
17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation and
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Kingston, Jamaica. 1

Developing CyberSecurity Skills in
Intermediate Programming Courses

Jeffrey L. Duffany1, Ph.D.
Ana G. Mendez University, Puerto Rico, U.S.A., jeduffany@suagm.edu

Abstract– For most electrical and computer engineering
students intermediate programming is a required course. Typical
topics taught in intermediate programming are advanced array
operations, reading data from files, writing data to files, string
conversions, string manipulations, pointers, searching for a text
string, sorting of data into alphabetical order and numerical methods.
To motivate students instructors should create learning experiences
that the student can relate to for example by incorporating popular
culture into the teaching materials. Judicious choice of teaching
material can spell the difference between engaging or not engaging
the interest of the student. One method for improving student
engagement would be to provide evidence that they are learning a
skill that will in the long run be useful to them in some way. Many
cybersecurity concepts can be introduced and learned using
techniques suitable for intermediate programming classes.
Keywords-- cybersecurity, programming, capture the flag

I. INTRODUCTION

 Traditional learning environments are largely passive in
nature and that can actually be an efficient way of delivering a
lot of material[1]. However recently there has been a trend
towards what is called "active learning"[1] where the passive
teaching techniques are reduced to a minimum while the student
is more "actively" engaged in the learning process through a
variety of techniques. However for active learning to work the
student must be motivated to learn in the first place[1][2].

Programming classes typically have a lecture/lab format
where the class is given in computer lab environment where
each student has their own computer or in some cases the course
is divided into separate lecture and lab components. Either way
a hands-on programming experience is an integral part of the
course and as such the requisite facilities in terms of hardware
and software must be provided in the classroom environment.
This paper describes several ideas for introducing cybersecurity
concepts[3][8] to undergraduate engineering students taking
intermediate programming. There is nothing inherently wrong
with the current curriculum approach. The suggestion is to
teach the same material in a context that will help to increase
the motivation of the students.

The concept of cyber security has been filtering into the
public conscious for quite some time as evidenced by the fact
that there are stories about computer hackers in the news
practically every day[3]. The US Government Agencies have a
large vacuum of cyber-security-related jobs to fill and there are
currently not enough skilled people with training[3].
Cybersecurity has long been the domain of graduate studies

however it is starting to trickle down to the undergraduate
level[3][6][8]. GenCyber is (a.k.a Generation Cyber) is a joint
initiative by the NSF and NSA to introduce cybersecurity topics
to K-12 students[7]. This is often done in a summer camp
environment that introduces the concepts in a very broad and
generic way. The camps are free of charge and take place every
summer across the United States and Puerto Rico[7].

II. BACKGROUND AND MOTIVATION

 One way to improve motivation is to illustrate tangible
benefits of performing some activity (such as for example
learning or sports training)[2]. Another way is to inspire the
students by somehow capturing their imagination which can
lead to an inner self-motivation[4][5]. As a case in point there
is nothing quite like a competition to motivate people; as a
classic example an entire industry of sports is built on that
principle. Imagine playing a game of ping pong or tennis
without keeping track of points. What will inevitably wind up
happening is that you will end up just hitting the ball around
back and forth amiably. Now imagine what happens when both
players agree to keep score and they decide that first player to
score say for example 11 points wins. The result is that it will
invariably lead to a fundamental change in how the players
interact with each other as keeping score is both literally and
figuratively a game changer. It will often bring out the best in
people. When not keeping score players tend to have less focus
and or a different focus. For example instead trying to win every
point the players may choose to focus on practicing their
topspin, backspin or sidespin techniques instead.

So how does that previous sports discussion relate to
intermediate programming? In recent years the concept of
cybersecurity competition, e.g., capture the flag (CTF) has been
gaining in popularity[6]. A premier example is the National
Cyber League (NCL)[10]. The National Cyber League is a an
online competition that is geared towards high school and
university students. The competition is held twice a year once
in the spring and the fall. Last year over 5000 students
participated in the NCL Fall Season individual competition[10].
Every person who enters becomes nationally ranked according
to their standing and the highest scoring individuals are placed
gold, silver or bronze status. All of the NCL challenges are
geared towards helping the student gain a deeper understanding
of cybersecurity concepts and principles. It is this ranking
system that motivates the participants to solve as many
challenges as possible.

