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Abstract– With the increased use of machine learning methods 

in all areas of engineering, new methods for acquiring and training 

data need to be devised. In Visual SLAM applications using ground 

planes as image data, there is still a lack of research in this area. In 

this work, we analyze how certain parameters influence the 

production of ground plane panoramas intended for training of data-

driven algorithms. The parameters tested are the lighting conditions, 

the terrain type and the image source type (video or picture). For this 

purpose, we generated four panoramic pictures of challenging 

terrains. The resulting analysis serves as a guide to other researches 

that want to produce a dataset of images with the purpose of training 

deep learning models for use in industrial environments. 
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I. INTRODUCTION 

Localization is one of the fundamental fields of research in 

autonomous robotic systems, as a lot of the functionality of such 

a system rely on the robot knowing its current position 

accurately. Simultaneous localization and mapping (SLAM) is 

the problem of estimating the robot position and orientation 

while mapping the surrounding environment, for which a lot of 
progress has been made in sensors, algorithms, and approaches.  

One of these approaches is the Visual SLAM one, in which 

a camera (or multiple ones) is used as the main sensor used for 

both mapping and localization. Depending on their intended 

environment, Visual SLAM methods can be categorized as 

indoor or outdoor methods. In outdoor environments, the 

camera is usually pointed to planes perpendicular to the floor, 

that is, the front, back or sides of the robot. However, in open 

indoor environments such as warehouses or production lines, 

the lack of proximity to features makes looking to the ground 

or the ceiling a better approach (Ground SLAM and CV-SLAM 
respectively), as the features are usually closer and are therefore 

more reliable.  

Another added benefit of pointing the camera upwards or 

downwards is that in a dynamic environment, such as a modular 

factory line, the features of the ground or ceiling are less variant 

in time. This makes the methods more robust and reliable in 

time at a much less cost when compared with other types of 

sensors, such as LIDAR or RGB-D cameras. Better precision 
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can be further obtained by using sensor fusion with the on-

board odometry or a kinematic model of the robot. 

 Multiple algorithms or methods have been proposed using 

these techniques [1], [2], with ongoing research on the topic [3]. 

More recently, with the surge of data-driven algorithms and 

machine learning techniques, a variety of new methods have 

been developed. Among others [4], [5] and [6] show very 

promising results in this field. In [4], they present a solution 

using convolutional neural networks trained to predict depth 
maps and fusing them with depth measurements from direct 

monocular SLAM. In [5], the authors optimize the 

convolutional procedure by introducing parallelism to the 

neural network, achieving an improvement in accuracy with a 

lower number of parameters. Finally, in [6], they use an online 

training procedure that gives the neural network the ability to 

adapt itself to new, unknown environments. 

These methods, in spite of the advantages they present, 

require big amounts of data to work properly, as their 

performance is linked directly with the quantity and quality of 

the collected data. The task of collecting the data is then a 
crucial step of developing one such algorithm, and it is not a 

trivial one when environmental effects like lighting conditions, 

camera lens corrections, motion blur or terrain flatness are 

taken into account. 

In this paper, we analyze the procedure of producing 

ground plane image data (or map) in the form of stitched 

panoramas of ground textures. We test the influence of different 

parameters in the resulting image; the lighting conditions, the 

texture of the floor and the image generation procedure. These 

panoramas can later be used as training data for the 

aforementioned algorithms by, for example, cropping them and 

generating “semi-synthetic” data in the form of image 
sequences that simulate real world motion and working 

conditions. 

The rest of this paper is organized as follows: in Section II 

the related work is presented. Then, in Section III we present 

the methodology of acquiring the data and the setup of the 

results. Afterwards, in Section IV we present the results 

obtained. Section V presents the discussion of the results to 

finally present the main conclusions of the work in Section VI.  
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II. RELATED WORK 

A. Panorama Stitching 

 

 Regarding panorama stitching, research has made great 

advances with still-going efforts to produce faster methods that 

can give results from lower quality pictures, in more 
challenging environments. For example, [7] and [8] introduce 

methods for creating panoramas with videos as input, with [7] 

focusing on videos with low detail. In [9] and [10], the authors 

use SURF features to produce results using different 

procedures. Additionally, [11] presents a method tailored for 

planar panorama stitching together with exposure correction. 

