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GACAI-PCP: Cellular Automata based Tool for 

Contact Map Prediction 

Abstract– We describe a software tool that we developed to 

build contact map predictors. This is a novel approach that exploits 

the capabilities of cellular automata to offer complex behavior 

from local interactions only. Our tool identifies cellular automata 

able to classify predicted protein contacts that are more likely real 

contacts. The core of our cellular automata identification tool is a 

genetic algorithm that optimizes the prediction of balanced contact 

maps. With our tool, we proved that is possible to improve contact 

map prediction by means of cellular automata models. 

Keywords-- Protein Contact Prediction, Protein Contact Map, 

Cellular Automata, Inverse Design. 

I.  INTRODUCTION 

Protein contact maps prediction (CMP) and protein 

contact prediction (PCP) fields arose in 1970’s [1]. Nowadays, 

the field has shown a great development particularly since the 

inception of the analysis of correlated mutations [2]. Though, 

the first PCP tools that implements correlated mutations were 

developed more than a decade ago, just recently were solved 

the issue of false correlations that dampened the success of this 

kind of tools [3]. We realized that cellular automata (CA), can 

be used as a tool to improve CMP. 

PCP has acquired importance because of its helpfulness in 

template-free protein structure prediction [4]. PCP provides 

spatial constraints derived from the protein chain that can be 

used in tertiary structure reconstruction or in pipelines that 

predict more detailed native structures [5]. PCP has been a 

tool used since the 1970s when Tanaka and Scheraga used 

protein contacts in an approach for protein folding [1]. After 

several decades of advancement, PCP has taken a prominent 

place in protein folding and protein structure prediction, 

especially for proteins that have few homologs [6]. Despite the 

current progress, there is room for PCP improvement in the 

way of enhancing the contacts in the context of the overall 

protein structure and the contact map that represents the 

protein. In Fig. 1, we show an example of a predicted protein 

contact map and a real contact map. RaptorX-Contact [7] was 

the tool used to predict the contact map in Fig. 1. The protein 

used for the Fig. 1 is part of the benchmark data set of the 

biennial Critical Assessment of Protein Structure Prediction 

(CASP) for year 2016 (CASP12). The predicted contact map 

in Error! Reference source not found. includes a high 

proportion of all the contacts in real contact maps (true 

positives or TP), but the proportion of false contacts (false 

positives or FP) is bigger. 

Fig. 1. RaptorX-Contact predicted contact map and actual contact map 

for target protein T0900 (CASP12). Upper triangular: RaptorX-Contact 

predicted contacts. Lower triangular: Actual contact map. TP denotes true 

positives (true contacts predicted); FP indicates false contacts predicted (false 

positives); FN (false negatives) represents actual contacts that were not 

predicted. 

We propose a software tool that can identify CAs that 

transform a PCP to a contact map that is closest to a real one. 

Researchers rely on approaches for CA identification when the 

knowledge about the inherent mechanisms that define 

transitions is insufficient [8]. In the case of PCP, many 

prediction tools contesting in the CASP, use the idea that local 

effects govern the presence of contacts for amino acid pairs. 

Usually this concept is implemented by defining a window and 

the prediction tools analyse information from MSAs and 

sequence related features (i.e., solvent accessibility, secondary 

structure). This window is analogous to an arbitrary 

neighborhood in a CA, but there is little evidence supporting 

that this is the right neighborhood that determines residue-

residue contacts. 

In this paper, we describe the methods we used for CA 

identification for PCP. In section II we describe the databases, 

datasets, and tools used in our CA identification process. In 

section III, we compare a CA identified by our approach with 

CAs defined by commonly used neighborhoods. Finally, in 

section IV we state some conclusions about our methods for 

CA identification for PCP. 

II. MATERIALS AND METHODS Digital Object Identifier: (to be inserted by LACCEI). 

ISSN, ISBN: (to be inserted by LACCEI). 
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A. Initial Conditions Dataset 

We required several protein reference databases to build 

MSAs and from these we obtain initial PCPs using CCMpred. 

The reference databases that we used were Uniprot20 [9] and 

Uniref100 [10]. To generate MSAs on Uniprot20 we used 

HHblits [11] and JackHHMER [12] on Uniref100. In Fig. 2 

we show the pipeline that we defined to build a dataset of 

contact maps. These contact maps are used as initial conditions 

to extract rules for CAs. The phase of MSAs generation ends 

with the best MSA as input for CCMpred.  

