
17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica.

1

Reliability Patterns: A Survey
Ingrid A. Buckley, Ph.D1, and Eduardo B. Fernandez, Ph.D2

1Florida Gulf Coast University, USA, ibuckley@fgcu.edu
2Florida Atlantic University, USA, fernande@fau.edu

Abstract–This study presents an enumeration and evaluation
of reliability patterns. We first catalog these patterns to make
them accessible and useful to software developers and system
designers. The objective here is to identify areas for which there
are no patterns or the existing patterns are not complete enough
to be useful to software designers. The patterns are classified
based on the reliability properties they provide. As examples of
our methodology we evaluate some of the patterns discussed in
this survey.

Keywords-- reliability, reliability patterns, software patterns,
fault tolerance

I. INTRODUCTION

Reliability is especially important for safety-critical
systems, which control applications important in a variety of
areas, including government, transportation, power generation,
and others. The need and use of critical systems has increased
over time, especially with the pervasive and increasing use of
distributed and cloud-based systems. Reliability is a property
which allows some function, task or service to behave as
intended when required and measures continuity of correct
service. Reliability is particularly important in critical
infrastructures and is a fundamental prerequisite of safety and
fault tolerance. Fault tolerance masks faults that may occur
during execution.

A pattern is an encapsulated solution to a recurrent
problem in a given context and can be tailored to fit different
situations [14], [26]. Patterns have proven to be useful in the
development of good quality systems because they provide
reusability and a systematic approach for designing,
implementing, and evaluating complex software systems.
Reliability patterns are useful for system designers and
developers who need help in implementing reliable or high
availability systems. Reliability patterns offer system designers
and programmers who have little knowledge and experience in
implementing software reliability, best practices and guidelines
on how to achieve different levels of reliability.

In this survey we enumerate patterns intended to build
reliable systems. We analyze some of these patterns to
determine if they conform to the standard pattern definition, if
there is another pattern with the same objectives but a different
name, and if it has a complete description. We evaluate each
pattern using a set of quality criteria, mostly taken from [63].
As part of this enumeration, we identify patterns that are not
sufficiently elaborated and need to be completed before they
can be useful for developers.

This paper is organized as follows: Section 2 provides
background information about patterns and reliability. Section
3 presents a variety of reliability patterns. Section 4 evaluates

some of the reliability patterns along two dimensions: reliability
properties and quality indicators. Section 5 presents some
conclusions and discusses future work.

II. BACKGROUND

As indicated above, a pattern is a solution to a recurring
problem in a specific context. Software patterns are
categorized as analysis [26], design [26], architecture [14], and
security patterns [22]. Patterns are described using a template
composed of a set of sections. A problem section describes a
problem and the forces that constrain and define guidelines for
its solution, e.g., “overhead must be reasonable”. Pattern
solutions are usually described using modeling languages such
as the Unified Modeling Language (UML), maybe combined
with formal languages such as the Object Constraint Language
(OCL). UML diagrams may include class, sequence, state, and
activity diagrams. A set of consequences indicate how the
pattern solved the specific problem and what are the
advantages and disadvantages of using it; i.e., how well the
forces were satisfied by the solution. An implementation
section provides hints on how to use the pattern in an
application. A section on “known uses” lists real systems
where this solution has been used previously, i.e., a pattern is
an abstraction of a good practice. A section on related patterns
indicates patterns that complement or provide alternative
solutions to the one in the pattern.

A pattern embodies the knowledge and experience of
software developers and can be reused in new applications;
carefully designed patterns implicitly apply good design
principles. Patterns are also good for communication between
designers and to evaluate or reengineer existing systems. While
initially developed for software, patterns can describe
hardware, physical entities, and combinations of these. Pattern
solutions are suggestions, not plug-ins or software
components. A compound pattern is composed of two or more
simpler patterns.

A fault is a defective value in the state of a component or
in the design of a system. A fault can be classified by its
duration, nature and degree [5]. An error is a defective value in
the state of a component or in the design of a system which is
the manifestation of a fault. A system failure occurs when
there is a deviation from the system specification; a failure is
the manifestation of an error. A system that can detect, mask
and recover from the effects of a fault and continue operating
correctly is said to be reliable. Failures in a system can cause

Digital Object Identifier (DOI):
http://dx.doi.org/10.18687/LACCEI2019.1.1.53
ISBN: 978-0-9993443-6-1 ISSN: 2414-6390

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 2

harm and thus affect the safety of the system. Similarly, a
failure can affect the availability of a system, because a system
may become unresponsive when it experiences a failure.
Reliability patterns describe a solution to avoid or mitigate
different types of software failures.

