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Abstract– The origin of the virtual parts in Catia v5 is traced 

back to the RBE elements (Rigid Bar Elements) in the NASTRAN 

program. The focus of this paper is to explore the functionalities of 

such elements in linear dynamic problems utilizing Catia v5. Several 

FEA benchmarks or case studies employing Rigid virtual part and 

Rigid Spring virtual part under commonly applied boundary 

conditions are provided. The advantages and disadvantages of these 

tools are discussed to help the software users choose the right 

strategy in modeling their structure based on the requirements and 

goals in mind. 
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I.  INTRODUCTION 

In the early 1960s, “Rigid” elements were introduced in the 

NASTRAN program to decrease the cost of computation which 

is a critical issue in FEA simulations. Virtual parts are the 

modified versions of those elements in the Catia v5 finite 

element software [1]. The virtual part toolbar in Catia v5 

includes five different icons, namely, Rigid virtual part, Rigid 

Spring virtual part, Smooth virtual part, Smooth Spring virtual 

part, and Contact virtual part. Reference [2] included a detailed 

discussion of the concepts and differences of the Rigid and 

Smooth virtual part. This paper however discusses only the 

Rigid and the Rigid Spring varieties.  

In publication [3], linear static analysis utilizing virtual 

parts were discussed. Important basic information about the 

virtual parts are presented in that publication, including the 

differences between “Rigid”, “Rigid Spring”, and “Smooth” 

virtual parts. Furthermore, three case studies to demonstrate the 

use of such tools under different loads were presented. These 

are the common axial, torsional and bending forces. The Catia 

generated stresses are verified against analytical solutions, 

when available, and the “Fully 3D” FEA models otherwise. 

Since, linear dynamics is based on the concept of modal 

superposition, the authors investigated the behavior of virtual 

parts and their role in modal analysis, in an earlier publication 

[4]. The first section of that paper is a detailed description of 

the origin and concept of virtual parts including RBE, RBE2, 

RBE3 in NASTRAN, and their relationship to Rigid virtual part 

and Rigid Spring virtual part in Catia v5. Moreover, it outlines 

how to transfer the applied force and moment and calculate the 

displacement of the “Handler” point which is also discussed in 

detail in reference [5].  The main feature in [4] is numerous case 

studies dealing with virtual parts for frequency calculations of 

a simple geometry, under common loading conditions and 

restraints. The first 3 natural frequencies of each case study 

were compared with existing analytical solutions or performing 

fully 3D FEA modeling without using virtual parts. These are 

important steps in linear dynamics analysis because of the role 

of the modal superposition technique. As in the static analysis 

paper [3], the cases are divided into 3 different categories 

namely, axial, torsional, and bending deformation under a 

fixed-free boundary condition. Reference [2] also includes 

other useful restraints such as fixed-fixed and free-free 

conditions. 
In this presentation, both the transient and steady state 

(sinusoidal) simulations were conducted. The transient 

calculation deals with an independent variable which is “time” 

whereas, in the steady state (Harmonic/sinusoidal) case, the 

independent variable is the excitation “frequency”. 

II. THE CASE STUDIES UNDER CONSIDERATION

      This paper considers eight case studies involving the 

dynamic axial, bending and torsional forces for a simple part 

using Rigid virtual part and the Rigid Spring virtual part under 

a Fixed-Free boundary conditions. The main reason behind 

simple loading and geometry is to be able to compare the results 

with analytical solutions. For the case of axial and bending 

loads, the cross section is square, whereas, for the torsional 

study, the cross section is circular. The steel material with the 

Young’s modulus E = 200 GPa, Poisson’s ratio υ = 0.266, and 

ρ = 7860 𝑘𝑔 𝑚3⁄   is assumed for all cases. A simple geometry

is taken into consideration in the paper in order to prevent 

distractions due to insignificant details. Considering the 

geometries shown in Fig. 1, the actual total length of the bar is 

𝐿 = 150 𝑚𝑚. This total length is consisting of two portions 

namely “Modeled Portion” with the length 𝐿𝑀𝑃  =  100 𝑚𝑚
𝑎𝑛𝑑 “Virtual Portion” with the length 𝐿𝑉𝑃  =  50 𝑚𝑚.

      When using Rigid Spring virtual part, the stiffness of the 

resulting spring needs to be calculated as a one-dimensional 

geometry, under axial, bending, and torsional loading based on 

elementary strength of material formulas. These are displayed 

in Fig. 2. 

