
 1

ESTIMATION OF THE THIELE-SMALL

PARAMETERS IN MOBILE APPLICATION

USING AS LINK PURE DATA

PROGRAMMING AND MICROSOFT VISUAL

STUDIO

Alexander Calva Romero, Ing1, Héctor Merino Navarro, Ing2., Carlos Mayorga, Mas3, and Jonathan Ortiz, Mat4.
1 Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de las Américas, Ecuador, ucalva@udlanet.ec

2 Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de las Américas, Ecuador, h.navarro@udlanet.ec
3 Facultad de Ingeniería, Pontificia Universidad Católica del Ecuador, Ecuador, cjmayorgaa@puce.edu.ec
4 Departamento de Formación Básica, Escuela Politécnica Nacional, Ecuador, jonathan.ortizc@epn.edu.ec

Abstract– This paper is about a multiplatform mobile

application developed to calculate the Thiele-Small parameters of a

loudspeaker using Pure Data. Pure Data is a programming

language mainly used with computers, which is known for its

versatility in creating electronic music and simulations of wave

oscillators. In order to develop this multiplatform mobile

application, it has been proposed a computer platform which can be

compatible with Pure Data functionalities. In that sense, Microsoft

Visual Studio has been chosen and, more concretely, the

framework known as Apache Cordova. Pure Data was used to make

the Thiele-Small parameters calculations by introducing

mathematical formulas and Apache Cordova was used to show the

results through the graphical interface of the mobile device. This

procedure was performed using a file named WebPd, that works as

a library code for compatibility between Pure Data and Apache

Cordova. WebPd can be found on the official website of Pure Data

library developers. Although there are already several mobile

applications created using Pure Data, they have the limitation of

being compatible with Apple devices only. So basically, this work

was able to use a programming language for computers in the

design of mobile device applications. In addition, it is capable to

run in almost every operating system used by Smartphones

(Android, IOS and Windows Phone). On the other hand, the

Thiele-Small parameters mobile application can be considered a

useful tool for the design of speaker boxes within academic

purposes.

Keywords-- Pure Data, JavaScript, WebPd, Programming,

Parameters.

I. INTRODUCTION

The rise of smartphones is one of the greatest revolutions in

technology consumption during recent years. In addition, the

success of other devices such as tablets has led to the

development of numerous computer applications with many

uses.

This publication describes the implementation of an app

focused on the design of loudspeakers based on the Thiele-

Small parameters. Although there are other methods to

achieve this goal, the challenge of this investigation was to use

Pure Data to link it with smartphones. In that sense, it is

required to explore a new way to integrate this language,

initially made for audio synthesis, with the world of mobile

devices.

II. DEVELOPMENT: PROGRAMMING TOOLS

In order to run this application, the user has to introduce the

main Thiele-Small parameters in the software. After this, Pure

Data will apply the design formulas and will return the results

back. Since Pure Data is not made for mobile apps creation, it

is necessary to use an external framework that emulates Pure

Data code in mobile devices; in this case Apache Cordova and

WebPd were used.

Apache Cordova is a framework in which the user may

program mobile apps (IOS, Android, Windows Phone) using

JavaScript, HTML and CSS. On the other hand, WebPd is an

interface between JavaScript and Pure Data. This way,

combining both Apache Cordova and WebPd it may port Pure

Data applications to mobile devices using easily programming

and markup languages such as the mentioned before.

At least, it is important to mention that Microsoft Visual

Studio was used as the Integrated Development Environment

(IDE) to facilitate all this work. All this workflow is showed

in fig. 1. [1]

 2

Fig. 1 Structure programming tools

A. Programming in Pure Data.

Pure Data is a graphical language for signal processing where

the user may implement many different mathematical

operations. Instead of using symbols like a common

programming language, Pure Data uses boxes, with inlets and

outlets, to represent operators. To give an example, in order to

add two numbers, the user creates a binary addition box with

two inlets (representing the two inputs values) and one outlet,

which returns the output value.