III. RELIABILITY PATTERNS

In this section we discuss a variety of approaches to
achieve reliability which include reliability, fault tolerance, and
availability patterns. Many patterns solve the same problem,
however, they have different names, we discuss some of them
here.

 N-version programming is a common approach which
provides software fault tolerance, it has been discussed in
detail by R. Hanmer [33]. A pattern describing a generalized
version of this pattern is given in [46], which also includes
Recovery Blocks, Consensus Recovery Blocks, Acceptance
Voting, and N-Self Checking Programming. An Acceptance
Voting pattern is described in [3]. Liu [47] presented several
software versions of some of these algorithms. Saridakis
presented a system of 13 patterns including most of the
common mechanisms for reliability, including Fail-Stop
Processor, Acknowledgement, Heartbeat, Passive Replication,
and others [56]; his patterns are illustrated using a pattern
diagram. Later, he described patterns for Fault Containment
[57], Checkpoint-based Recovery [58], and Graceful
Degradation [59].

Fault containment patterns include Input Guard, Output
Guard, and Fault Container. Cecilia Rubira and his
collaborators produced several papers on fault-tolerant
architectures using patterns [23], [24], [46], [49]. Her paper
[26] describes a reflective state pattern from which other
several varieties are derived. The reflexive State pattern and
others are discussed in [28]. Lemme et al. [46] describes the
Fault Injector, Injector, and Monitor patterns.

Buckley presented Acknowledgement (Heartbeat), Active
Replication, and Result Evaluator patterns [9]. Mwelwa and
Pont [51] describe the Heartbeat pattern to estimate the health
of a node, and wich provides error reporting. An Error Handler
pattern is used together with a Heartbeat in [43]. Kim et al.
[41] describe another version of the Heartbeat, Active
Redundancy and Checkpoint patterns as well as some
combinations thereof. Buckley [13] introduced a pattern to
describe the sequence of actions needed to describe failures.
Hoeller et al. [35] combine two patterns to obtain software
diversity: Static and Dynamic randomization. These two
approaches are low-cost alternatives to N-version
programming. Adams et al. [2] describe two sets of availability
patterns intended for fault tolerance and fault management.
Jimenez-Peris et al. [38], presented a system of architectural
patterns for highly available service oriented systems, including
several varieties of database and session replication in addition
to a pattern for multi-tier coordination.

A formal proof based on Petri nets for a pattern designed
with fault-tolerant execution of parallel programs is given in
[42]. Lopatkin et al. [48] shows seven patterns for representing
FMEA concepts. Dyson and Longshaw described several
availability patterns for Internet systems that include a variety
of patterns mentioned earlier [21]. New patterns include Data
Replication and Session Fail-over. Some policies for fault-
tolerant telecommunication systems are given in [1]. These
include Riding Over Transients, Leaky bucket counters, and
several others.

A. Trad and C. Trad [62] discussed a set of patterns for
Autonomous Robust Systems (ARS) that include data storage,
video recognition, decision making, human robot interaction,
and others. Islam et al. [37] describe the Recoverable
Distributor, a pattern for fault-tolerant and state-sharing of
distributed programs. The paper also shows the Distributed
Observer pattern. A Fault Handler (and a sensor-actuator) are
given in [43]. B.P. Douglas’s book [19] includes some
reliability patterns such as Watchdog, Monitor-Actuator and
others. A set of patterns for software health monitoring is
given in [44]; he defines a three layer software monitoring
architecture and provides patterns for the lower two layers,
which are implemented using Aspect Oriented Programming.
These include, Generic and Specific Sensor, Generic and
Specific Indicator, State Histogram Sensor, and Histogram
Analysis Indicator. W. Halang and his group produced several
papers on UML profiles and models for fault tolerant systems:
[31], [32] shows a safety shell pattern based on a
reconfiguration management pattern.

The University of Newcastle PRIME project has several
papers with models and patterns for fault tolerance; including a
proposal for a holistic fault tolerant architecture, based on
centralized fault tolerance management, with redundant
functionality distributed across the entire system [29]. Rytter
and Jorgensen [55] use a meta-level architecture to build fault
containers which used uses the Lookout pattern as a
component pattern. [61] introduced the Backup pattern that
switches to a backup mode of operation. This provides
redundancy in software to offer various alternatives for a
function and to switch between them dynamically in response
to failure. Iliasov and Romanovsky [36, 54] defined refinement
patterns for fault tolerance, and added formal definitions to the
Recovery Blocks and N-Version programming patterns. The
paper uses the formal language B to prove correctness using
automatic model transformations.

