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Abstract– In the transmission and distribution systems there are 

very important activities such as: planning, design, operation, 

maintenance and commercialization, which are based on the 

knowledge with good precision of its operation variables: active 

powers, reactive powers and phasor voltages. 

Misleading values of these variables distort the mentioned activities 

and can cause serious technical, economic and social consequences. 

The measurements of these variables are made in the bars of the lines 

by a chain of processes, where each of them introduces an error to 

the measurement. The power measurement errors are usually large, 

of the order of 3 or 4%. In the measurements of each line, anomalous 

or absent measurements are detected in many intervals of each 

month, mainly due to the indicated limitations and temporary 

failures in the meters. In the present work a method of calculation 

for the detection, identification and reconstruction of absent and 

anomalous measurements in the national system of electrical 

transmission is proposed and developed through the use of state 

estimation techniques and estimation of parameters based on least 

squares and the equations of charge flow of the lines, using all the 

measurements of active energies, reactive energies and existing 

tensions in the fifteen minute intervals, in both ends of the lines 

corresponding to the month in which their evaluation is carried out. 

The application of the proposed method to the 220KV Chimbote – 

Trujillo line for a sub set of 21 data rows vectors from a total of 2880 

data row vectors corresponding to its July 2018 operation is 

presented. 

Keywords-- abnormal measurements, state estimation, 

Chi square distribution, estimation error, parameter estimation. 

I.  INTRODUCTION 

The best way to verify the quality of the measurements of 

the operation variables is to determine if their values meet the 

equations of the power flows model of the transmission lines 

(which depends on their state variables and their physical 

parameters), if the error is small the measurements are 

acceptable, otherwise it will be necessary to reconstruct them in 

an optimal way. However the equations of the model cannot be 

used directly because it is necessary to know with good 

accuracy the values of the state variables such as voltages and 

phase angles: 𝑉1, 𝑉2, 𝛿  and also of their physical parameters, 

such as resistances, reactances, inductances, capacitive 

reactances and perditances or leak admittances: 𝑅, 𝑋𝐿, 𝑌𝐶 , 𝑌𝑅. 
Because of this, it will be necessary to use optimal estimation 

techniques to find the optimal estimated values of the state 

variables and physical parameters [1], [5], [7], [8], [9], [10] and 

with these find the optimal estimated values of the power flows 

using the equations of the power flow model. 

If the estimation errors of the power flows are large with 

respect to their corresponding measured values, this means that 

the corresponding measurements are abnormal and will be 

optimally reconstructed [5], which is the objective of the 

present work. 

II. PROBLEM FORMULATION

A. Load Flow Equations by Phase with the PI model 

     If the Kirchhoff equations are applied to the circuit of the 

PI model in bars 1 and 2 and in the loop between them, the 

equations 1 to 4 are obtained, which correspond to the load flow 

of a transmission line [6]: 
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State variables: 

V1, V2  Line voltages (in kV) in bars 1 and 2. 

 d1, d2  Phase angles (radians) of the voltages with 

      respect to a reference. 

d = d1 - d2    Relative phase shift (radians) of voltages. 

 Operation variables: 

 P1, P2       Active line powers (in MW) in bars 1 and 2 

 Q1, Q2     Reactive line powers (in MVAR) in bars 1 and 2 

 Physical parameters: 

 R     Resistance (ohm) (resistive effect) 

 XL  Inductive reactance (ohm) (inductive effect) 

 YC  Capacitive susceptance (Mho) (capacitive effect) 
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          YR                   Leakage conductance or perditance (Mhos or  

                           Siemens) (effect of current leakage to the outside 

                           environment) 

 

B. Analytical development of the estimation process of state 

       and physical parameters 

       The optimal estimation process is presented in Fig. 1 where 

in each measurement interval k, the output vector Z of the real 

system is compared with the output vector Y of the model. 

If the error J is large, the optimal corrections dp, dx are 

calculated and with these, the new values p, x and Y are 

calculated for the next interval k+1. This comparison and 

correction process is continued iteratively until the magnitude 

of the error is lower than the allowed error values, thus 

obtaining the optimal x of the state variables and the optimal 

identification p of the physical parameters. 

 

Fig. 1 Optimal state estimation and identification of physical parameters. 