Digital Object Identifier (DOI):

http://dx.doi.org/10.18687/LACCEI2019.1.1.414
ISBN: 978-0-9993443-6-1 ISSN: 2414-6390

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation and
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Kingston, Jamaica. 2

There are many other CTF and CTF-like competitions
sponsored at conferences, by universities and other
organizations (recently a CTF competition was held at the
Grace Hopper conference for women in computing
sciences[17]). The National Collegiate Cyber Defense
Competition (CCDC) is another well-known CTF event for
university students. Another potential source of inspiration is
from literature and popular culture (criminal history) and there
are a number of famous cryptographic messages some of which
have been solved and some which have not. Well-known
examples include Arthur Conan Doyle "Sherlock Holmes
Adventure of the Dancing Men" [9], Edgar Allan Poe "The
Gold Bug", the Zodiac Killer Ciphers[18] and the DaVinci
Code by Dan Brown[4].

Figure 1. Kryptos Sculpture at CIA Headquarters

Perhaps one of the most famous examples of unsolved

cryptographic code[5] can be found etched into a statue at CIA
headquarters in Langley, Virginia (Figure 1). In 1988, as a new
headquarters for the American Central Intelligence Agency
(CIA) was being built and sculptor Jim Sanborn was
commissioned to create artwork for the courtyard of the new
building. He designed a large copper monument, shaped
somewhat like a flag, and engraved with an encrypted message.
The name of the sculpture is Kryptos[5]. Now over 20 years
after the statue was unveiled the encrypted text has yet to be
fully deciphered.

Kryptos has seen three of its four sections solved however

still uncracked are the 97 characters of the fourth part (see
Figure 1). The combined efforts of the NSA and CIA - some of
the world's top crypto experts - have been unable to break the
code. Imagine the inspiration this could instill in high school or
college student knowing how famous they would become if
they could crack the infamous (and as of today still unsolved)
fourth part of the Kryptos code[5].

III. INTERMEDIATE PROGRAMMING CURRICULUM

 The standard curriculum of intermediate programming
courses typically include: advanced array operations, reading
data from files, writing data to files, string conversions, string
manipulations, pointers, searching, sorting of data and
numerical methods[[13]. It will be shown in this paper that
intermediate programming techniques coincide very well with
the cybersecurity programming tasks needed for CTF
competitions[13].

IV. ILLUSTRATIVE EXAMPLES

The main idea is to show students how easily written and

relatively short computer programs can be used to help them
solve cybersecurity related challenges. This allows the
instructor to teach the concepts of intermediate programming
and cybersecurity at the same time. The following topics have
been chosen as illustrative and will be discussed in detail
throughout the remainder of this paper.

A. Cryptography - Caesar Cipher
B. Brute force Cryptanalysis
C. Cryptography - Railfence
D. Frequency Analysis
E. Password Cracking

 These examples were chosen to be easy to program and at

the same time provide tangible evidence to illustrate how
programming skills are likely to benefit the student later on.
There are many other examples that could have been chosen so
these should be considered mainly as representative. These
examples are based directly on actual challenges found in the
National Cyber League and other CTF competitions[6][10].
These programs can be used "as is" to solve a number of the
easier challenges and can be modified for more difficult ones.

More difficult challenges will require writing of new

programs however they will employ many of the same tools and
techniques illustrated here. All of the programs included in this
paper are fully working computer programs and not merely just
pseudocode. They are intended to facilitate anyone reading this
paper to help to adapt it to their particular curriculum. They are
written in R Language[12] but can be rewritten in any of the
popular teaching languages such as C++[13], Python[15],
Visual Basic[14], etc. R is a programming language
environment that is free to download and use[12]. R is an
interpreted language that does not need a compiler which
makes it easy to quickly write programs and get them working
with minimum knowledge or expertise. Programs are written by
taking commands and storing them in a file and then submitting
it to a "shell" type of environment which sequentially executes
the commands in the file. All standard programming constructs
such as repetition loops and "if" statements are fully supported.