We build the dataset of initial conditions from the hundred 

and fifty protein dataset that was described in [13]. This set of 

proteins contains biological macromolecules, with lengths in 

the range [50, 275] amino acids, with high resolution (≤ 1.9Å), 

and unique Pfam domains [14]. 

CCMpred takes as input the optimal MSA for each 

sequence in the training dataset (Fig. 2) and returns a matrix 

that predicts the coupling scores for each pair of amino acids 

in the sequence. We use ConKit [15] to extract a contact from 

the CCMpred coupling scores matrix. 

 

B. Cellular Automata Identification Framework 

We used the architectural framework described in [16] to 

implement a genetic algorithm that identifies CAs that evolve 

predicted contact maps. This framework provides a core 

architecture that eases the process of implementation of 

several kinds of algorithms for CA identification. By using this 

framework, we can put the focus on the details of the CAs that 

we want to obtain, because there are many tasks common in 

CA identification ready to use. 

 

Fig. 2. Pipeline for the generation of the dataset of initial conditions. 
 

C. Genetic Algorithm for Identification of CAs that evolve 

Contact Maps 

CAs identification is an optimization task. In our case we 

require an algorithm that searches for an optimal CA that 

improves a predicted contact map by reducing the proportion 

of false contacts while keeps real contacts. Our approach 

implements a genetic algorithm (GA). The search space for 

our GA includes 5.63×1014 possible CAs. The size of the 

search space depends of the size of the maximum 

neighborhood, which is a matrix of 7×7 around each cell in the 

lattice. 

In Fig. 3 we show a high-level description of the steps that 

implements our GA. The first step is to arrange the training 

dataset (pairs of predicted/real contact map) in data strata, 

which allow us to reduce computational cost for an iteration of 

the GA. By splitting the data, we can use a stratum in each GA 

iteration to avoid model overfitting and increase diversity in 

the set of CA transitions. In each iteration half of the contact 

maps are used for transitions identification and the remaining 

contact maps are used for testing. When the dataset has been 

consumed by the GA, it continues using the strata in the same 

order. 

For each iteration the GA creates a new population of one 

hundred CAs. For the first iteration the population is generated 

in a random way, and for the following iterations the new 

population is generated by GA operators of selection and 

searching. Each CA in the population is evaluated in parallel, 

exploiting the high-level library DASK [17] that allows to run 

parallel process in modern computing clusters. Once each CA 

is evaluated in a parallel and independent process, the master 

node retrieves all the results (CAs and individual scores).  

Then the global evaluation arranges the best individuals to be 

used in the next iteration. A new iteration is executed until the 

stop condition is met, i.e., two-thousand iterations are done, or 

a perfect CA is found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For 

quality evaluation of each CA we used the Matthews 

Correlation Coefficient [2], which is insensitive to class bias. 

PCP is a highly biased problem, because the proportion of 

non-contacts is very high, so that measures that are sensitive to 
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class bias could search for models that prefers to predict non-

contacts in most of the cases.  

We named our algorithm GACAI-PCP as an acronym for 

Genetic Algorithm for Cellular Automata Identification for 

Protein Contact Prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

  

                           Fig. 3. Genetic Algorithm Process for CA identification. 

 

 

D. Density Classification Task as Benchmark for GACAI-PCP 

We named our algorithm GACAI-PCP as an acronym for 

Genetic Algorithm for Cellular Automata Identification for 

Protein Contact Prediction. 

GACAI-PCP as described in the above section, was 

adapted from our solution for the density classification task 

(DCT). GACAI-DCT was the solution that we proposed for 

DCT [18]. We used DCT as a benchmark for our approach to 

DCT, because the two problems are similar in some aspects. 

DCT is a theoretical problem that requires the identification of 

CAs that can evolve an initial condition that has majority of a 

class (0 or 1) to a final condition where all the cells in the 

lattice have the state of the majority class. DCT requires that 

the CA implements mechanisms of global coordination 

expressed just by the local transitions included in the CA rule. 

CA global coordination is a property that emerges when the 

CA rule is applied to an initial condition iteratively and it is 

hard to design manually. For the 2D DCT case, we have a 

problem similar to PCP: 1) The initial and final conditions are 

known; 2) The optimal neighborhood is unknown; 3) The rule 

transitions can be deterministic or stochastic (there are no 

explicit restriction about this); 4) The lattice can be a regular n 

× n 2D binary matrix; 5) the border condition can be cyclic. 