 

      A natural function of the quadratic error of estimation of 

state and of physical parameters [3] for the whole system, 

pondering the quality of the meters and the distrust of the initial 

vector of physical parameters is: 

 

𝐽(𝑥(𝑘), 𝑘 = 1 … 𝑁; 𝑝) = 
= (∑ [𝑧(𝑘) − 𝑓(𝑥(𝑘), 𝑝)]𝑇𝑅−1[𝑧(𝑘) − 𝑓(𝑥(𝑘), 𝑝)]𝑁

𝑘=1 ) 
                            +(𝑝0 − 𝑝)𝑇𝑀−1(𝑝0 − 𝑝)                           (5)                                      

 

      The process of state estimation and identification of 

physical parameters consists of finding the set of optimal 

estimated vectors of state x (k), k = 1…N and the vector of 

physical estimated parameters p to minimize J. 

 

      It is observed that the value of estimated p is constant for all 

the estimated vectors x (k), k = 1…N. The following symbology 

will be used: k = 1, 2, ....k.......N. 

 

      It is a generic time interval of 15 minutes in which 

measurements are taken. 

      N is the total number of intervals in the time series. In this 

case, taking into account that the measurement vectors are made 

every 15 minutes, for a month the value is the following: 

𝑁 = (
4 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

ℎ𝑜𝑢𝑟
) (

24 ℎ𝑜𝑢𝑟𝑠

𝑑𝑎𝑦
) (

30 𝑑𝑎𝑦𝑠

𝑚𝑜𝑛𝑡ℎ
) 

 
=2880 measurement vectors 

x(k) State vector,  TVVx 21        

p Vector of physical parameters, p = [R YR XL YC]T 

p0 Vector of values of nominal or initial physical 

               parameters 

 

y(k) = f(x(k),p,k) Vector of calculated operating variables:  

                              active, reactive powers and voltages 

z(k)         Vectors of measured operating variables   

v(k)  Deviation vector or error of the measured values of 

                the operating variables with respect to their calculated 

                values 

R(k)  Covariance matrix of the vector v(k) or quality matrix  

                of the meters. It is usually a diagonal matrix and 

                represents the squares of the standard deviations of   

                the measurements 

w          Deviation vector of the current physical parameters 

                with respect to the initial physical parameters 

M   Covariance matrix of the w vector or matrix of 

                 mistrust of the initial parameters 

 

      In each measurement interval k, the relationship between 

the measured values z(k) of the operating variables and their 

calculated values f(x(k),p,k) is represented by :                                                        

                             v(k)  = z(k) - f(x(k),p,k                             (6)       

C. Identification of physical parameters using optimization by 

Newton Raphson                               

       This optimization method is shown in Fig. 2, which is very 

efficient, tested and used by state estimation processes of most 

control centers in the world, Kusic [1], Wood [2], Stevenson 

[5]. Its use in parameter estimation was initially proposed by 

Debs [3] and Schweppe [4].  

 
Fig. 2 Method of successive approximations applying Newton Raphson in 

successive linear sections. 
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The form and details of how the identification of 

parameters using Newton Raphson used in this work is 

described in Fig. 3 [6] 

 
Fig. 3 Identification of parameters using Newton Raphson. 

 

      Using the method of successive linear approximations and 

the Newton Raphson method [6] the optimal correction for the 

vector of physical parameters are obtained:  

 

𝑑𝑝𝐿 = {∑[𝐻𝑃
𝑇(𝑘)𝑅−1𝐻𝑝(𝑘)]

𝑁

𝑘=1

+ 𝑀−1}

−1

 

      {∑ 𝐻𝑃
𝑇(𝑘)𝑅−1[𝑧(𝑘) − 𝑦(𝑥(𝑘), 𝑝𝐿)] + 𝑀−1(𝑝0 − 𝑝𝐿)

𝑁

𝑘=1

} (7) 

 

      The Jacobian Hx of f(x) with respect to the state variable is 

made up by the following set of equations: 

 
𝜕𝑃1

𝜕𝑉1
 = 2YRV1 + (2RV1-RV2 cos 𝛿 + XLV2 sen 𝛿) (

1

𝑅2+𝑋𝐿
2) (8) 

                        
𝜕𝑃1

𝜕𝑉2
= (-RV1cos 𝛿 + XLV1 sen 𝛿) (

1

𝑅2+𝑋𝐿
2)           (9) 

                     
𝜕𝑃1

𝜕𝛿
= (RV1V2 sen 𝛿 + XLV1V2 cos 𝛿) (

1

𝑅2+𝑋𝐿
2)    (10) 

   
𝜕𝑄1

𝜕𝑉1
= -2YCV1 + (2X1V1-RV2 sen 𝛿  - XLV2 cos 𝛿) (

1

𝑅2+𝑋𝐿
2) (11) 

                          
𝜕𝑄1

𝜕𝑉1
= (-RV1 sen 𝛿  + XLV1 cos 𝛿) (

1

𝑅2+𝑋𝐿
2)     (12) 