Fig. 1 Geometry and boundary conditions of the case studies 

considered [2] 
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Fig.  2 A generic, simplified problem for illustration purposes 

for the case studies considered 

  

 This figure is only for illustration purposes. The variables 

“G” and “E” are the shear and Young’s modulus respectively, 

whereas, “J” and “I” are the polar and second moment of area. 

Furthermore, “A” is the cross-sectional area. The relevant 

stiffnesses are given in Fig. 2. The spring constants can be 

translational and/or rotational in nature and up to six such 

values can be inputted in the appropriate dialogue box which is 

provided in Fig. 3. In more complex parts, these values can be 

specified by conducting simple experiments in a controlled 

environment [2]. 

 

 
Fig.  3 Rigid Spring Virtual Part dialogue box [3]III. A 

Clamped Bar With an Applied Force in the Midspan 

 

Case (a), Rigid Spring Virtual Part, Axial Deformation 

 

The bar depicted in Fig. 4 is under an axial dynamic load 

of magnitude F(t) = 1000 N which is applied in the middle of 

the bar, 75 mm away from the clamped end. Instead of 

modelling the whole part with solid elements, a Rigid Spring 

virtual part is considered for latter 50 mm of the bar and placed 

at the centroid of the “Virtual Portion” as the “Handler” point. 

Fig. 4 also shows a “Fully 3D FEA” model using solid elements 

to be employed for comparison purposes. 

The axial stiffness of this spring 𝑘𝑉𝑃 =
𝐴𝐸

0.5𝐿𝑉𝑃
= 8𝐸 + 8 𝑁 𝑚⁄   

is taken into account in the Rigid Spring virtual part model. This 

is calculated based on half the length of the virtual part, i.e. 

0.5𝐿𝑉𝑃  =  25 𝑚𝑚 and inputted in the model. One way to apply 

a 1000 N force to the bar is to create two points A and B on the 

side faces of the 150 mm bar and apply 500 N at each of these 

two points. This strategy was followed to apply the load in the 

desired direction. The mass of the virtual part 𝑚𝑉𝑃 =
0.0393 𝑘𝑔 (10x10mm square cross section) is calculated based 

on the density of the material and placed at the handler point of 

the virtual part for both models. 

 

 
Fig.  4 (a) The Rigid Spring virtual part and (b) The Fully 3D 

FEA models of the Fixed-Free case under axial dynamic load 

 

The Catia generated X-direction deflection of point A 

where the force is applied for both models during the first 0.001 

seconds are plotted in Fig. 5. As depicted, the Rigid Spring 

virtual part model is in a good agreement with the “Fully 3D 

FEA” Model. It means that by using Rigid Spring virtual part 

instead of solid elements for the latter 50 mm of the bar, the 

number of elements is decreased by one third, therefore the cost 

of computation is decreased significantly but the resut is in 

reasonable agreement with the full 3D model. 
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Fig.  5 The axial deflections of the Fixed-Free beam under an 

axial dynamic force at the middle 

 

Case (b), Rigid Virtual Part, Axial Deformation 

 

This is the same as the case (a) except that a Rigid virtual 

part (instead of the Rigid Spring) is used for the right 50 mm 

portion of the bar shown in Fig. 6. As the latter 50 mm behaves 

substantially more rigid in the Rigid virtual part model in 

comparison to the fully 3D steel model, the “Fully 3D FEA” 

model is not a good idealization for the Rigid Virtual Part. 

Therefore, a more appropriate reference finite element model 

using beam elements only is created in Catia v5. 

In this reference model, 20 beam elements are used to 

replace the first 100 mm and 10 beam elements to model the 

end 50 mm displayed in Fig. 7. The latter 50 mm of the bar is 

assumed to be more rigid than the rest of the bar. Therefore, the 

Young’s modulus of the end 50 mm is 100 times larger than the 

left 100 mm of the bar. The multiplier is arbitrarily selected but 

may warrant some sensitivity analysis. All of these 30 elements 

have the true 10x10 mm cross section. The density of the shorter 

section is as same as steel. For all practical purposes, the shorter 

section is acting as a rigid bar. The mass of the right 50 mm 

section is directly taken into the consideration by using the 

actual density of steel. This is symbolically shown in Fig. 7 as 

the 11 lumped masses on this section which incidentally can be 

misleading. 

