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Abstract– This paper describes the development of estimation 

algorithms for the size and shape of tomato fruits, implemented on 

a portable electronic system used in greenhouses, with the purpose 

to classify and collect of tomatoes milano and chonto type. 

The algorithms were implemented in a Raspberry-Pi 

embedded card through the use of free software libraries (Python, 

OpenCV, Pillow and Scikit-Image) and using a Pi-Camera for 

real-time processing, taking into account the parameters of 

classification defined in national (NTC1103-1) and international 

(USDA) standards. 

Were applied classification algorithms based on Canny to 

estimate the size of the tomato fruit, as well as techniques based on 

estimation of the eccentricity and statistical moments descriptors 

for the measurement of the shape, which were evaluated with a 

performance superior to 90 %. 

Classification techniques of tomato shape and size using 

artificial vision overcame subjective techniques of visual and tactile 

type classification carried out by farmers and specialized 

technicians. 

Keywords-- Fruit Classification System, Canny Algorithm, 

Statistical Moments Techniques, Eccentricity Algorithm, Artificial 

Vision, Process Automation. 

I.  INTRODUCTION 

In post-harvest handling of fruits and vegetables of 

climacteric type such as mango, tomato, lemon, banana, apple, 

papaya, citrus, etc., characteristics detection and evaluation 

methods are required for their classification, either size, 

morphology or coloration. Methodologies, norms and related 

indexes have been implemented to define the size and shape of 

the fruits, and to evaluate the quality and fruit application, 

which in many cases involve sensory type tests and are of 

invasive-destructive nature. 

The implementation of detection and evaluation methods for 

tomato fruit characteristics such as artificial vision applied in 

the agro-food sector has been carried out in recent years in 

developing countries (Latin America, South Asia and Africa), 

which in turn are the largest producers of climatic and 

agricultural fruits. 

Among the advantages of artificial vision systems are the 

quantitative physical features characterization of the fruits 

such as morphology, coloration, size and texture properties, in 

a non-invasive, objective, accurate way, and do not require 

human inspection that tends to be expensive, imprecise and 

subjective. 

The artificial vision techniques are increasingly useful in the 

fruit industry especially for quality control, inspection and 

classification applications by color or by some type of defect 

[1]. 

The tomato quality control is defined by the Colombian 

Technical Norm NTC-1103-1 [2], which is unknowing for 

several food industries and major distributors. This standard 

establishes a set of quality requirements for the different fruit 

varieties, including parameters such as size, tolerance, color, 

presentation and labeling. 

Many of the techniques used to analyze the caliber and 

morphology of tomato fruits are still based on the reliability of 

a visual and tactile analysis, which do not guarantee to carry 

out a quality process in optimal conditions and may present 

significant errors. The size, morphology and maturity 

classification are the most used for tomato fruit [3]. 

The tomato classification automation is implemented in a 

reliable way using Digital Image Processing techniques that 

allow to identify and analyze the different quality control 

evaluation parameters for tomato selection. 

A. Tomato Classification by Size or Caliber 

The tomato size is determined by the maximum equatorial 

diameter. For all the varieties except the Cherry type, and the 

classification by size is established according to the 

Colombian technical standard NTC 1103-1. The tomato size 

can be classified as large, when its size is greater than 82 mm, 

medium with calibers between 57 and 81 mm, and small ones 

of less than 56 mm. The minimum size for round and oval 

tomatoes is 35 mm and for elongated tomatoes 30 mm [2]. 

B. Tomato Classification by Morphology 

There are different forms of tomato fruit in the market. 

Tomatoes differ according to their intention or final use, 

whether for fresh consumption, industrial processing or 

classification based on their external form. The tomato shape 

depends on the type, the growth treatment (fertilization) and 

the seeds chemical modification to obtain a specific shape or 

composition [4]. 

The tomato shape can be globular, round or flat, these 

characteristics largely determine the market and package type 

for marketing. For example, flat and medium-sized fruits are 

required for presentation in trays [5]. 
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II. DESIGN AND IMPLEMENTATION OF TOMATO CLASSIFIER 

PROTOTYPE 

A portable electronic prototype was designed, which 

facilitates the task of classifying tomatoes under different 

lighting conditions, whether in an open field, greenhouses or 

other uncontrolled environments. 