                    
𝜕𝑄1

𝜕𝛿
= (-RV1V2 cos 𝛿 + XLV1V2 sen 𝛿) (

1

𝑅2+𝑋𝐿
2)   (13) 

                                                      
𝜕𝑉1

𝜕𝑉1
= 1                                       (14) 

                                                      
𝜕𝑉1

𝜕𝑉2
= 0                                       (15) 

                                                      
𝜕𝑉1

𝜕𝛿
= 0                                       (16) 

                     
𝜕𝑃2

𝜕𝑉1
= (-RV2 cos 𝛿  - XLV2 sen 𝛿) (

1

𝑅2+𝑋𝐿
2)            (17) 

     
𝜕𝑃2

𝜕𝑉2
=2V2YR + (2V2R-RV1 cos 𝛿  - XLV1 sen 𝛿) (

1

𝑅2+𝑋𝐿
2)   (18) 

               
𝜕𝑃2

𝜕𝛿
= (RV1V2 sen 𝛿  - XLV1V2 cos 𝛿) (

1

𝑅2+𝑋𝐿
2)           (19) 

                   
𝜕𝑄2

𝜕𝑉1
 =(RV2 sen 𝛿  - XLV2 cos 𝛿) (

1

𝑅2+𝑋𝐿
2)               (20) 

𝜕𝑄2

𝜕𝑉2
=-2YCV2 + (2X1V2 +RV1 sen 𝛿  - XLV1 cos 𝛿) (

1

𝑅2+𝑋𝐿
2) (21) 

         
𝜕𝑄2

𝜕𝛿
 =(RV1V2 cos 𝛿  + XLV1V2 sen 𝛿) (

1

𝑅2+𝑋𝐿
2)            (22) 

                                                          
𝜕𝑉2

𝜕𝑉1
= 0                                   (23) 

                                                          
𝜕𝑉2

𝜕𝑉2
= 1                                  (24) 

                                                          
𝜕𝑉2

𝜕𝛿
= 0                                   (25) 

      The Jacobian Hp of f(x) with respect to physical 

parameters is made up by the following set of equations: 

 
𝜕𝑃1

𝑅
=

1

(𝑅2+𝑋𝐿
2)

2 ((X𝐿
2- R2)(𝑉1

2-V1V2 cos 𝛿)  

                                           – 2RXLV1V2 sen 𝛿)                            (26) 

                                                     
𝜕𝑃1

𝜕𝑌𝑅
= 𝑉1

2                                  (27) 

𝜕𝑃1

𝑋𝐿
=

1

(𝑅2+𝑋𝐿
2)

2 (-2XLRV1
2 + 2XLRV1V2 cos 𝛿 

                                        +V1V2 sen 𝛿(R2- X𝐿
2))                         (28) 

                                                         
𝜕𝑃1

𝑌𝐶
= 0                                  (29) 

𝜕𝑄1

𝑅
=

1

(𝑅2+𝑋𝐿
2)

2 (-2RV1
2XL – (X𝐿

2 - R2) V1V2 sen 𝛿 

                                              + 2RXLV1V2 cos 𝛿)                        (30) 

                                                            
𝜕𝑄1

𝜕𝑌𝑅
= 0                               (31) 

𝜕𝑄1

𝜕𝑋𝐿
=

1

(𝑅2+𝑋𝐿
2)

2 ((R2-X𝐿
2) (V1

2-V1V2 cos 𝛿) 

                                          + 2XLRV1V2 sen 𝛿 )                           (32) 

                                                          
𝜕𝑄1

𝜕𝑌𝐶
=- V1

2                       (33) 
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𝜕𝑉1

𝜕𝑅
 = 0                               (34) 

 

                                                
𝜕𝑉1

𝜕𝑌𝑅
 = 0                              (35) 

                                                            
𝜕𝑉1

𝜕𝑋𝐿
= 0                              (36) 

                                                            
𝜕𝑉1

𝜕𝑌𝐶
= 0                               (37) 

      
𝜕𝑃2

𝜕𝑅
=

1

(𝑅2+𝑋𝐿
2)

2 ((X𝐿
2-R2) (V2

2- V1V2 cos 𝛿) 

                                          + 2RXL V1V2 sen 𝛿)                           (38) 

                                                        
𝜕𝑃2

𝜕𝑌𝑅
 = V2

2                                 (39) 

    
𝜕𝑃2

𝜕𝑋𝐿
 = 

1

(𝑅2+𝑋𝐿
2)

2 (-2XLRV2
2 + XLR V1V2 cos 𝛿 

                                          - V1V2 sen 𝛿 (R2-X𝐿
2 ))                      (40) 