 
Fig. 6 The Rigid virtual part and the Rigid Spring virtual part 

models of the Fixed-Free case under axial dynamic load 

 
Fig.  7 The reference model for comparison purpose for Rigid 

virtual part model of the Fixed-Free bar under an axial 

dynamic force at its middle point [2] 

 

 
Fig.  8 The axial deflections of the beam under an axial 

dynamic force at the middle [2] 

 

The axial deflection of the middle point of the Rigid virtual 

part and the reference model where the dynamic loads are 

applied are plotted in Fig. 8. The Rigid virtual part model result 

is in a very good agreement with the reference beam model [2]. 

 

Case (c), Rigid Spring Virtual Part, Bending Deformation 

 

The same bar considered in the previous two cases is under 

a bending dynamic load F(t) = 1000 N at the middle point, x = 

75 mm. As in the axial analysis, the last 50 mm on the right end 

of the bar is modeled with both Rigid Spring virtual part and 

solid elements, as shown in Fig. 9. The mass of the virtual part 

𝑚𝑉𝑃 = 0.0393 𝑘𝑔 based on the density of the material for the 

virtual portion is placed at the handler point of the Rigid virtual 

part. It is necessary to calculate the stiffnesses of the virtual 

portion and take it into account in the Rigid Spring virtual part. 

As shown in Fig. 2, the translational spring along “Y” axis, 

𝑘𝑉𝑃,𝑌 =  
3𝐸𝐼

(0.5𝐿𝑉𝑃)3  =  3.2𝐸 + 7 𝑁 𝑚⁄  and the rotational spring 

stiffness about the “Z” axis, 𝑘VP,θZ =
𝐸𝐼

0.5𝐿𝑉𝑃 
= 6.67𝐸 +

3 𝑁. 𝑚/𝑟𝑎𝑑 have been used. 

The Catia generated “Y” direction deflection of the middle 

point of the bar where the force is applied during the first 0.01 

seconds are plotted in Fig. 10. The time-dependent deflection 

of the Rigid Spring virtual part model is in a very good 

agreement with the “Fully 3D FEA” model. Therefore, the cost 

of computation is significantly decreased without influencing 

the result by using a Rigid Spring virtual element instead of a 
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50 mm Steel continuum bar [2]. In this paper, the metric for 

computational cost is the numbers of elements. 

 
 

Fig.  9 (a) The Rigid Spring virtual part and (b) The Fully 3D 

FEA models for the Fixed-Free case under a bending dynamic 

load at the middle 

 

 
Fig.  10 The bending deflections of the Fixed-Free beam under 

a bending dynamic force at the middle 

 

Case (d), Rigid Virtual Part, Bending Deformation 

 

     This is the same problem considered in case (c) except that 

the Rigid virtual part is used for the latter 50 mm of the bar. 

Therefore, the last 50 mm of the bar behaves substantially 

stiffer than the rest of the bar. Hence, the same reference finite 

element model using beam elements described in case (b) 

earlier, is created in Catia v5 for comparison purposes. This 

situation is depicted in Fig. 11. 

 
Fig.  11 The reference model for comparison purpose for the 

case (d) 

 

The bending deflection of the middle node of the Rigid 

virtual part and the reference model where the dynamic loads 

are applied are plotted in Fig. 12. The Rigid virtual part model 

result is in a good agreement with the reference beam model. 

 

 
Fig.  12 The bending deflections of the Fixed-Free beam under 

a bending dynamic force at the middle 

 

Case (e), Harmonic Torsional Force 

 

     A 150 mm long bar with a circular cress-section and radius 

R = 10 mm is under a harmonic moment 𝑀(𝑡)=10 𝑆𝑖𝑛(𝜔𝑡) 𝑁𝑚 

at the midpoint location. Therefore, two harmonic sinusoidal 

dynamic forces 𝐹(𝑡)=500 𝑆𝑖𝑛(𝜔𝑡) 𝑁 as shown in Fig. 13 is 

creating a couple to make that moment possible. Please keep in 

mind that the present torsional test case is solved in the 

frequency domain and not in the time domain. 

This problem has been modeled with both the Rigid virtual 

part and the Rigid Spring virtual part; depicted in Fig. 14. 