The prototype design to analyze the physical characteristics 

of the tomato was integrated by subsystems dedicated to 

particular functions that allow the image acquisition, its 

processing, analysis, description and classification according 

to the physical parameters established in terms of form. and 

size, to then visualize and store them. The subsystems 

proposed to be implemented in the electronic system of the 

classifier are shown in Fig. 1. The following subsystems were 

considered for the design of the tomato classification 

equipment: 

 
Fig. 1 General Scheme and General Scheme of the Portable Tomato 

Classifier Prototype. 

Sensor: This device converts the fruit scene into a digital 

image to be processed and storage. In this development the 

optical sensor used was the Pi-camera module V.01 [6, 7], 

with a resolution of 5 Megapixels (2592 x1944), allowing to 

control parameters such as brightness, contrast and image 

resolution. The distance between the camera and the fruit is 

constant, and the scene background is white to facilitate the 

processing of the image. 

Illumination System: this system conditions the capture 

environment of the scene, to obtain an image in the best 

conditions of luminosity, besides keeping regulated the light 

intensity and directionality to optimize the contrast and to 

define appropriately the object characteristics. Around the Pi-

Camera, LED lighting is arranged, where the diodes were 

connected to the I/O port GPIO of the Raspberry® Pi. The 

system has a white compartment that works as diffuser 

material of natural, reducing the formation of shadows or 

luminous points on the fruit skin. 

Main Controller: is the embedded system that controls the 

capture, storage, processing, communication and visualization 

of the classifier. Analyze the images and/or videos captured. 

To do this functions, the Raspberry® Pi 2 model B card was 

selected [8]. 

Analysis Software: is the platform that hosting the 

processing algorithms for the analysis and classification of the 

acquired images. For this development, the OpenCV platform 

of Python™ [9] was used, due it’s an open source tool, has 

specialized libraries for image processing, the image 

processing applications implemented are executed with more 

speed and keeps compatibility with the hardware platform. 

Visualization System: reproduce in real time the graphic 

result of the classification in the prototype, and allows the user 

to interact with several control functions (image capture or 

classify them). A 3.2-inch touch screen was incorporated, 

designed to be connected into the GPIO pins of the 

Raspberry® Pi, in addition to being compatible with the 

control software. 

Communication System: is the interface to communicate the 

equipment with other peripherals or subsystems, or access 

other protocols to transmit information. The Raspberry® Pi 

module has a connection with Ethernet cable that can be used 

to connect either directly to a router or a laptop to access the 

main functions of the system. The implemented interface 

consists of a Wi-Fi communication module, which allows to 

remotely control the system from an external device wirelessly 

(cellphone or computer).  
 

A.    Tomato Classifier Prototype 

The image acquisition of tomato fruits requires a 

conditioning for the adequate transmission of natural or 

artificial light in the scene. For this purpose, was adapted a 

plastic material compartment semi-transparent (See Fig. 2) 

with a white cover, to guarantee uniform lighting conditions, 

avoiding problems with the shadows and blurring most of the 

natural light in the environment. A diffused light transmission 

environment is emulated in the plastic compartment. 

The camera device was adapted in the upper part of the 

compartment, along with the directional LED lighting. The 

distribution of the LEDs was arranged in a circular shape 

around the camera to capture the images. Fig. 2 shows the 

prototype implemented for the image acquisition and tomato 

classification. The equipment elements numbered Fig. 2 

corresponds to: 
 

1. Image acquisition module. 

2. Container compartment, left side view. 

3. Battery container compartment. 

4. Connectors (USB Ports) and Ethernet Port connector. 

5. Power on and power off buttons. 

6. Opening for the lid of the image acquisition compartment. 

7. Prototype front view, container compartment. 

8. Image acquisition module front view. 

9. Power switch-button (front view). 

10. On/ Off potentiometer for independent illumination 

brightness control. 

11. LCD Display Screen (3.2 inches). 
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12. Prototype rear view. 

13. Battery container compartment rear view. 

14. Container compartment rear view. 
 

 
Fig. 2 A. Prototype right side view. B. Prototype front side view.  

C. Prototype rear side view. D. Display screen and control buttons 
 

B.    Image Pre-Processing 

The stages for the pre-processing of the image require the 

application of digital image processing techniques, for the 

subsequent design of the automatic learning algorithm. The 

image processing system for the classifier was constituted 

according to the flow diagram shown in Fig. 3. 