                                                            
𝜕𝑃2

𝜕𝑌𝐶
= 0                               (41) 

𝜕𝑄2

𝜕𝑅
  = 

1

(𝑅2+𝑋𝐿
2)

2 (-2RV2
2XL + (X𝐿

2 - R2) (V1V2 sen 𝛿) 

                                              + 2R XLV1V2 cos 𝛿)                       (42) 

                                                             
𝜕𝑄2

𝜕𝑌𝑅
= 0                              (43) 

𝜕𝑄2

𝜕𝑋𝐿
 = 

1

(𝑅2+𝑋𝐿
2)

2 ((R2-X𝐿
2) (V2

2- V1V2 cos 𝛿) 

                                                - 2 XLR V1V2 sen 𝛿)                     (44) 

                                                         
𝜕𝑄2

𝜕𝑌𝐶
 = -V2

2                              (45) 

                                                           
𝜕𝑉2

𝜕𝑅
 = 0                                 (46) 

                                                          
𝜕𝑉2

𝜕𝑌𝑅
 = 0                                 (47) 

                                                          
𝜕𝑉2

𝜕𝑋𝐿
 = 0                                 (48) 

                                                          
𝜕𝑉2

𝜕𝑌𝐶
 = 0                                 (49) 

                                                                          

D. Process for the detection, identification and reconstruction 

of absent and abnormal measurements in transmission 

lines                                                                                                                               

       The normalized quadratic mean error J, for each row of the 

database, is given by: 

 

𝐽 =
(𝑍1 − 𝑃1

𝑒𝑠𝑡)2

𝜎1
2 +

(𝑍2 − 𝑄1
𝑒𝑠𝑡)2

𝜎2
2 +

(𝑍3 − 𝑉1
𝑒𝑠𝑡)2

𝜎3
2  

 

                  + 
(𝑍4 − 𝑃2

𝑒𝑠𝑡)2

𝜎4
2 +

(𝑍5 − 𝑄2
𝑒𝑠𝑡)2

𝜎5
2 +

(𝑍6 − 𝑉2
𝑒𝑠𝑡)2

𝜎6
2  (50) 

 

where: 

 

𝑍 = [𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5, 𝑍6]    Row of measured values of the 

operating variables of a transmission line. 

 

𝑓𝑒𝑠𝑡 = [𝑃1
𝑒𝑠𝑡, 𝑄1

𝑒𝑠𝑡, 𝑉1
𝑒𝑠𝑡, 𝑃2

𝑒𝑠𝑡, 𝑄2
𝑒𝑠𝑡 , 𝑉2

𝑒𝑠𝑡]    Row of optimal 

estimated values  

 

𝜎𝑖
2 are the variances corresponding to  𝑧𝑖 − 𝑓𝑖

𝑒𝑠𝑡  

 

      The zi  measurement of each of the operating variables has 

a normal probabilistic distribution (which corresponds 

approximately to the energy counters) as shown in Fig. 4. 

Likewise, the estimated values of the operating variables have 

the same normal distribution but its standard deviation is 

obviously smaller than that of the measured values as shown in 

Fig. 3. 

 

      According to the above, the errors of each of the measured 

variables with respect to their estimated values also have 

normal probabilistic distributions and the same occurs with the 

normalized errors as shown in Fig. 4. 

 
Fig. 4 Probability function of the normalized error 𝑧𝑖

𝑛𝑜𝑟𝑚 of the measurement 

with respect to its estimated value. 
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      J has a Chi-Square𝜒2(𝑘), because each of its addends has a 

normal distribution [5]. 

      This distribution for k degrees of freedom has a typical 

behavior, like the one shown in Fig. 5, where:  

 

k   number of degrees of freedom 

  

      JMAX maximum allowed value (critical threshold) of the 

optimal estimation error 𝐽(𝑥̂) 

 

      𝛼  area below the curve after JMAX that represents the 

probability that error J is greater than JMAX (level of mistrust). 

 

      1 − 𝛼 area below the curve before de JMAX that represents 

the probability that error J is less than JMAX (confidence level). 

Also 𝑝𝑟𝑜𝑏  (𝐽(𝑥̂) <  𝐽𝑀𝐴𝑋)  =   1 − 𝛼 

 

 
Fig. 5 Probability density function of the estimation error J with Chi - Square 

distribution. 

 

      These characteristics are tabulated in tables as Table 1 that 

shows the relationship between k, JMAX and  𝛼   in the Chi-

Square function. 