Kang and Jackson [40] proposes the concept of Trusted
Base (in the form of a pattern). It provides a solution to
construct a system such that the most critical requirements
depend on only a small reliable subset of the system’s parts,
called “trusted bases”. This is analogous to the concept of
Trusted Computing Base (TCB) in security. The paper has
several related patterns including End-to-End Check and
Trusted Kernel. Harrison and Avgeriou [34] consider the use
of tactics for fault tolerance in software architectures. Tactics

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 3

can be considered as complements to patterns; they are
“measures” or “decisions” taken to improve some quality
factor. Scott and Katzman [60] show the use of a catalog of
availability tactics in a real-world application. They consider
tactics such as Active and Passive Redundancy, Spare,
Exception Handling, Rollback, and others. The ADD method is
an approach to defining a software architecture in which the
design process is based on the quality requirements the
software must fulfill. ADD follows a recursive process that
decomposes a system or system element by applying
architectural tactics and patterns that satisfy its driving quality
attribute requirements. They illustrate its function by showing a
practical application of the ADD method to a client-server
system [65]. In particular, this example focuses on selecting
patterns to satisfy typical availability requirements for fault
tolerance. We assess and describe some reliability patterns in
the next section.

IV. EVALUATION OF RELIABILITY PATTERNS

In this section we provide a brief description and analysis
of some fundamental reliability, fault tolerant and availability
patterns. Some reliability patterns have several published
descriptions. Some patterns are composite patterns which
provide several reliability features in one pattern, while, others
provide one distinct reliability feature. Redundancy, diversity,
error detection, error masking and containment are basic
properties of reliability and fault tolerance and several patterns
incorporate them in different ways.

A. Reliability Patterns Descriptions
The results of applying redundancy and diversity can be

evaluated with Acceptance Voting (AV), which is a hybrid
pattern that incorporates N-version programming (NVP) with
an acceptance test. This pattern includes N programs running
in parallel to perform the same task on the same input to
produce N outputs. The output of each version is presented to
an acceptance test to check it for correctness [3].

The redundancy and diversity achieved using NVP at the
software level can be applied to the hardware level using
patterns like Triple Modular Redundancy (TMR) the Active
Replication, Active-Passive Redundancy, Dual Modular
Redundancy (DMR), Dynamic Dual Modular Redundancy
(DDMR), Homogeneous Redundancy, Heterogeneous
Redundancy, and N-Modular Redundancy (NMR) provide
redundancy and sometimes diversity in addition to other
reliability features. The Triple Modular Redundancy (TMR)
pattern utilizes three systems to perform a process and the
result is processed by a voting system to produce a single
output. If any one of the three systems fail, the other two
systems can correct and mask the fault. If the voter fails then
the complete system will fail [64]. This pattern provides error
detection and masking. Another variation of TMR is the
Triplicated Voters Triple Modular Redundancy (TV-TMR),
which provides redundancy by using three voters/comparators
instead of one to vote on the input provided by three identical

modules to produce one output. The voter in the TMR pattern
represents a single-failure point and this pattern avoids this
weakness. Having three voters enables voting to take place
even if one voter fails [18].This pattern provides error
detection, error masking and uses redundancy.

The Active Replication pattern is another name for TMR.
The outputs from all replicas are compared to determine the
correct output. Only one processor error can be masked at a
time [9]. N-Modular Redundancy (NMR) pattern is an
abstraction of TMR and uses N instances of the same module
to perform the same computation and then a majority vote of
the output(s) is taken. As long as N/2 modules compute the
output properly, the system output is correct [19]. This pattern
uses redundancy, and provides error detection and masking.

The Active-Passive Redundancy pattern is used to provide
redundancy in a system where performance cannot be
compromised. Redundancy is added to the critical part of the
system which may potentially act as a single point of failure in
the system. This critical part of the system is provided with a
standby replica which will be activated in case failure of the
former occurs. The client to the failed part should be informed
about the passive part’s activation [2]. Dual Modular
Redundancy (DMR) pattern uses two replications working in
parallel to carry out a process [8]. This is a special case of
Active Replication and NMR. The Dynamic Dual Modular
Redundancy (DDMR) pattern allows an operating system to
schedule redundant threads on any two cores/processors within
a group of cores/processors. DDMR is a scalable dynamic
DMR approach and may be used in symmetric shared-memory
architectures as well as in distributed shared-memory
architectures.