  

B.  Visual SLAM Datasets 

 

In Visual SLAM, several datasets exist for benchmarking 

SLAM algorithms. Some popular ones are the KITTI Dataset 

[12], the TUM Dataset [13] and the EuRoC Dataset [14]. In 
KITTI, they obtain images from a set of cameras placed in the 

outside of a car that drives in multiple outdoor environments. 

TUM uses a Pioneer robot with the camera of a Kinect sensor 

mounted on top of it to produce pictures in an indoor 

environment. On the other hand, in EuRoC they obtained data 

from cameras present on a Micro Aerial Vehicle. 

Nevertheless, to the best of our knowledge, no dataset for 

two dimensional data or procedure for generating one has been 

proposed yet. 

 III. METHODOLOGY 

We used an omnidirectional robot with a camera mounted on 
top of it as shown in Fig. 1. The robot, controlled by a computer, 

followed a predefined path capturing images of three ground 

planes, these had both different textures and different lighting 

conditions. In total, four panoramas were created using two 

procedures outlined below.  

 

A. Procedures 

 

 Two different procedures were followed in order to 

produce the panoramas: 

 

1) The first one, picture mode, consists of alternating 
between moving the robot and capturing images as 

such: First, a picture was taken at the initial position, 

then the robot moved to the next position in the 

trajectory and waited for a short period of time to take 

the next picture. This was repeated until the trajectory 

was complete. The waiting time was introduced in 

order to reduce motion blur in the photos. 

2) The second one, video mode, consists of the robot 

moving while recording a video at the same time. 

Pauses in the movement were also carried out in 
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between x and y movement, but the video was not 

paused in these moments. 

 

 Each mode has a set of advantages and disadvantages. 

Picture mode takes considerably more time to produce an image 

in the same area as video mode, but has the benefit of low 
motion blur together with lower stitching time, as the stitching 

program has to process fewer images overall. Video mode has 

the added inconvenience of motion blur and higher stitching 

time, but it can take pictures faster and, because of the way the 

wheels work, can have more precise movement over long 

distances. 

 

B. Hardware 

 

 For the tests, we built a mobile robot that has three main 

components: 

 An omnidirectional robot: KR0003 4WD Mecanum 

Wheel Mobile Robotic Platform/Kit 2 . The 

embedded Arduino Mega 2560 controls the motion 

and allows serial communication with the Computer.  

 A webcam (Logitech C270). We take images at a 

resolution of 640x480. 

 A Laptop computer (HP ProBook 440 G3) that 

processes the high-level algorithm for the mapping 

routine and that sends G-code commands to the 

microcontroller in the robot. 

 

 We have fixed the camera to the mobile platform using a 
laser-cut acrylic structure with the laptop sitting on top of the 

mobile platform.  

The four mecanum wheels the robot has, give the ability to 

move in all directions in the plane. The robot has four ultrasonic 

sensors located at the sides as well, but we do not use them in 

the present study. The robot design has a pivot in two of the 

four wheels to maintain the grip of the wheels on the floor and 

to avoid slip.  

 

 
Fig. 1 Robot used, the computer is not present in this picture. 

C. Software 

 

 

http://www.kingkongrobot.com/index.php?m=content&c=index&a=show&catid=22&id=21
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The robot was coded to receive G-Code as input, that is, 

when the robot is turned on, the initial position is set as the (0,0) 

coordinate. Then, when a G1 command is sent by the computer 

with the coordinates (x, y) the robot moves to that point in the 

plane. Even though simultaneous movement in the two 

coordinate axes is possible, it was not used because of the 
reasons outlined below. 

To capture the pictures in picture mode, Python together 

with OpenCV was used, whereas in video mode the images 

were captured by the Gnome application Cheese. In both 

modes, communication between Python and Arduino was 

achieved using Pyserial. 

The images were stitched using the software Microsoft 

ICE, a program specially designed for creating panoramic 

images from a set of pictures or a video. We created all 

panoramas assuming planar motion, except for the one in a 

stone floor, where assuming rotary motion with an orthographic 

projection led to better results. 
 

