query. 
Because XDB has a walking plan optimizer, it is possible that 
the best path has always been selected, since error rates are 
greatly reduced. 
 

 
 

Fig. 4 Error rate in Q10. 
 
 
 

The query Q3 is the one that presents a lower rate of 
error, because it uses fewer sample tables. On the other hand, 
the queries Q7 and Q10 use more sample tables, returning 
results less accurate.  

The XDB give more accurate results than VerdictDB, 
especially when using many tables in the same query. The 
variational sampling of VerdictDB may be at the origin of 
these results, since this is based on randomness. Thus, it is not 
possible to be sure that a row in a table is not sampled again. If 
repeated lines are sampled, the sample does not become 
representative of the population and causes high error rates. 

 

IV.  CONCLUSIONS AND FUTURE WORK 

In this paper, we compare the VerdictDB and the XDB 
with different scale factors of the TPC-H benchmark in 
relation to speedup and error rate. Also compared the speedup 
of VerdictDB compared to MySQL.  

We conclude that the VerdictDB can be 76x even faster 
than MySQL. The VerdictDB and the XDB are good tools for 
large volumes of data, but the XDB stood out. With the same 
response time, the XDB returns results with double accuracy.  
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For small amounts of data, such as 1 GB, it is not justified 
to use an AQP system. Although we have a speedup of around 
20 x greater in AQP, we also have an associated error rate. For 
this case, if we want a result less fast, but more precise, we use 
the queries in a traditional DBMS. 

As future work, we propose to evaluate more AQP 
systems in Big Data and cloud environments. We also intend 
to suggest new algorithms to improve performance and 
accuracy. 
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