Therefore, the last right 50 mm of the bar has been replaced by 

virtual part with a “Handler” point at the centroid of the virtual 

portion. The rotatory inertia of the virtual portion is also 

calculated as 𝐽𝑉𝑃,𝜃𝑦 =
1

2
𝑚𝑉𝑃𝑅2 =

𝜋

2
𝜌𝐿𝑉𝑃𝑅4 = 6.17𝐸 −

6 𝑘𝑔. 𝑚2 and added as a lumped mass and a rotational inertia to 

the virtual parts for both models. In the Rigid Spring case, the 

torsional stiffness of the bar is given by 𝑘𝑉𝑃,𝜃𝑦 =  
𝐺𝐽

0.5𝐿𝑉𝑃
=

9.93𝐸 + 4 𝑁. 𝑚/𝑟𝑎𝑑  which is then inputted in the dialogue 

box. 
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Fig.  13 Fully 3D Model of the Fixed-Free beam under a 

harmonic moment at the middle point [2] 

 

 
Fig.  14 The Rigid virtual part and the Rigid Spring virtual 

part models of the Fixed-Free case under a harmonic moment 

at the middle 

 

Fig. 15 displays the plots of the maximum deflection 

amplitude as a function of the frequency for the middle point of 

the bar. As shown, the Rigid virtual part and Rigid Spring 

Virtual Part are in good agreement for the first peak but 

diverging from one another for the frequencies larger than 

15000 Hz. Although the results have large errors for higher 

frequency, most structural applications primarily rely on the 

lower end of the spectrum; well below the 15000 Hz [2]. 

 

 
Fig.  15 The deflection amplitude as function of frequency 

plots for a bar under a harmonic moment at the midpoint 

location 

 

IV. A BAR UNDER SUDDENLY APPLIED GRAVITY LOADING 

 

Case (a), Rigid Spring Virtual Part, Axial Gravity 

 

     The problem under consideration is the same as the Fixed-

Free 150 mm steel bar except that it is subjected to a suddenly 

applied axial distributed gravity loading. The problem has been 

modeled with the Rigid Spring virtual part. The left 100 mm of 

the bar is modeled with solid tetrahedron elements and the right 

50 mm is a Rigid Spring virtual part with a “Handler” point at 

the centroid of the virtual portion, displayed in Fig. 16. Notice 

that as the virtual parts do not recognize the gravity loading 

directly, a force of 𝐹(𝑡) = 𝑚𝑣𝑝 𝑔 = 0.039 ∗ 9.81 = 0.385 𝑁 

is applied on the virtual part to invoke it. 

This problem has an analytical solution based on separation 

of variable method presented in [6] which is used for 

comparison purposes. In this reference, the axial deflection 

“u(x,t)” of any point at the time “t” is calculated from the 

expression below: 

 

 

𝑢 (𝑥, 𝑡) = 2
𝑔 ∑

sin(𝜆(𝑛)𝑥)
𝜆(𝑛)3

𝑁
𝑛=1

𝐿 𝑎2
− 2 

𝑔 ∑ cos(𝑎 𝜆 (𝑛)𝑡)
sin(𝜆(𝑛)𝑥)

𝜆(𝑛)3
𝑁
𝑛=1

𝐿 𝑎2
 

 

Where   𝜆(𝑛) =  
(2𝑛−1)𝜋

2 𝐿
  𝑎 =  √

𝐸

𝜌
 

 

The following values are employed, 

 

 𝑔 = 9.81 
𝑚

𝑠2      𝐸 = 200 𝐸 + 9 

        𝐿 = 0.15 𝑚       𝜌 = 7860 
𝑘𝑔

𝑚3  

 

The axial displacement as a function of time for the point 

100 mm away from the left point (x = 100 mm) is calculated 

using the equation above, considering only the first three modes 

with the Mathcad software. The same deformation is plotted in 

Catia for the Rigid Spring virtual part model. Note that the 

points where x = 100 mm are the points on the support face. 

Both plots are displayed at Fig. 17. The Rigid Spring virtual 

part results are in a very good agreement with the reference plot 

[2]. 
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Fig.  16 The Rigid Spring virtual part model of the Fixed-Free 

case under an axial gravity 

 
Fig.  17 The axial deflection as a function of time plots for a 

Fixed-Free bar under an axial gravity 

 

Case (b), Rigid Virtual Part, Axial Gravity 

 

Here, the Rigid virtual part is used for the latter 50 mm of 

the bar as depicted in Fig. 18. Therefore, the right 50 mm of the 

bar behaves more rigidly than the rest of the bar. It is not 

reasonable to use the analytical solution form the literature. 