D. Trajectories 

 

 All trajectories were zig-zagging trajectories that were 

performed as shown in Fig. 2. All the trajectories were 

discretized by having a step size of four centimeters in both 

directions. This was done in order to have an overlapping region 

in two consecutive images. 

 In image mode, pauses were performed at every resulting 

point in the resulting path. As the camera mount tended to 

vibrate more with horizontal movement, the trajectories in 
video mode had some pauses at places where this movement 

took place. This was chosen this way in order to minimize the 

vibration of the camera.  

 

 
Fig. 2 Trajectories for each of the two procedures. 

 

 E. Textures 

 

 Three textures were considered for this study. The first two 

are made from smooth concrete, the first one being in an indoor 

environment and the second one in an outdoors one. The third 

one is made from rough stone slabs that have various colors. 

The stone slab floor presents the additional challenge of being 
less planar than the smooth concrete ones. 

 The indoor concrete environment was illuminated by 

halogen lights, whereas the outdoor stone slab floor was 

naturally illuminated. In the stone floor, the pictures were taken 

under a shadow that allowed for a gradient of light intensity 

across the image (depicted in Fig. 3), making it an even more 

challenging task. 

 
Fig. 3 Lighting conditions for the stone floor. 

 

F. Panoramas 

 

 The different panoramas produced are showcased in Table 

I. In it, the parameters of each image are also registered. These 

are the real world dimensions covered by the image, the 

resolution, the texture on which it was generated, the lighting 

conditions and the procedure used. The area covered in each of 
the terrains was chosen according to the available space at the 

moment of obtaining the pictures/videos. 

 Data were collected with each of the two procedures for 

every terrain. It was not possible however to reconstruct a 

panorama for each set of images obtained, the reasons why this 

might have been the case are discussed further below. 

 
TABLE I 

PANORAMAS 

Name Dimensions Texture Procedure 

SI 24x24 cm  Indoor C.* Images 

SO-Im 64x48 cm  Outdoor C. Images 

SO-Vid 64x48 cm  Outdoor C. Video 

SS 120x60 cm Stone slabs Video 

*Here C. stands for concrete. 
 

IV. RESULTS 

Results are divided into each of the different terrain 

textures. Only for the smooth concrete texture located outdoors, 

two successful panoramas were obtained. In the indoor concrete 

floor, the video data failed to successfully recreate the 

panorama as the resulting image was stitched incorrectly, as 

features such as cracks were not properly joined. In the outdoor 

stone slabs, the program was not able to produce a panorama 

whatsoever from the input pictures. 
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A. Smooth indoor concrete. 

 

 The resulting panorama (SI) for the smooth concrete floor 

in the indoor environment is shown in Fig. 4. In it, artificial 

features are introduced by the reflection of the halogen lamps 

on the floor.  
 

 
Fig. 4 Panorama SI. 

 

 

Depending on the location of the robot at a certain point in 

the trajectory, these reflections might occupy a different part of 

the image, with varying results on the resulting picture. 

 Fig. 5 shows the field of view of the robot in one of the 

used pictures with a reflection present in it. As can be seen, the 

reflection is not symmetric, which means the reflection is 

dependent on the orientation of the robot. 

 
 

 
Fig. 5 One of the pictures of panorama SI with a reflection present. 

B. Smooth outdoor concrete. 

 Panorama SO-Im is presented in Fig. 6. The absence of 

reflections from the source of light makes the resulting 

panorama, one without artificial features or artifacts. 

It is important to notice that the quality of the pictures taken 

for this panorama is the same as that in Fig. 5, making the 

reflections on the floor the only cause of the lower quality 

panorama obtained in the first texture. 

 

 
Fig. 6 Panorama SO-Im. 

 

 The panorama in video mode for this type of texture, SO-

Vid, is showcased in Fig. 7. The areas were the pictures were 

taken for each panorama differ slightly in location.  

 

 
Fig. 7 Panorama SO-Vid. 