 
TABLE 1 

CHI – SQUARE PROBABILISTIC FUNCTION 

 
 

E. Determination of the maximum allowed value of the 

estimation error of the operation variables of the 

transmission lines 

 

       A confidence of de 99% means that 1 - α = 0.99 where 

α = 0.01. With six measurements (Nm=6) and three state 

variables (Ns=3) we obtain k = Nm – Ns = 3 (degrees of 

freedom of the line), and entering Table 2.3 with k = 3 and 

α = 0.01 the threshold Jmax = 11.35 is found. 

 

 

      Similarly, with five measurements we obtain k = Nm – Ns 

= 2, and entering the table with k = 2 and α = 0.01, we find the 

threshold Jmax=9.21 and with four measurements we obtain 

k = Nm – Ns = 1 and entering to the table with k = 1 and 

α = 0.01, we find the threshold Jmax=6.64. 

 

1) Detection of rows with anomalous measurements 

 

      In order for any row with 6 measurements 

𝑍 = [𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5, 𝑍6] in the database of a transmission line 

be acceptable, it will be necessary that the J value of the row be 

less than 11.35 [1], [2], [5]. According to this, the Detection of 

any row of the database with anomalous measurements occurs 

when J > 11.35 occurs in the row. 

 

2) Identification and correction of anomalous 

measurements 

 

      It is known that to solve the system of equations of the 

transmission line, redundancy is needed (Nm > Ns), that is 4, 5 

or 6 measurements are needed.  

 

      If any row with anomalous Measurements have been 

detected (i.e. with J > 11.35), the anomalous measurements will 

be identified with the following procedure [2], [5]:  

 

      First, in the detected row, the measurement that corresponds 

to the greatest of the 6 addends of error J is eliminated because 

it is suspicious of anomaly. 

 

      Then the Estimation process is carried out using the 

remaining 5 measurements and J is calculated (8). 

If J < 9.21 is obtained then this confirms that the suspicious 

measurement is indeed anomalous and its value is replaced by 

the corresponding estimate. Whereas if J > 9.21 means that the 

suspicious measurement is not anomalous and the same process 

is performed for the remaining measurements. If another 

anomalous measurement is detected, it is also canceled, leaving 

four Measurements and the threshold for the identification will 

be 6.64. If three anomalous measurements are detected there 

will no longer be redundancy and therefore the entire row of 

data will be eliminated. 

 
III. RESULTS 

 

      The proposed method has been applied to the 220 kV 

Chimbote-Trujillo line. This application corresponds to data 

from July 2018 [6]. The detail of the results of the application 

of the process, row by row, is shown in Table 2 which 

corresponds to a subset of 21 data vectors from a total of 2880 

data vectors to which this method was applied. 

 

 

 



17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And 

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 6 

TABLE 2 

APLICATION OF THE DETECTION, IDENTIFICATION AND 

CORRECTION PROCESS 

 
 

      In this table, the first 6 columns show the measurements 

with their values already corrected. 

Ja, Jd: Estimation errors before and after the correction of the 

row. 

C1, C2: number of columns of where values were corrected 

OR1, OR2: original values in the columns indicated 

ES1, ES2: estimated values in the indicated columns 

      In all the rows, column C1 indicated that column 6 has been 

corrected, column OR1 show that the original values were 0 and 

column ES1 shows the new estimated values. 

      In rows 10 to 14 and 17 to 21, column C2 indicates that 

column 4 (MWh in Trujillo) has been corrected, column OR2 

shows the original values and column ES2 shows the new 

estimated values. 

      In rows 15 to 16, column C2 indicates that column 1 (MWh 

in Chimbote) has been corrected, column OR2 shows the 

original values and column ES2 shows the new estimated 

values. 

 

 

IV. CONCLUSIONS 

 

a) For quality control to be viable, it is important to have full 

Measurements of active, reactive power and voltages in 

each bar in the 2880 measurements vectors. In addition, 

these measurements must be of good quality, so those 

responsible for the transmission system must provide for 

the proper maintenance of each link in the chain of 

processes that involves high voltage measurements. 

 

b) The proposed method is based on techniques of 

identification of physical parameters and state estimation 

that configure the state of the art in this type of applications 

[7-8] 

 

c) The method shows how anomalous measurements of each 

measurement vector in the Chimbote – Trujillo line are 

detected, identified and reconstructed. This is very 

important because in this way those responsible for the 

lines will be able to detect in which part of the 

measurement process the errors are occurring. 

 

d) Also in Table 2 the efficiency of the proposed method is 

confirmed since in many rows it is observed that the 

optimal estimation error J, severely decreases from very 

high values Ja = 30 (before the process of detection, 

identification and correction of anomalous measurements) 

to very small Jd values of the order of hundredths, after the 

optimal correction. 
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