 
Fig. 3 Flow Diagram of the artificial vision algorithm for tomatoes 

classification. 

1) BGR format conversion to grayscale.  

Once the image was acquired in BGR format (Blue, Red 

and Green), it was converted to a gray scale format for 

facilitate the pre-processing of the image comprising the 

filtering processes and obtaining the characteristic histogram; 

in addition to reduce noise in the image. The conversion to 

gray scale was done according (1): 

 

       (1) 

 

Where the weighting coefficients (α, β, γ), are defined 

according to the perceptive response of the human eye, where 

α = 0.2989, β = 0.5870 and γ = 0.1140. Although a grayscale 

image contains less information than a color image, the most 

important parameters related to its characteristics and 

information are maintained, such as, for example: borders, 

regions, spots, junctions, etc. [10]. 

In Fig. 4, the acquisition of an image of a mature tomato is 

shown and its corresponding preprocessing in gray scale. 
 

 
Fig. 4 Left: Original color image in RGB color space. Right: Grayscale 

image after conversion.  
 

2) Application of Low Pass Filter.  
Once the image is converted to a gray scale format, the 

quality of the acquired image is improved by applying a non-

linear statistical filter of median. The median filter reduces the 

noise in the image with similar results to the averaging filter, 

however, its performance is better since more useful details are 

preserved in the image (for example, the edges) [11]. In Fig. 5, 

the results of the application of median filter are showed. 
 

 
Fig. 5 Left: Original acquired image. Right: Final result after applying a 

median filter.  
 

As shown in Fig. 5, when applying the median filter, the 

details and tomato characteristics are preserved, softening the 
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fruit interior. Additionally, preserve the edges in the image and 

reduce the impulsive noise. 
 

3) Image Thresholding.  

In this stage, the object pixels (fruit) are separated from the 

elements that belong to the scene background, in order to 

extract the region of interest (ROI) to be analyzed. The Otsu 

segmentation technique was applied (Nobuyuki Otsu, 1979) 

[12], that obtain an optimal threshold to binarize the image, 

from the characteristic bimodal histogram. 

The Otsu method works best with bimodal distributions, 

although the performance may deteriorate when there is a 

significant imbalance between the number of pixels of the 

object and the background. 

The Otsu algorithm finds a threshold value (t) that 

minimizes the variance within each class given the 

relationships shown in (2), (3), (4) and (5). 

 

(2) 

 

(3) 

 

(4) 

 

  

 

 (5) 

 

 

The threshold value t is between the two peaks of intensity 

level such that the variations of both classes are minimal. The 

application of this method is observed in Fig. 6 by calculating 

the bimodal histogram on the grayscale image of Fig. 4. 
 

 
Fig. 6 Bimodal Histogram of the grayscale image. The dotted line 

intersects the histogram to find the threshold t.  
 

To binarize the image, an appropriate threshold value t was 

chosen within the gray levels. 

4) Image Segmentation.  

Once the optimum threshold has been found, the image is 

converted to a binary format (binarization) and its separated 

into two main regions: the fruit (digital value 255), and the 

background (digital value 0), as observed in Fig. 7. 

A new image is obtained, where the gray values dispersion 

is eliminated by segmenting the pixels belonging to the object 

respect to the other regions of the image.  
 

      
Fig. 7 Left: Image Binarized to separate the Region of Interest ROI. 

Right: Extraction of ROI by applying a binary mask.  
 

With the binarized image in Fig. 7 (Left), an AND operation 

is performed with the original image and the background scene 

is eliminated. In addition, the ROI is extracted (tomato pixels). 

The logical AND operation is used due its commonly used to 

detect image differences or highlight target regions. The result 

of the extraction of the ROI from the image is shown in Fig. 7 

(right). 

The ROI was cut, discarding all the pixels of the 

background of the scene. For this procedure the contours 

information of the image was used. The points that form a 

closed region are detected, and the coordinates in (x, y) of said 

points are stored forming a cumulative list. 

Once the points coordinates were stored, a function was 

implemented that swept each coordinate of the list and found 

the maximum and minimum values. Finally, its obtained a 

group of four points of coordinates that correspond to the 

upper limits left and right, and lower limits left and right of the 

segmented image. Once the coordinates of the border points 

are located, a cut is applied to obtain a new image. 