The Heterogeneous Redundancy pattern detects and
handles systematic errors and random failures in a system. It
provides fault safety in the same way as the Homogeneous
Redundancy pattern, that is, when the primary channel detects
a fault, the secondary channel takes over [8]. This pattern
provides error detection, error masking and uses redundancy.
Homogeneous Redundancy uses multiple channels which
operate in sequence, much like the Switch to Backup Pattern
(another alias for this pattern), or in parallel, as in the TMR
pattern [64]. Since the redundancy is homogeneous, by
definition any systematic fault in one copy of the system is
replicated in its clones, so it provides no protection against
systematic faults [7].

Some patterns offer multiple features to achieve reliability,
while other patterns offer one or two primary reliability
features. For example error detection or monitoring is typically
achieved with the use of the Acknowledgement, Watchdog,
Fault Injection, and Riding Over Transients patterns. The
acknowledgement pattern detects errors in a system by
acknowledging the reception of an input within a specified time
interval. It acknowledges receipt of an input within a specified
time interval without increasing the time overhead significantly.

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 4

If a response is sent before the timeout the system is
considered to function correctly; otherwise it is assumed that
an error has occurred in the system [9].

Similarly, the Fault Injection pattern is used to evaluate
the behaviour of computing systems in the presence of faults. It
adopts a technique that tries to produce or simulate faults
during an execution of the system under test, to observe the
system’s behaviour. This allows for the injection of faults, to
monitor the system under test; system activation, and inform
the user about the test results, as well to receive user requests
[6]. Riding Over Transients pattern detects temporally dense
events by allowing a system to roll through problems without
users noticing them and without the aid of the machine
operator intervening. This pattern resolves errors with minimal
effort by first determining whether a problem actually exists
[1] .

The Failover Cluster, Leaky Bucket, Protected, Process
Pairs, Single Channel, Recovery Blocks, Recoverable
Distributor, and Reliable Hybrid patterns are used to achieve
high availability in a system. The Failover Cluster pattern
provides protection against loss of service of a single server
(single point of failure) in high available application
infrastructures. In a failover cluster, if one of the servers
becomes unavailable, another server takes over and continues
to provide the service to the end-user. When a failover occurs,
users continue to use the application and are unaware that a
different server is providing it [17].

Another variation of this pattern is the Leaky Bucket
Counters pattern which handles isolated errors by taking
devices out of service. A counter is initialized to a
predetermined value and the counter is decremented for each
fault or event (usually faults) and incremented on a periodic
basis. When the counter reaches its limit, i.e., when the last
fault occurs within the timing window, the faulty unit is
identified and taken out of service [12]. This pattern provides
error masking and error containment. Similarly, the Process
Pairs pattern passes information about its new consistent state
to a backup server. As such, when the primary server
successfully completes an entire transaction, both the primary
and backup servers record these data in their persistent mass-
storage devices. In this way, the backup server is kept current
about completed transactions. While the primary server is
available to clients, it sends regular heartbeat messages to the
backup server. If the backup server detects that the stream of
heartbeat messages has stopped, it understands that the
primary server is dead or unavailable, and it will take over as a
new primary server [15]. This pattern provides error detection
and uses redundancy. The Protected Single Channel pattern
uses a single channel to handle sensing and actuation in a

system. Reliability is enhanced through the addition of checks
at key points in the channel, which may require some additional
hardware. The Protected Single Channel Pattern will not be
able to continue to function in the presence of persistent faults,
but it detects and may be able to handle transient faults [7].

The Recovery Blocks pattern provides error detection and
error masking by performing an acceptance test after every
processing alternative is tried. In this way, processing
alternatives are run until a processing alternative succeeds in
delivering results that pass the acceptance test [15]. The
Recoverable Distributor pattern is a composite pattern for
distributed systems that combines fault detection, containment
and recovery. It has two important properties, one is masking
processor failures; that is, it must be able to preserve the state
of the system in spite of such failures. It also hides network
latency while providing consistent access to the shared state of
all processors in the system [14]. It has a state management
section (local and global) and a fault detection and recovery
section and enables creation of local views of shared data.

The Reliable Hybrid pattern provides a general object-
oriented framework for fault tolerance which can range from
basic approaches. It is a combination of several fault tolerance
patterns to support development of applications based on
classical fault tolerant strategies. This pattern provides error
detection, error masking, recovery and uses diversity.