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation and
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Kingston, Jamaica. 3

FIGURE 2 CAESAR SHIFT CIPHER (SHIFT= 2)

A. CRYPTOGRAPHY - CAESAR SHIFT CIPHER

 An example of classical cryptography is the caesar cipher also
known as the caesar shift cipher[9] which is known to almost
every schoolboy and girl as the "secret decoder ring". The idea
of the Caesar shift cipher is illustrated in Figure 2. It is a
classical substitution code which replaces letters of the alphabet
with other letters to the left or right as a method of obfuscating
the "top secret" message. For this discussion the letter capital
"P" represents the unencrypted original or "plaintext" and
capital letter "C" represents encrypted ciphertext. The Caesar
cipher is represented by a mathematical formula shown in
Equations (1) and (2) below with the key to encrypt or decrypt
given by an integer K which represents the amount of the shift.
In order for equations (1) and (2) to work properly the letters of
the alphabet must first be assigned numbers starting with A=0,
B=1,....ending with Z=25.

 C = (P + K) mod 26 (encryption) (1)

 P = (C - K) mod 26 (decryption) (2)

 A simple computer program for implementing the caesar shift
cipher is shown in Figure 3. The program was written in R
Language[12]. There is nothing special about R language and
many other languages could have been used[13][14][15]. R
language was used because R is a high level language and the
programs tend to be shorter thus making them elegantly suitable
for illustration. So if the input plaintext is P = "buenos aires"
and the amount of shift is one letter to the right then the output
would be "cvfopt bjsft"

 In this case it can be seen that a key value K=1 was used in
Equation (1). Using a shift K=1 the letter "a" becomes "b" and
the letter "b" becomes "c". This is evident in the ciphertext as it
easily seen that the c in "cvfopt" is the shifted b from "buenos"
and the b in "bjsft" is the shifted a from "aires". Adding an
integer K is a shift to the right in the alphabet while subtracting
an integer K is a shift to the left in the alphabet.

 function caesar_encrypt()
 {
 plaintext<-"buenos aires"
 k=1
 print(plaintext)
 ascii<-utf8ToInt(plaintext)-97
 space<-ascii<0
 ciphertext<-(ascii+k)%%26+97
 ciphertext[space]<-32
 ciphertext<-intToUtf8(ciphertext)
 print(ciphertext)
 }

 Figure 3. Caesar Shift Cipher Encryption in R Language

 To understand how the R Language program in Figure 3
implements Eq.(1) a little background explanation is required.
Information is represented inside a computer in ASCII
code[19], UNICODE[20] or UTF-8[21]. In all of these coding
systems the letter "A" is represented as decimal number 65 and
correspondingly that means B=66, C=67, etc. The letter Z is
represented by decimal number 90. The lowercase letters are
a=97 to z=122. Since the caesar cipher encryption program in
Figure 3 is designed to work only with lowercase letters (for
simplicity) it is necessary to subtract 97 at the beginning of
program after utf8 encoding in line 4. Eq. (1) is implemented
line 6 of the program ciphertext<-(ascii+k)%%26+97 and the
result shifted back up by adding 97. The double percent %% is
the modular division operator in R Language which implements
the mod function from Eq. (1). The mod (modulo) operator is
the remainder after integer division for example 26%%26 =0
(26 divided by 26 =1 with no remainder as 26 goes into 26
exactly once). So if K=26 then A+26= A+0 since 26%%26=0.
Therefore if the key K=0 the encryption algorithm will return a
ciphertext = plaintext so keys of either 0 or 26 are null keys. In
line 7 space<-ascii<0 finds the location of all spaces as 32 is the
ASCII code for space " ". Line 7 ciphertext[space] <-32 puts
back the spaces (i.e., the space between "buenos" and "aires").