 

C. Stone slabs. 

 
 For the stone slabs the resulting panorama SS is shown in 

Fig. 8. In it, the collinearity of the slabs is clearly preserved, as 

well as the perpendicularity of the lines in between slabs. 
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Parallel lines get warped by a small distance in the horizontal 

direction. 

 One frame of the video used to produce the Stone Slab 

panorama is shown in Fig. 9. Here, it is possible to see the low 

quality of the input picture as well as some of the motion blur 

caused by the vibration of the camera. This frame was selected 

at random and corresponds to a location in the upper right part 

of the panorama in Fig. 8.  
 

V. DISCUSSION 

 From the panorama achieved in the first environment (SI), 

we can see the relevance of the floor reflectivity, together with 

the lighting disposition, in the goal of mapping the ground of an 

environment. The lack of proper control of these reflections can 
lead to artifacts in the results that are not present in the terrain 

itself, which could in turn generate features that an algorithm 

cannot rely on when tested in the field. 

 However, this issue can be alleviated by creating an 

enclosure for the camera, in a way that guarantees the reduction 

of the reflections on the floor. Nevertheless, it would be useful 

to perform further inspection of the way these reflections are 

generated in order to mimic them synthetically. When training 

an algorithm for a certain target environment, data 

augmentation with simulated lighting conditions would benefit 

the performance. 
 Furthermore, if we look at the second set of images 

(panoramas SO Im and Vid), it is clear how the quality of the 

resulting panorama can drastically increase for the same ground 

texture when lighting conditions are accounted for. However, 

these might not always represent a real-life scenario. 

 Regarding the image obtaining procedure, the fact that for 

the second texture both modes (video and picture) were 

successful indicates that reflections do not allow for proper data 

capturing when in video mode. Further experimentation is 

needed in order to support this claim. 

 For the third texture, we could only obtain a panorama for 

video mode. A varying source of light in time might be the 
reason why picture mode failed, as images in this mode take 

considerably more time to be generated. 

 In panorama SS, the software parameters for the generation 

played a key role in the quality of it. We made the rest of the 

panoramas assuming planar motion, but this led to wrong 

results in this texture. As shown in Fig. 10, choosing planar 

motion led to an unsatisfactory result. To solve this problem, 

we used the rotary motion option and then projected the 

resulting stitched panorama using orthographic projection. 

 From all the parameters tested, the lighting had the most 

impact in the obtained results, with different motion blur 
(higher for video mode and stone slab floor) and textures 

playing a minor role in the pictures. 

Fig. 8 SS Panorama. 

Fig. 9 Frame of the video used to produce panorama SS. 
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Fig. 10 Failed version of panorama SS. This version assumes planar 

motion. 

 Both capturing procedures generated satisfactory 
panoramas in more than one texture, making them a useful tool. 

As a recommended practice, video mode should be used 

whenever possible in order to reduce the capturing time, thus 

reducing the variation of lighting conditions in a given 
panorama. 

 Finally, in order to reduce motion blur when taking the 

pictures, the use of a stabilizing device such as a Gimbal should 

be considered together with a higher rigidity mount for the 
camera.  

 

VI. CONCLUSIONS 

 We present an analysis of the different parameters that are 

involved in the mapping of a ground plane with the purpose of 

creating datasets for further use in the training of neural 

networks. 

 We test two ways of producing the panoramas, one with a 

set of pictures taken at different strategic locations and another 
one from a stream of images or video. We find that the most 

convenient one is the video, but cannot be used in all cases. 

 We also find that the presence of reflections in the ground 

texture makes the resulting panorama not suitable for training, 

as it produces artificial features in the ground which are not 

reliable for real environments. 

 We also plan on making the robot less prone to vibrations 

by improving the transmission system and using a Gimbal to 

stabilize the camera mount. 

 With these findings, we plan on constructing a dataset of 

multiple textures on bigger terrains. With this data, we will 
propose new Ground-based Visual SLAM algorithms with the 

use of convolutional neural networks (CNN). 

 We will also apply the approach followed here to determine 

which parameters influence the most in data collection for 

Ceiling Visual SLAM, with the goal of helping other 

researchers develop novel algorithms to achieve better 

localization. 
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