Some patterns offer multiple reliability features in one;
however, patterns can be designed to combine reliability and
security, safety and other dependability properties. We describe
a few of them below. The Reliable Security pattern performs
reliable authorization enforcement by applying reliability to a
reference monitor and to a set of authorization rules that
enforce security [4]. All user requests must be authorized
based on the user’s rights. A reference monitor is used to
enforce authorization. This pattern provides security and error
masking.

The Secure Reliability pattern controls the use of reliable
services in a system. A strategy based system receives a
request and selects the appropriate reliability service to process
that request independently. All user requests are authorized
based on the user’s role. A role-based access control model
manages a user’s rights in the system. The response to the
request is either completed or rejected [4]. The WS-Reliability
pattern provides error detection and uses redundancy. It
ensures that a notification is always sent in response to a
failure, it provides guaranteed message delivery, message
ordering, and duplicate elimination when messages are sent
from one entity to another. This is achieved by establishing an
enforceable contract between the sending and receiving parties,
and the use of sending and receiving reliable message

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 5

processors (RMPs) that send, deliver, order and eliminate
duplicate messages [3]. This pattern provides error detection
and redundancy in web services.

The WS-ReliableMessaging provides error detection and
security. It helps to ensure guaranteed receipt in response to
each message sent; it also provides, message state disposition,
ordered delivery, and duplicate elimination whenever messages
are sent between endpoints. It uses a protocol that performs
guaranteed receipt, ordered delivery, state disposition, and
duplicate elimination of messages. This is achieved by first
having an agreement which includes a policy exchange,
endpoint resolution and establishment of trust between end
points [11].

B. Reliability Pattern Evaluation
We analyze some reliability patterns using a notation based

on [63], which is helpful to identify quality aspects of patterns:

U, under-specified or incomplete. The pattern does not

use an appropriate template (we use as a guideline the POSA
template), is missing whole sections, or its sections are not
described in sufficient detail to be used by a designer.

O, over-specified. The pattern’s description is overly
detailed with additional unnecessary properties. The pattern
may also include multiple solutions. Over specification may
reduce the use of a pattern.

 P, lack of precision. The solution is not presented using
UML, SysUML, Modelica, or other precise notation, or does
not solve a specific well-defined problem. The structure and
dynamics of the solution should be described as a guideline for
its proper application. For example, some patterns are
described only using words but words can be misleading or
vague. An incomplete pattern with missing sections can be
completed but an imprecise pattern needs to be completely
redone.

G, lack of generality. The pattern’s solution is only
applicable to a narrow or specific problem or provides a
solution that is unclear or impractical for reuse.

N, unusual notation. The pattern uses an unusual
notation or it is defined in an ad hoc way. This makes the
pattern difficult to be used together with patterns defined in
more standard forms and they need to be completely redone to
be included in a catalog.

M, misrepresentation. The pattern name does not suit
its intent or function or it is misleading. For example, some
pattern authors confuse safety with reliability.

TABLE I
Reliability Pattern Reliability Property Quality Indicator

Reliable Hybrid [16] • Alerting
• Error Detection
• Redundancy
• Error Masking
• Fault Containment

 P, U, N
 Insufficient UML

diagrams
 Incomplete Pattern
 Incorrect UML notation

Recoverable
Distributor[37]

 Redundancy
 Error Masking

 P, U, N, M
 Incomplete pattern
 Incorrect UML

Notation
Acknowledgement [9] Error Detection

 Alerting
 Complete

WS-Reliability [11] Error Detection
 Alerting
 Error Masking

 Complete

Based on our analysis, we observed that many of the

reliability patterns (including the variations discussed earlier)
are incomplete and lack the necessary details to be helpful. In
particular, two of the patterns illustrated in Table 1 do not
conform to the POSA or GOF pattern templates. It was also
noted that many patterns use different notations to describe
their structures, which makes them more difficult to interpret
and apply. It can also be noted that many of the patterns
perform the same functions either atomically or using a
composite approach. The analysis of these patterns showed the
need to refine many of the existing patterns to make them more
concise, useful, and to make them more complete in their
description and representation with the use of UML diagrams
and by using the POSA pattern template.

V. CONCLUSIONS AND FUTURE WORK

This initial survey and analysis has shown that many of
the reliability patterns are incomplete, ambiguous and lack
necessary details. This survey has highlighted the prospect
of combining some reliability patterns with security, and
safety to create more versatile composite patterns, as
opposed to implementing these fundamental properties
(safety, security, fault tolerance reliability) separately. This
survey provides a basis for a catalog that will contain a
unified set of reliability patterns.