III. ALGORITHMS TO DETERMINE TOMATO SIZE AND SHAPE. 

A.    Algorithm to estimate the Tomato Size (Caliber) 

The algorithm that determines the tomato size was made 

with the purpose of measuring the scaled dimensions of the 

fruit in real time using functions of the OpenCV libraries and 

the Pi-Camera module. The algorithm was based on the 

detection of the contour of the tomato to be measured and the 

calculation of the minimum rectangle that encloses it [13]. The 

next requirements were raised to the measurement: 

• The fruit should be placed on a uniform color background, 

preferably white to facilitate the image processing. 

• The tomato must have enough contrast to be detected by 

the camera. 

• The camera must be located at a fixed distance and angle 

from the object. 
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• Only one fruit (tomato) could be measured. 

To calculate the contours, it was necessary to extract the 

fruit edges, with the implementation of a high-pass filters. The 

best results were obtained using the Canny operator, although 

the only disadvantage of this algorithm was the selection of an 

adequate threshold (critical in the subsequent processing 

stages). To obtain the tomato size, it was necessary to analyze 

the arrangement between the object and the camera (see Fig. 8). 
 

      
Fig. 8 General Layout of the camera and tomato. 

 

The video captured by the camera was in BGR format, but 

for the frames processing frames it was necessary the gray 

scale images conversion, to later calculate the tomato borders 

and contours [14]. The object size was calculated by the ratio 

of the two triangles formed in Fig. 8: Δ𝑜𝑎𝑏 𝑦 Δ𝑜𝑐𝑒, this 

relationship was defined by (6): 

 

(6) 

 

Where H, corresponds to the real height of the fruit, and h 

to the height of the fruit represented in number of pixels. From 

the expression shown in (6), the value of the actual size of the 

tomato can be obtained, but was necessary to convert the 

pixels to a real measure. This was achieved with the 

application of a factor of proportion given by (7): 

 

(7) 

 

The conversion factor is a relation between millimeters and 

pixels, and defines the value required to pass the size of the 

object expressed in pixels to the real size. Another way to 

obtain the conversion factor was to perform the test with a 

tomato in the capture plane and establishing the unitary 

conversion factor, when executing the procedure, the fruit 

width and length dimensions in pixels was obtained, using (8):  

 

(8) 

 

The expression (9) finds the size of the resulting object: 

 

 (9) 

 

The measurement of the tomatoes size was implemented in 

real time (Video-Streaming), together with the digital 

processing of the frames captured by the Pi-Camera. Initially 

the normalization of the camera parameters was performed, 

such as brightness, video resolution and contrast of the frames. 

The real video capture was made using the OpenCV library, in 

BGR format and then converted in gray scale format. Next a 

median filter was applied to eliminate the noise in the scene. 

The edge detection of the tomato fruit was implemented 

with the application of a high-pass filter using the Canny 

operator, which depends on the minimum and maximum 

thresholds established, to obtain the best contour of the fruit 

[15]. 

The Canny algorithm was chosen due is the most popular 

and efficient edge detection techniques. 

The Canny algorithm depends on several parameters such as: 

the standard deviation of the Gaussian filter σ, the thresholds 

of the hysteresis process and the values of the low and high 

intensity level to obtain the pixels of the edge that define the 

tomato real contour [16]. 

The application of the Canny operator allows to obtain a 

sketch of the tomato contour, which is sensitive to the 

luminosity changes, and adapts the low and high thresholds. 

The subsequent image analysis requires obtaining a closed 

contour. The application of morphological operators allows to 

obtain a closed contour region. In Fig. 9 the result of the 

application of the Canny operator on the captured image and 

the detected edges is shown. 
 

 
Fig. 9 Detection of tomato edges using Canny Operator. Left: Fruit Edge 

map obtained without hysteresis thresholds. Right: application of hysteresis 

thresholds and contour obtained. 
 

For the fruit contour detection were used dilation and 

erosion operators applied on the edge map obtained. This 

procedure fills the gaps between the pixels of the tomato edges 

that were not correctly sealed. In Fig. 10 the application of the 

dilatation and erosion operators is shown together on the right 

image of Fig. 9. 
 