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation and
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Kingston, Jamaica. 4

B. CRYPTANALYSIS

 While cryptography is the art of making codes cryptanalysis is
the science of breaking codes[9]. In other words cryptanalysis
represents the tools and techniques for finding the plaintext (P)
given only the ciphertext (C). When the key (K) is known to the
message recipient decryption is simple for example in the case
of the caesar cipher using the formula in Equation 2. The key K
is subtracted from each letter in the message shifting to the left
thereby recovering the plaintext.

When the key is not known the process of finding the message
plaintext is called "cryptanalysis". There are two primary
techniques used in cryptanalysis: brute force and frequency
analysis[9]. The brute force technique tries every possible key
while the other methods of cryptanalysis try to impose a
maximum likelihood ordering on the keyspace by trying the
most likely keys first. Figure 4 shows an R Language program
for performing cryptanalysis of the caesar cipher using the brute
force technique.

function caesar_decrypt()
{
ciphertext="leoxyc ksboc"
for(k in 0:25) {
ascii<-utf8ToInt(ciphertext)-97
space<-ascii<0
plaintext<-(ascii-k)%%26+97
plaintext[space]<-32
plaintext<-intToUtf8(plaintext)
print(plaintext)
}}

Figure 4. Cryptanalysis of the Caesar shift cipher

 Just as with the encryption program in Figure 3 the decryption
program first changes the letters to integers and then subtracts
97 to set the letter "a" to zero. It then subtracts the key which is
the inverse of adding the key during the encryption process.

Suppose for example the captured secret message was C=
ciphertext = "leoxyc ksboc". This represents a caesar cipher of
shift (or key) K = 10. As can be seen in the ciphertext the "b" in
buenos aires becomes "l" in "leoxyc ksboc" since "b" is the
second letter of the alphabet and "l" is the twelfth letter of the
alphabet "b"+K="l" (i.e., 2 +10 = 12).

The full result of the brute force cryptoanalysis is shown in
Figure 5 which is the output of the program in Figure 4. The
program tries every key starting with a key=0 and going to 25
as seen in the repetition loop. This clearly illustrates the "needle
in the haystack" type of search that typically results from a brute
force cryptanalysis.

As seen in Figure 5 the first key (K=0) is a null key which just
returns the ciphertext. Finally when the key K=10 is tried the
plaintext P = "buenos aires" emerges. This approach does not
scale very well for the large keyspaces of modern cryptography.

[0] "LEOXYC KSBOC" CIPHERTEXT
[1] "KDNWXB JRANB"
[2] "JCMVWA IQZMA"
[3] "IBLUVZ HPYLZ"
[4] "HAKTUY GOXKY"
[5] "GZJSTX FNWJX"
[6] "FYIRSW EMVIW"
[7] "EXHQRV DLUHV"
[8] "DWGPQU CKTGU"
[9] "CVFOPT BJSFT"
[10] "BUENOS AIRES" PLAINTEXT
[11] "ATDMNR ZHQDR"
[12] "ZSCLMQ YGPCQ"
[13] "YRBKLP XFOBP"
[14] "XQAJKO WENAO"
[15] "WPZIJN VDMZN"
[16] "VOYHIM UCLYM"
[17] "UNXGHL TBKXL"
[18] "TMWFGK SAJWK"
[19] "SLVEFJ RZIVJ"
[20] "RKUDEI QYHUI"
[21] "QJTCDH PXGTH"
[22] "PISBCG OWFSG"
[23] "OHRABF NVERF"
[24] "NGQZAE MUDQE"
[25] "MFPYZD LTCPD"

Figure 5. Brute Force Cryptoanalysis of the Caesar Cipher

 This technique can work in cases where the keyspace is small
but does not scale very well to cryptography for large
keyspaces[9]. At this point the students can be given a challenge
assignment whereby they have to figure out an automatic way
of detecting when the key is found. There are number of ways
of doing this most of which depend on dictionary lookup or
spell check techniques. The purpose of this challenge is to
stimulate the student's imagination and curiosity and create
motivation for wanting to learn more about computer
programming. It also encourages further exploration by the
student. For example what other techniques can be used to
automatically detect when the key has been found? What
happens when you make a slight modification to create a
monoalphabetic substitution code increase the keyspace to 400
trillion trillion (keys). These ideas can be explored without a
disproportionate amount of effort to modify the code.