REFERENCES
[1] M.Adams, J. Coplien, R. Gamboke, R. Hanmer, F. Keeve and K.

Nicodemus, “Fault-Tolerant Telecommunication System Patterns”, in
Pattern Languages of Program Design 2, 549 - 562 Addison-Wesley
Longman Publishing Co, 1996.

[2] K. S. Ahluwalia, A. Jain, “High Availability Design Patterns”, Proc.
PLoP '06, October 21–23, 2006, Portland, OR, USA.

[3] A. Armoush, F. Salewski, and S. Kowalewski, "Design Pattern
Representation for Safety-Critical Embedded Systems", Journal
Software Engineering and Applications, vol. 2, 2009, 1-12.

[4] P. Avgeriou, “Describing, instantiating and evaluat-ing a reference
architecture: A case study”, Enterprise Archi-tecture Journal, June 2003.

[5] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. “Basic
Concepts andTaxonomy of Dependable and Secure Computing”, IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11-33, Jan.-Mar. 2004.

[6] A. Ayoub, B. G. Kim, I. Lee, O. Sokolsky, “A safety case pattern for
model-based development approach”, NASA Formal Methods
Symposium, April 2012.

[7] S. Bernardi, J. Merseguer, D. C. Petriu, “A dependability profile within

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 6

MARTE”, Proc. Soft. Syst. Model., 313-336, 2011. doi:
10.1007/s10270-009-0128-1.

[8] S. Bernardi, J. Merseguer, D. C. Petriu, “Dependability modeling and
analysis of software systems specified with UML”, ACM Computing
Surveys, Vol. 45, Issue 1, November 2012,
doi>10.1145/2379776.2379778.

[9] I. A. Buckley and E. B. Fernandez, "Three patterns for fault tolerance”,
Proc. OOPSLA MiniPLoP, October 26, 2009.

[10] I. A. Buckley, E. B. Fernandez, G. Rossi, and M. Sadjadi, "Web
services reliability patterns", Proc. 21st International Conference on
Software Engineering and Knowledge Engineering (SEKE'2009),
Boston, 4-9 July 1-3, 2009.

[11] I. Buckley and E. B. Fernandez, “Patterns Combing Reliability and
Security”, Proc. Third International Conferences on Pervasive Patterns
and Applications, September 25-30, 2011.

[12] I. Buckley, E. B. Fernandez, M. Anisetti, C. A. Ardagna, M. Sadjadi,
and E. Damiani, "Towards Pattern-based ReliabilityCertification of
Services, Proc. 1st International Symposium on Secure Virtual
Infrastructures (DOA-SVI'11), Vol. 7045, Springer Lecture Notes in
Computer Science, 17-19 Oct. 2011.

[13] I. Buckley and E. B. Fernandez, "Failure patterns: A new way to
analyze failures", Proc. First International Symposium on Software
Architecture and Patterns in conjunction with the 10th Latin American
and Caribbean Conference for Engineering and Technology, July 23-27,
2012.

[14] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, "A
System of Patterns: Pattern-Oriented Software Architecture", John
Wiley & Sons, 1996.

[15] Y. Choi, "Early Safety Analysis: from Use Cases to - Component-based
Software Development", Journal of Object Technology, vol. 6, no. 8,
185-203, 2007. http://www.jot.fm/issues/issue_2007_09/article4.

[16] F. Daniels, K. Kim, and M.A. Vouk, “The Reliable Hybrid pattern- A
generalized software fault tolerant design pattern”,Proc. of
PLoP’97,1997. http://hillside.net/plop/plop97/Proceedings/daniels.pdf

[17] O. Daramola, G. Sindre, T. Stålhane, “Pattern-based security
requirements specification using ontologies and boilerplates”, Proc.
Second International Workshop on Requirements Patterns (RePa ’12),
54-59, 2012.

[18] A. L. De Oliveira, R. T. V. Braga, P. C. Masiero, I. Habli, T. Kelly, “A
pattern to argue the compliance of system safety requirements
decomposition”, Proc. 10th Conf. on Pattern Languages of Programs
(SugarLoafPLoP) 2014, November 9-12, 2014.

[19] B. F. Douglass, “Doing Hard-Time: Using Object-Oriented
Programming and Software Patterns in Real-Time Applications”,
Addison-Wesley, 1998.

[20] B. F. Douglass, “Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems”, Addison-Wesley Professional,
2003.

[21] P. Dyson, A. Logshaw, “Patterns for high-availability Internet systems”,
Proc. EuroPLoP 2002.