 
Fig. 10 Left: Application of morphological dilation operator on the fruit 

contour. Right: application of the erosion operator. 
 

Once the image has been pre-processed, along with the 

tomato edge map, the contours of Fig. 10 (right) are found, 
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using the contour functionality of the OpenCV library [16]. 

Finally, a list of all image contours was obtained, where 

individually each one corresponds to a coordinate matrix (𝑥, 𝑦) 

that defines the object's limit points.  

The approach method was implemented to eliminate 

redundant points and compress the contour list, allowing to 

save memory at the time of executing the application. If the 

contour is not large enough, the region is discarded, assuming 

that it is introduced noise in the edge detection process. 

If the contour region is large enough, a bounded rectangle is 

calculated on the image, which can be adjusted (rectangle 

rotation) to the detected contours. Then the coordinates were 

organized in the detector rectangle corners: top left, top right, 

bottom right and bottom left, as shown in Fig. 11. 
 

 
Fig. 11 Bounded Rectangle (Green Line) of fruit contour and 

coordinates in each vertex (Red Points). 
 

With the vertices of the bounded rectangle and knowing its 

coordinates, the midpoints on each of the lines that make up 

the rectangle (Blue Dots) were calculated using (10) and (11). 

 

 (10) 

 

 (11) 

 

Where 𝑚1(𝑥, 𝑦) is the midpoint between the vertices of 𝑃1 

and 𝑃4, 𝑚2(𝑥, 𝑦) the midpoint between the vertices 𝑃1 and 𝑃2, 

𝑚3(𝑥, 𝑦) the midpoint between the vertices 𝑃2 and 𝑃3, and 

𝑚4(𝑥, 𝑦) the midpoint between the vertices 𝑃1 and 𝑃4. The 

midpoints were connected with violet lines (See Fig. 11) and 

the Euclidean distance between the sets of midpoints was 

calculated, according (12) and (13): 

 

 (12) 

 

   (13) 

 

Where the variable 𝑑𝐴 defines the tomato height distance 

and 𝑑𝐵 express the tomato width length both in pixels. Finally, 

the scale factor defined by (9) was calculated and multiplied 

with the corresponding values of 𝑑𝐴 and 𝑑𝐵 to obtain the actual 

height and width of the tomato. Fig. 12 illustrates the flowchart 

describing the algorithm for determining the tomato size. 

B.    Algorithm to estimate the Tomato Shape 

According to Arjenaki's research [17], the tomato shape can 

be identified by its curvature, where some shapes can be 

categorized as "rounded" and "oblong". To find the tomato 

shape index, its eccentricity ε is calculated. This measure 

establishes how the object deviates from being circular. The 

eccentricity of a circle being equal to zero, but for an ellipse its 

eccentricity is greater than zero and less than one. 
 

 
Fig. 12 Flow Diagram for the algorithm to determine the tomato size 

(mayor and mirror axes). 
 

The eccentricity needs four parameters to be measured: the 

gravity center coordinates, the width, the height and the area of 

the image. The eccentricity can be calculated according to (14): 
 

      

 (14) 

 
 

Where 𝐿maj is the major axis length and 𝐿min is the minor 

axis length [10]. Another method with similar results is the 

study of the image statistical moments. The statistical moments 

definition of a function 𝑓(𝑥,𝑦) that represents an object is 

defined by (15): 
 

  (15) 

 

The integration calculates the object area, being necessary 

that 𝑓(𝑥, 𝑦) is a binary function of the image defined by (16): 

 

 (16) 

 

The moments were defined as: zero order moment ((𝑝,𝑞) = 

(0,0)), according to (17): 

   (17) 
 

The zero order moment describes the object area 𝐴, which 

is invariant to the image rotation or translation. The first order 

moments ((𝑝, 𝑞) = (1,0) or (0,1)), were defined by (18): 

 

 (18) 
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Fig. 13 Binary Format of a tomato preprocessed image, through 

calculation of first and second statistical moments. 
 

The first order moments contain information about the 

object gravity center (centroid). 