Like any other programming language, Pure Data handles

different types of information, like strings, numbers, Boolean

algebraic values or other Pure Data specific tasks. Thanks to

these capabilities the software is a powerful tool for signal

processing operations.

To demonstrate this, the resonance frequency (1) of a box,

in terms of the Thiele-Small parameters, has been

implemented in the Pd as it is showed in figure

TS

STC
c

Q

FQ
F

= (1)

Fig.2 Programming in Pure Data to calculate Fc

In figure 2 the connections made between the objects to

implement equation (1) are presented. The program receives

from the user the main Thiele-Small parameters that

characterize the system: QTS, which is the

electromechanical parameter of the driver; QTC, which is the

electromechanical parameter of the closed box; and fr, the

resonance frequency of the driver. Pure Data receives the

input values through JavaScript; next it resolves the

mathematical operations and sends to JavaScript the result. [2]

B. Programming in JavaScript

JavaScript is a scripting language closely related to Web

applications development. It is easy to use and it helps the

programmers to develop mobile applications. Even though, the

main functionalities of this program have been made on Pure

Data, JavaScript was necessary in certain parts to link Pd with

the mobile applications world that is, receiving and sending

the values (2).

Pd.send(patch.patchId + '-qtc', [qtc]);

(2)

Pd.send(patch.patchId + '-qts', [qts]);

Pd.send(patch.patchId + '-fr', [fr]);

The result that Pd sends to the user through the graphical interface is

showed by the following code (3):

Pd.receive(patch.patchId + '-fc', function (res) (3)

 $("#entrada1").val(res);

});

 3

Basically, these lines of programming made possible the

communication between both languages and consequently, to

develop the project.

Fig.3 Communication between JS y Pd.

The following code (4) represents the calculation function to

achieve a better understanding of these connections:

Function calculate()

(4)

 {

var patch

$.get(‘./pd/name_file.pd’, function (mainStr)

{

patch = Pd.loadPatch(mainStr);

var qtc = parseFloat($(“#QTC”).val());

var qts = parseFloat($(“#QTS”).val());

var vas = parseFloat($(“#VAS”).val());

var fr = parseFloat($(“#FR”).val());

//Send of values to Pure Data

Pd.send(patch.patchId + ‘-qtc’, [qtc]);

Pd.send(patch.patchId + ‘-fr’, [fr]);

Pd.send(patch.patchId + ‘-qts’, [qts]);

Pd.send(patch.patchId + ‘-vas’, [vas]);

//Result receptions

Pd.receive(patch.patchId + ‘-fc’, function (res)

 {

$(“#entrada1”).val(res);

});

}

}

C. WebPd to link Pd and JavaScript

It has already explained the meaning and the importance of

linking JavaScript with Pure Data, but to make this possible

was necessary another tool: WebPd. This point represents the

main contribution of the project and publication. Since Pd is

not software to make mobile apps as it has been mentioned

before, JavaScript is not compatible with Pd by itself. In that

sense, WebPd is the main axis of the link between Pure Data

and Apache Cordova (through JavaScript) in order to make

apps capable of running in the main operative systems of

mobile devices.

Therefore, this is made by using a web API of audio as a tool

of connection. This is a file created in JavaScript that contains

lines of programming with functions needed for the

compatibility between Pd and web environment. Even though

the research led to other alternatives to achieve this link, the

option of using WebPd was the easiest one as well as a new

contribution to knowledge.

This innovation makes possible the interaction between

graphical programming languages with web environment,

opening a large variety of possibilities for future projects and,

more concretely, using Pure Data for mobile apps creation.

The method to include this file in the project is showed in

figure 4. [3]

Fig.4 Including WebPd in the project for Apache Cordova.