Therefore, the same reference finite element model using beam 

elements described earlier, is created and subjected to the same 

axial gravity in Catia v5 and for comparison purposes. This 

situation is displayed in Fig 19. 

 
Fig.  18 The Rigid Virtual Part model of the Fixed-Free case 

under an axial gravity 

 

The axial displacement as a function of time for the point 

100 mm away from the left point (x = 100 mm) calculated by 

Catia for both the Rigid virtual part model and the reference 

beam model is plotted in Fig. 20. Note that the points where 

x=100 mm are the points at the support face. The Rigid virtual 

part results are in a perfect agreement with the reference beam 

model plot. 

 
Fig.  19 The reference model for Rigid virtual part model of 

the bar under suddenly applied gravity loading 

 
Fig.  20 The axial deflection as a function of time plots for a 

Fixed-Free bar under an axial gravity 

 

V. A PLATFORM UNDER HARMONIC DYNAMIC LOAD 

 The platform shown in Fig. 21 is subjected to an 

unbalanced rotating machine applying a harmonic sinusoidal 

load of amplitude 1000 N [7]. The platform consists of a 1𝑚 

×1𝑚 square plate with a thickness of 0.01 m standing on four 

0.5 m long legs. The legs also have a 0.01𝑚 ×0.01𝑚 square 

cross sections. The bottom faces of the legs are assumed to be 

clamped. Instead of modeling the rotating machine, a Rigid 

virtual part is considered with a “Handler” point at the middle 

of the platform but 0.5m above it. The support face of the virtual 

part is 0.1𝑚 ×0.1𝑚 square in the middle of the platform. The 

structure is entirely made of steel. The problem is modeled 

utilizing shell and beam elements displayed in Fig. 22. The 

platform is modeled with 3 mm parabolic Octree Triangle shell 

elements and 10mm thick 2D property. These are the exact 

terminologies from Catia v5. The legs are meshed with 3 mm 

linear beam elements with square cross section 1D properties. 

Each leg is connected to the platform by defining a Rigid 

Connection between its top vertex and the corner vertex of the 

platform. In order to make the support face for the virtual part 

in the middle of the platform, one can make two separate 

patches and connect them with a Fastened Connection. In fact, 

the plate is modeled with a 0.1𝑚 ×0.1𝑚 square cavity at its 

middle and a separate 0.1𝑚 ×0.1𝑚 patch is modeled at the 
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middle and is fastened to the main platform. This connection is 

shown in Fig. 22 with a “fastened” sign. 

 

Fig.  21The Platform under a sinusoidal force [7] 

 
Fig.  22 The shell-beam Catia FE model of the platform under 

harmonic response [2] 

 

     In order to assess the quality and accuracy of the shell-beam 

calculation, a fully three-dimensional model of the platform 

was also created, displayed in Fig. 23. Therefore, the model is 

created in the Part Design workbench and meshed with 5 mm 

Parabolic Octree Tetrahedron solid mesh. A smaller local mesh 

size is used in the critical areas. Hence, a local mesh size of 3 

mm has been applied for the four clamped bottom faces of the 

legs and the highlighted edges displayed in red. Furthermore, a 

zoomed view of the local mesh at a corner of the platform is 

displayed in Fig. 24 to clarify the differences between the 

adjacent element sizes. The strategy to make the support face is 

to create the 0.01𝑚 ×0.01𝑚 square surface at the middle and 

“sew” it to the part in Wireframe and Surface Design 

workbench. In the language of Catia software, this develops a 

“feature” in the solid model for our purpose. Hence, this area 

can be used as the support face of the virtual part. 

 

 
Fig.  23 The highlighted edges for local mesh for the solid 

model of the platform under harmonic response [2] 

 

 
Fig.  24 A zoomed view of the local mesh of the solid Catia 

FE model of the platform under harmonic response [2] 

 

As mentioned earlier, Catia uses modal superposition 

technique to solve dynamic problems. Therefore, the next step 

is to consider the natural frequencies of the system. The first ten 

natural frequencies are used for further analysis based on the 

modal participation report from Catia for the beam-shell model. 