[22] E. B. Fernandez, “Security patterns in practice: Building secure
architectures using software patterns”, Wiley Series on Software Design
Patterns, 2013.

[23] L. L. Ferreira, C. M. F. Rubira , M. F. Rubira , “The Reflective State
Pattern”, Proc. PLoP’98, 1998.

[24] L. L. Ferreira and C. M. F. Rubira, "Reflective design patterns to
implement fault tolerance", Proc. OOPSLA Workshop on Reflective
Programming 1998,
http://www.csq.is.titech.ac.jp/~chiba/oopsla98/ferreira.pdf

[25] M. Fowler, “Analysis patterns -- Reusable object models”, Addison-
Wesley, 1997.

[26] E., Gamma, R. Helm , R. Johnson, J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”, Reading Mass.,
Addison Wesley, 1994.

[27] R. Gamoke, “Pattern: Leaky bucket counters”, Proc. Fault- Tolerant
Telecommunication System Patterns, Report, AT&T Bell Laboratories,
1995.

[28] H. Gawand, R. S. Mundada, and P. Swaminathan, “Design Patterns to
Implement Safety and Fault Tolerance”, International Journal of
Computer Applications (0975 – 8887), vol.18, No.2, March 2011.

[29] R. Gensh, A. Rafiev, A. B. Romanovsky, A. F. Garcia, F. Xia, A.
Yakovlev, “Architecting Holistic Fault Tolerance”, Proc. HASE, 5-8,
2017.

[30] A. Golander, S. Weiss, and R. Ronen, “DDMR: Dynamic and Scalable
Dual Modular Redundancy with Short Validation Intervals”, Proc.
IEEE Computer Architecture Letters, vol. 7, no. 2, pp. 65–68, Feb. 2008,
doi:10.1109/L-CA.2008.12.

[31] R. Gumzej, W. A. Halang, “A safety shell for UML-RT projects
structure and methods of the corresponding UML pattern”, Innovations
in Systems and Software Engineering, Volume 5, Issue 2, 97–105,
2009.

[32] R. Gumzej, M. Colnaric, W. A. Halang, “A reconfiguration pattern for
distributed embedded systems”, Proc. SoSym, 145-161, 2009.

[33] R. S. Hanmer, “N-Version Programming”, Proc. PLoP 2009.
[34] N. Harrison and P. Avgeriou, “Incorporating Fault Tolerance Tactics in

Software Architecture Patterns”, Proc. RISE/EFTS Joint International
Workshop on Software Engineering for Resilient Systems, November
17-19, 2008.

[35] A. Hoeller, T. Rauter, J. Iber, C. Kreiner, “Patterns for automated
software diversity”, Proc. 20th European Conf. on Pattern Languages of
Programs (EuroPLoP 2015), 2015.

[36] A. Iliasov and A. Romanovsky, “Refinement patterns for fault tolerant
systems”, Proc. EDCC 2008, 167-176, 2008.

[37] N. Islam and M. Devarakonda, “An essential design pattern for fault-
tolerant distributed state sharing”, Comm. of the ACM, vol. 39, No. 10,
65-74, 1996.

[38] R. Jiménez-Peris, M. Patiño-Martínez, B. Kemme, F. Perez-Sorrosal, D.
Serrano, “A System of Architectural Patterns for Scalable, Consistent
and Highly Available Multi-Tier Service-Oriented Infrastructures”, Proc.
WADS2008, 1-23, 2009.

[39] D. Kalinsky Associates, "Design Patterns for High
Availability",whitepaper,2002.
http://www.kalinskyassociates.com/Wpaper6.html.

[40] E. Kang, D. Jackson, “Patterns for building dependable systems with
trusted bases”, Proc. 17th Conference on Pattern Languages of
Programs (PLOP '10). ACM, 2010,
http://dx.doi.org/10.1145/2493288.2493307.

[41] S. Kim, D.-K. Kim, L. Lu, S. Park, “Quality-driven architecture
development using architectural tactics”, Journal of Systems and
Software, 2009.

http://hillside.net/plop/plop97/Proceedings/daniels.pdf
http://www.kalinskyassociates.com/Wpaper6.html

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 7

[42] E. Kindler, and D. Shasha, “Verifying a design pattern for the fault-
tolerant execution of parallel programs”, Technical Report, No.
TR2000-803. New York University, 2000.

[43] S. Konrad, B.H.C.Cheng, “Requirements patterns for embedded
systems”, Proc. IEEE Joint Int. Conf. on Reqs. Eng. (RE’02), 2002.