 

 (19) 

 

The second order moments ((𝑝, 𝑞) = (2,0) or (0,2) or (1,1)): 

 

   

(20) 

 

 

From the knowledge of the statistical moments, the central 

moments were obtained with respect to the object gravity 

center (𝑥𝑐,𝑦𝑐), and can be calculated as: 

 

 (21) 

 

And the following results were obtained: 

 

 (22) 

 

The central moments can be calculated directly using the 

spatial statistical moments: 

 

 (23) 

 

Where the central moments of first and second order can be 

derived in the following way [10, 18]: 

 

  

(24) 

 

 

 

 

 (25) 

 

 

 

(26) 

 

The eccentricity ε allows to establish how round or oblong 

is the tomato fruit and can be calculated using the second order 

central moments by the expression (27): 

 

 (27) 

 

IV. RESULTS OF SHAPE AND SIZE ESTIMATION OF TOMATO 

FRUITS 

The tomatoes shape estimation was made through the 

calculation of the first and second order central moments over 

the binary images (27). This estimate was obtained through the 

thresholding process by using the approximate eccentricity 

measure. As a second option, the eccentricity was calculated 

according to the expression (14), depending only on the major 

and minor axis measurement of the fruit, from the algorithm 

that calculates the tomato diameters. 

Using the image pre-processing techniques, was obtained 

the image binary mask, where the region of interest 

corresponded to the binary area with digital value of 1. For the 

calculation of first and second order spatial statistical moments, 

equations (18) to (20) were implemented in the algorithm, then 

the first and second order central moments were obtained. 

Using a representative set of tomato fruits images, the 

calculation of statistical parameters is summarizing in Table I, 

for shape estimation. 
 

TABLE I 

SHAPE ESTIMATION ALGORITHMS COMPARISON 

 Tomato Shape Estimation by 

Central Moments. 

Tomato Shape Estimation by axes 

measurement and eccentricity. 

# μ2,0 μ0,2 

 

μ1,1 

 

𝜺 
Eje Mayor 

(Pixeles) 

Eje Menor 

(Pixeles) 
𝜺 

1 1877220 1260605 3633 0.191 1449.9504394 1429.5461 0.16955 

2 1916459 1336805 7073 0.16 1486.7531738 1421.7946 0.30571 

3 1482345 1046090 -183 0.172 1165.90454 1047.48962 0.48874 

4 2972240 1081154 920 0.4656 1297.594 1284.01171 0.14583 

5 2273428 958036 1448 0.408 1133.5697021 1044.93347 0.42052 

6 2200291 1306865 380 0.2543 1286.2393798 1255.5911 0.22229 

7 1687878 1403532 -103 0.0921 1473.5795898 1471.1855 0.05707 

8 384077 83740 159 0.640 449.20135498 404.71487 0.48158 

9 402880 114321 -1512 0.5696 507.78210449 441.9009 0.56603 

10 403738 154790 53 0.4453 626.44622802 499.70718 0.75602 

11 382336 227174 1350 0.2457 497.60211181 458.02209 0.42461 

12 300063 140117 81 0.3626 521.55847168 503.77636 0.26803 

13 262882 161622 -355 0.241 384.81103515 353.07049 0.43345 

14 552853 151742 -1664 0.5787 513.69696044 435.61138 0.62501 

15 463960 183619 1363 0.4244 462.50238037 439.73278 0.32594 

 

According results obtained in Table I, two eccentricity 

values (ε) were obtained, the first corresponds to the 

application of the second order central moments algorithm. 
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The moment μ1,1 provides information about the image 

orientation (some indicators were negative), these do not affect 

the deduction of the eccentricity due the rotation invariance of 

the moments applying (27). 

The second eccentricity value was computed from the major 

and minor axis measurements (in pixels), that were obtained 

from the size algorithm, applying (14).  

The most accurate calculation corresponds to the algorithm 

that estimates the tomato diameters, with a maximal error of 

10% when compared with the actual measurement. In some 

measurements the eccentricity calculated by the statistical 

moments method was similar (samples 1, 4, 5, 6, 9 and 14 of 

Table 1), but in other cases reached an error up to 40%. Due 

this situation, the statistical moments algorithm was not 

considered a reliable estimation.  

The results of the size estimation algorithm using the axes 

measurements were collected to compare the obtained values 

obtained for the major and minor axis. The results of these 

measures were summarizing for a samples set of several sizes 

and shapes (See Table II and III). 
 