This statement is based on the common practice of using 

approximately 80% modal mass participation factor for 

truncation purposes. The next step is to conduct a Harmonic 

Dynamic Response Case. Hence, a load with amplitude of 1000 

N on the vertical direction is applied on the Rigid virtual part 

with 1% modal damping. The “Harmonic Dynamic Response 

Solution” module with 200 steps from 0 Hz to 200 Hz is 

considered and the Frequency Response Curve for the vertical 

deflection for a corner point of the platform is plotted for both 

models which is presented in Fig. 25. Both the mode shapes and 

amplitudes are in a good agreement, particularly, for the 

frequencies smaller than 100 Hz. This practical example which 

is a very common scenario shows the advantages of using a 
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Rigid virtual part to model a rotating motor for apply harmonic 

load on a steel platform [2]. 

 

 
Fig.  25 Frequency Response Curve for The Vertical 

Deflection for a Corner Point of The Platform under harmonic 

response [2] 

 

 

VI. BASICS OF MODAL SUPERPOSITION 

    Since the concept of modal superposition is the fundamental 

building block of linear dynamics, presenting a brief description 

of the topic is warranted [8], [9].  

 

 

 

 

 

 

 

 

Fig.  26 Single Degree of Freedom, Mass-Spring-Damper 

System 

 

The equation of motion describing the above system is given by 

the well-known second order linear differential equation below. 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝑓(𝑡) 

Very often this equation is written in the canonical form 

�̈� + 2𝜉𝜔𝑛�̇� + 𝜔𝑛
2𝑥 =

𝑓(𝑡)

𝑚
 

Here, 𝜉 =
𝑐

𝑐𝑐𝑟
=

𝑐

2√𝑘𝑚
 is the damping ratio and 𝜔𝑛 = √

𝑘

𝑚
 is the 

undamped natural frequency of the system, The damped natural 

frequency is given by 𝜔𝑑 = 𝜔𝑛√1 − 𝜉2 . Assuming the zero 

initial conditions (zero displacement and velocity), the solution 

to the above equation can be written using the Duhamel integral 

as (also known as the convolution integral), 

 

𝑥(𝑡) = ∫ 𝑓(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

0

 

 

The function ℎ(𝑡) is known as the damped impulse response 

function and given by  

 

ℎ(𝑡) =
1

𝑚𝜔𝑑

𝑒−𝜉𝜔𝑛𝑡𝑠𝑖𝑛𝜔𝑑𝑡 

 

Therefore, if the impulse response function is available (and it 

is in this problem), one knows everything about a linear single 

degree of freedom system.  

     When dealing with a distributed parameter system (i.e. a 

continuum), there are infinite number of modes. Using the finite 

element analysis, this is reduced to a finite number of modes 

and therefore a multi-degree of freedom system is created. The 

equation of motion for a multi-degree of freedom system is 

written as 

 

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑥} = {𝐹} 
 

The only difference with a SDOF system is that the mass, 

damping, and stiffness are matrices and {𝑥} is the displacement 

vector. Now using the modal coordinates (eigenvectors of 
[𝑀]−1[𝐾]) one can decouple the above system of equations so 

that each takes the form of non-dimensional SDOF system. 

These can be solved using the Duhamel integral and 

reconstructed to arrive at {𝑥(𝑡)}. 

Note that there is another issue involved in carrying the rest of 

the calculation. There may be no need to include all the modes 

of the structure. This means that the transient (dynamic) 

response may be dominated by the few smaller frequencies. 

This is generally the case with structural dynamics problems. 

The more systematic way to decide how many modes (and 

which ones) to be included is the calculation of the modal 

participation factors. A rule of thumb is to include modes which 

end up contributing to 80% of the total mass.  

 

VII. CONCLUDING REMARKS 

    This paper presents the reader with several examples dealing 

with the usage of Virtual Parts in linear dynamics 

implementation within Catia v5. The first four examples are 

classical components whereas the last one is of a more practical 

nature. In all the examples considered, the Catia generated 

results are either compared with the exact analytical solution, 

or with the 3D/Beam FEA model where no Virtual Parts were 

utilized. In general, there are excellent agreements between the 

two. The use of the Virtual Part functionality substantially 

reduces the computer resource requirements yet produces 

reasonably accurate results. As indicated earlier in the paper, 

the metric for computational cost is assumed to be the number 

of elements needed for the “full” model. This is probably 

grossly simplifying the overall factors associated with the cost 

of computation. In view of the comments on the modal 

participation factor, very few modes were selected to carry out 

the dynamic calculations.   Having said that, one should 

exercise care and use engineering intuitions for making such 

choices. 
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