[44] A. Lau, R. E. Seviora, “Design Patterns for Software Health
Monitoring”, Proc. 10th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS'05), 2005.

[45] M. Laverdiere, A. Mourad, A. Hanna, M. Debbabi, “Security design
patterns: Survey and evaluation”, Proc. Canadian Conference on
Electrical and Computer Engineering(CCECE’06), IEEE, 1605–8, 2006.

[46] N. G. M. Leme, E. Martins, C.M. F. Rubira, “A Software Fault
Injection Pattern System”, Proc. PLoP 2001.

[47] C. Liu, “A general framework for software fault tolerance”, Proc.
Workshop on fault- tolerant parallel and distributed systems”, 1992.

[48] I. Lopatkin, A. Iliasov, A. B. Romanovsky, Y. Prokhorova, E.
Troubitsyna, “Patterns for Representing FMEA in Formal Specification
of Control Systems”, Proc. HASE’11: 146-151, 2011.

[49] E. Martins, C. M. F Rubira, N. G. M. Leme, “A reflective fault injection
tool based on patterns”, Proc. Int. Dependable Systems and Networks
(DSN’02), 2002.

[50] Microsoft, “Performance and Reliability Patterns - Failover Cluster”,
Microsoft Patterns and Practices –Proven practices for predictable
results, MSDN, 2014. https://docs.microsoft.com/en-us/previous-
versions/msp-n-p/ff650328(v=pandp.10)

[51] C. Mwelwa, M. J. Pont, “Two Simple Patterns to Support the
Development of Reliable Embedded Systems”, Proc. of Viking PLoP
2013.

[52] V. P. Nelson, “Fault-Tolerant Computing: Fundamental Concepts”,
IEEE, vol.23 n.7, pp.19-25, July 1990, doi:10.1109/2.56849.

[53] J. V. Neumann, “Probabilistic logics and the synthesis of reliable
organism from unreliable components,” Proc. Automata Studies,
Princeton Univ. Press, pp. 43–98, 1956.

[54] A. Romanovsky, and A. Iliasov, "Refinement Patterns for Fault Tolerant
Systems", Proc. 2008 Seventh European Dependable Computing
Conference, 167-176, 2008. doi:10.1109/EDCC-7.2008.18

[55] M. Rytter, B. N. Jørgensen, “Enhancing NetBeans with Transparent
Fault Tolerance Using Meta-Level Architecture”, Journal of Object
Technology, 9(5), 55-73, 2010.

[56] T. Saridakis, “A System of Patterns for Fault Tolerance”, Proc,
EuroPLoP 2002.

[57] T. Saridakis, “Design Patterns for Fault Containment”, Proc. EuroPLoP,
2003.

[58] T. Saridakis, “Design Patterns for Checkpoint-Based Rollback
Recovery”, Proc. EuroPLoP, 2003.

[59] T. Saridakis, “Design Patterns for Graceful Degradation”, Proc. Trans.
Pattern Languages of Programs, 67-93, 2009.

[60] J. Scott, R. Kazman, “Realizing and refining architectural tactics:
Availability”, Tech. Rept. CMU/SEI-2009-TR-006, August 2009.

[61] S. Subramanian, W. Tsai, “Backup Pattern: Designing Redundancy in
Object-Oriented Software”, Pattern Languages of Program Design,
Addison-Wesley 1996.

[62] A. Trad, C. Trad, “Audit, control and monitoring design patterns
(ACMDP) for autonomous robust systems (ARS)”, Proc. Int. J. of
Advanced Robotic Systems, vol. 2, No 1, 25-38, 2005.

[63] A.V. Uzunov, E. B. Fernandez, K. Falkner, "Securing distributed
systems using patterns: A survey", Computers & Security, 31(5), 681–
703, 2012. doi:10.1016/j.cose.2012.04.005

[64] J. F. Wakerly, “Microcomputer Reliability Improvement Using Triple
Modular Redundancy”, IEEE Transactions on Computers, 889-895,
1976. doi: 10.1109/T-C.1975.224263.

[65] W. G. Wood, “A Practical Example of Applying Attribute-Driven
Design (ADD), Version 2.0”, Tech. Rept. CMU/SEI-2007-TR-
005ESC-TR-2007-005, 2007. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=8319

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4555972
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4555972

	I. Introduction
	II. Background
	III. Reliability Patterns
	IV. Evaluation of reliability patterns
	V. Conclusions and Future work