D. Interface display on the Smartphone

Once the main objective is reached, next step is to make a

graphical interface, where the user could introduce the data, as

well as to check the results in the display. In this point, HTML,

CSS and JavaScript will create the interactive web pages,

while Apache Cordova will make possible to run the app in

 4

different mobile operative systems (Android, IOS, Windows

Phone).

Connecting audio signals between Pd and a Smartphone

In this part, it is important to remember that Pd was developed

to work with audio signals. Considering to this, the present

project included a tone generator in the loudspeakers app to

give an example of the different possibilities when linking Pd

with a Smartphone. This work was made in JavaScript as

follows (5):

function sound() (5)

{

var patch

$.get('./pd/sound.pd', function (mainStr) {

patch = Pd.loadPatch(mainStr);

var frec = parseFloat($("#FREC").val());

Pd.send(patch.patchId + '-sound', [frec]);

Pd.start();

})

};

To conclude this section of the article, figure 5 shows the final

structure of the tools used to achieve the objective:

Fig.5 Programming tools used

III. CONCLUSIONS

It has been presented a new method of linking Pure Data with

mobile devices. In order to give an example of application, it

was developed an app that uses Thiele-Small parameters to

design loudspeakers cabinets. To complete the functions of the

program, a tone generator was included too. Even though it is

true there are other applications to do similar calculations, this

app uses a graphical language to make easier the work of

program developers.

About this, the research is a new contribution to the

development of Pure Data software. It will help to the

integration of this language to web environment through

Microsoft Visual Studio and Apache Cordova.

It has been demonstrated that it is possible to send and receive

information easily between Pd and a Smartphone, which can

be used either for mathematical calculations or audio signal

processing. It must be stated, however, that not all objects

used in Pure Data are compatible with WebPd. For this reason

it is recommended for programming mathematical operations.

In general terms, the application is very stable, light and easy

to manage for users. Although it may seem obvious, during

this investigation was also evidenced the relevance of using an

updated version of Android operating system for a correct

compilation, in the same way for IOS and Windows Phone

operating systems.

The proposed application for this product is oriented to an

educational and non-commercial context and it is available for

free on the Play Store Android digital store. Loudspeakers

design is an amazing world and the app pretends to help

students to understand it. This is a first step and the idea is to

improve the app in the future and offer a wide range of

possibilities.

ACKNOWLEDGMENT

This research was supported by “Universidad de las Américas

de Ecuador” and it should be mentioned as well the important

contribution of the Systems Engineer Mr. David Cañar.

REFERENCES

[1] Alarcón,J. PhoneGap o Apache Cordova ¿qué diferencia hay?,Campus
MVP, Recuperado el 2 de septiembre de 2015 de

http://www.campusmvp.es/recursos/post/PhoneGap-o-Apache-Cordova-

que-diferencia-hay.aspx 2014.
[2] García,C. Diseño de cajas acústicas. Electroacústica, País Vasco,

España.[Versión electrónica],s.f.. 7 de abril de 2015
[3] GitHub.WebPd/ObjectList.md,.Recuperado el 9 de agosto de 2015 de

https://github.com/sebpiq/WebPd/blob/master/OBJECTLIST.md 2015

[4] GitHub.Sebpiq/WebPd. Recuperado el 6 de agosto de 2015 de

https://github.com/sebpiq/WebPd ,2015

[5] Kreidler,J. Programando Música Electrónica en Pd, Argentina.
Recuperado el 5 de junio de 2015 de http://lucarda.com.ar/pd-

tutorial/index.html. 2009.

http://www.campusmvp.es/recursos/post/PhoneGap-o-Apache-Cordova-que-diferencia-hay.aspx
http://www.campusmvp.es/recursos/post/PhoneGap-o-Apache-Cordova-que-diferencia-hay.aspx
https://github.com/sebpiq/WebPd/blob/master/OBJECTLIST.md
https://github.com/sebpiq/WebPd
http://lucarda.com.ar/pd-tutorial/index.html
http://lucarda.com.ar/pd-tutorial/index.html