In DCT we can use small lattices, datasets with lattices of 

21 × 21 initial conditions are very common, so that less 

processing is required for parameters tuning. In contrast, in 

PCP an average contact map can easily have a size of 

300×300. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In GACAI-PCP we used the same algorithm as for 

GACAI-DCT and the only important difference is that the 

MCC used in GACAI-PCP is adjusted to evaluate only the 

upper triangular of the contact map to reduce the processing 

time. 

III.  DISCUSSION 

GACAI-PCP search space includes CA’s neighborhoods 

that are common in CAs modelling. Perhaps, the more widely 

used neighborhood used is the Moore’s neighborhood of 

radius one (Fig. 4.a). We compare some obvious CAs using 

the Moore’s neighborhood of radius one, two and three (Fig. 

4.a-c), as well as a random neighborhood (Fig. 4.d) against a 

CA evolved by GACAI-PCP. 

For evaluation in this paper we used the target proteins in 

the CASP12 dataset, which is comprised of 39 target proteins 

(predictioncenter.org). In Fig. 5, we show the precision of the 

five CAs defined by the neighborhoods of the Fig. 4, measured 

for the full list of predicted contacts. The model identified by 

GACAI-PCP outperforms every other CA. The only target 

protein where our model was outperformed was T0862. The 

CAs that use Moore’s neighborhood of radius one and two, 

and the CA with random neighborhood show a similar 

performance with precision in the range [0.0, 0.1]. The CA of 

radius three is the only model in the comparison that surpasses 

the threshold precision at 0.1, for twelve out of the 39 proteins 
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in the evaluation dataset. But, in the overall comparison is 

evident that GACAI-PCP obtain better contact predictors. 

 
Fig. 4. Examples of Moore’s CA neighborhood. a) Radius one Moore’s 

CA neighborhood. b) Radius two Moore’s CA neighborhood. c) Radius three 

Moore’s CA neighborhood. d) Random neighborhood. e) Blue cells indicate 

cells that affects CA’s transitions. The cell with bold border is the one that is 

updated by the CA evolution. White cells have no effect in the CA transitions. 

 

Target protein T0862 is the exception where our 

identified CA is outperformed by the CA with Moore’s 

neighborhood radius three. For eight target proteins, the CA 

with neighborhood radius three obtains the worst prediction 

result. In Fig. 6, we illustrate the differences of the five CAs in 

the comparison. To assess the performance of the predictors 

set, we used Friedman’s test and Nemenyi’s post-hoc test. 

Friedman’s test compares the precision achieved for each 

predictor in each protein target and determines its average 

ranking. If the differences in rankings are significant, 

Friedman’s test reports a small p-value and rejects the null 

hypothesis (there is no difference in performance). If the null 

hypothesis is rejected, is necessary to perform a post-hoc test 

to find out the predictors that perform better than others.  

 

 

 

Nemenyi’s post-hoc test compares all predictor pairs and 

allows us to identify those with significant difference in 

performance. For this comparison (39 targets and 5 

predictors), by Nemenyi’s test we conclude that predictors 

with rank differences greater than the critical difference (CD ≥ 

0.9768), are significantly different and the one with the best 

ranking (lowest value) is the dominant in the set of target 

proteins. In Fig. 6, arrows start in the dominant predictor. Our 

evolved CA dominates all others, which allows to assume that 

our approach gets better CAs than those defined with 

traditional neighborhoods. The radius three CA surpassed only 

the radius two CA. 

 
Fig. 6. Dominance graph analysis with statistical significance 

comparison by Friedman’s test and post-hoc Nemenyi’s test. 

 

IV.  CONCLUSIONS 

We proposed a framework based on GAs to identify CAs 

that we used to improve protein contact maps prediction. 

GACAI-PCP identified a CA that exceled three obvious CAs 

and random CA, providing evidence that our approach 

identifies optimal CAs for PCP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Performance of the five CAs that implement on the CASP12 evaluation dataset. 
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We tuned the GA parameters using DCT as a problem that 

shares similar specifications to PCP. This allowed us to try 

several configurations and design options in a computationally 

less expensive setting. 

In protein tertiary structure determination PCP is currently 

a habitual step. We proved that CAs can help in PCP. Our 

approach identifies CAs that are suited for the search of 

feasible local arrangement of contacts. The neighborhoods of 

the CAs for PCP showed an irregular shape that was found by 

our machine learning based approach. The several irregular 

neighborhood shapes capture the relationships which have 

effect in the identification of real contacts from false positives. 
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