 

TABLE II 

COMPARISON BETWEEN ACTUAL AXES MEASUREMENTS AND RESULTS 

OBTAINED BY THE SIZE ESTIMATION. 

 
Algorithm 

Measures  

Actual 

Measures 
Error Percentages 

# 

Minor 

Axis 

(mm) 

Major 

Axis 

(mm) 

Minor 

Axis 

(mm) 

Major 

Axis 

(mm) 

Minor 

Axis Error 

(%) 

Major 

Axis Error  

(%) 

1 83,8 87,4 79 83 5,727 5,3012 

2 73,5 80,3 74 77 0,680 4,2857 

3 76,8 79 72 77 6,25 2,5974 

4 72,4 79,7 68 75 6,077 6,2666 

5 91,7 95 85 89 7,306 6,741 

6 71,9 73 66 70 8,205 4,2857 

7 64,9 66,1 62 63 4,468 4,9206 

8 62,6 65,2 61 62 2,555 5,1612 

9 67,3 69,1 61 70 9,361 1,285 

10 59 71,7 59 66 0 8,636 

 

For most of the measurements estimated with the axes size 

estimation algorithm given in Table II, the error did not exceed 

10% when compared with the actual measurement. The 

maximum difference was 9 mm between the two measurements 

for the particular case in the sample 9. These errors were due 

to the algorithm error that was not accurate and to systematic 

errors in the tomato diameters measurement of the diameters, 

since they were made with a conventional instrument (rule 

with smaller scale given in millimeters). In the same way, the 

location and configuration of the camera lens properties, very 

possibly affected the measurement. 

As shown in Table III, the tomatoes eccentricity was 

calculated, where the results estimated by the shape algorithm 

were very close to the actual measurements. With this 

methodology, the fruit shape estimation was more accurate, 

compared to the calculations made with the second order 

central moments. 
 

TABLE III 

COMPARISON BETWEEN ACTUAL ECCENTRICITY WITH THE 

ECCENTRICITY OBTAINED BY THE AXES SIZE ESTIMATION ALGORITHM. 

# 
Eccentricity 

(Algorithm) 

Eccentricity 

(Actual) 

Estimated 

Shape 

Actual 

Shape 

1 0,284047975 0,306696917 Rounded Rounded 

2 0,402732872 0,276412944 Rounded Rounded 

3 0,234351629 0,354476469 Rounded Elongated 

4 0,418088013 0,421847787 Elongated (Oval) Elongated 

5 0,261279613 0,296424853 Rounded Rounded 

6 0,172944866 0,333197251 Rounded Rounded 

7 0,189681428 0,177465712 Rounded Rounded 

8 0,279578973 0,178879621 Rounded Rounded 

9 0,226759448 0,49052242 Elongated (Oval) Elongated 

10 0,568225211 0,448187862 Elongated (Oval) Elongated 
 

These results were satisfactory and had a good 

approximation to actual measurements. The implemented 

algorithms can be implemented to measure other fruits of 

similar characteristics of size and shape.  

CONCLUSIONS 

The tomato size and shape classification algorithms were 

implemented on the classifying prototype, using training 

databases of tomato images and real time captured images. 

The performance evaluation of sizes and shapes estimation 

were based in the national standard NTC-1103, obtaining as a 

result accuracies equal to or greater than 90% compared with 

actual measurements. 

The tomato caliber calculation and the fruit diameters 

estimation was executed in real time (video streaming) using 

the OpenCV artificial vision library, however, a negligible 

error of less than ± 10 mm (millimeters) was presented, when 

these results were compared with actual measurements. The 

radial and tangential distortions of the camera lens presented 

this error. 

The tomato size detection algorithm was sensitive to the 

choice of the high and low thresholds for the Canny operator 

application. The appropriated selection of these thresholds 

guarantees the best edges detection in the hysteresis stage. 

The tomato morphology estimation was more precise using 

the eccentricity calculation using the minor and major axes 

measurements, which correspond to the shape estimation 

algorithm. 

The implementation of the portable tomato classification 

prototype was developed using artificial vision techniques 

implemented in a Raspberry Pi development platform, that can 

be replicated for fruits and vegetables study and analysis with 

tomato similar characteristics. These applications can be 
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adapted through the implemented algorithms reconfiguration 

depending on the conditions that are required. 
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