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation and
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Kingston, Jamaica. 5

Figure 6. Some Simple Transposition Ciphers

C. TRANSPOSITION CIPHERS - RAILFENCE

 Transposition ciphers (permutation ciphers)[9] do not use
substitution instead they simply change the ordering of the
letters in the message. This is done in some systematic way that
is previously negotiated by the sender and recipient. Figure 6
shows how transposing the order of the characters in plaintext
can result in obfuscation of the original message. These codes
by themselves are easy to solve using brute force of all possible
permutations and it is readily seen that the solutions are "crab"
and "bed". The solution is shown pictorially in Figure 6 as a
means of reinforcing that the correct solution was found or
perhaps as a hint. By themselves transposition codes are not
very secure as they can easily be solved with frequency analysis
and brute force techniques. However when combined with
substitution codes they form the basis for product codes which
are the most powerful cryptographic methods known[9].

 Perhaps the most well known example of a transposition cipher
is the rail fence. In the rail fence cipher the plain text is written
alternatively on successive "rails" of an imaginary fence. When
the end of the message is reached it is read off the rails in rows.
For example consider the plaintext string: "me gusta la gasolina
dame mas gasolina" or "megustalagasolinadamemasgasolina"
after removing the spaces. Putting the letters of the plaintext
into the railfence gives the result in Figure 7.

(a) P = ME GUSTA LA GASOLINA DAME MAS GASOLINA

(b) P = MEGUSTALAGASOLINADAMEMASGASOLINA

(c) MGSAAAOIAAEAGSLN (RAIL 1)
 EUTLGSLNDMMSAOIA (RAIL 2)

(d) C = MGSAAAOIAAEAGSLNEUTLGSLNDMMSAOIA

Figure 7. Illustration of the Railfence Cipher

Figure 7(a) shows the original plaintext (P) and Figure 7(b)
shows the plaintext with spaces removed. In Figure 7(c) the
letters of the plaintext are placed alternatively on two rails - first
the M on RAIL 1 and then the E on RAIL 2, etc. In Figure 7(d)
the second rail is concatenated at the end of the first rail
resulting in the ciphertext (C) shown. The R Language code for
implementing a railfence cipher is given in Figure 8.

FUNCTION RAILFENCE()
{
PLAINTEXT="MEGUSTALAGASOLINADAMEMASGASOLINA"
ASCII<-UTF8TOINT(PLAINTEXT)
LEN<-LENGTH(ASCII)
K=2
J=0:(LEN-1)
J<-J%%K
CIPHERTEXT<-NULL
FOR (I IN 0:(K-1)) {
CIPHERTEXT<-C(CIPHERTEXT,ASCII[J==I])}
CIPHERTEXT=INTTOUTF8(CIPHERTEXT)
PRINT(CIPHERTEXT)}

FIGURE 8. R LANGUAGE PROGRAM FOR THE RAILFENCE CIPHER

 The R Language program in Figure 8 works as follows. The
plaintext input is first converted into the integer form of ASCII
code where the letter A=65, B=66, etc. Next the length of the
plaintext string is computed and the value of the key is specified
in this case K=2. A value of K=2 corresponds to 2 rails in the
railfence as illustrated in Figure 7. Each plaintext letter is then
assigned a unique integer value from 0 to the length of the
plaintext string minus 1. This vector is then divided by the
number of rails K (modulo K) which assigns each letter to a rail.

The railfence technique is very similar to the method of
assigning students into groups by counting off numbers (1 2 1
2 1 2) for two groups and (1 2 3 1 2 3) for 3 groups, etc. used
for example to place students who are friends with each other
in different groups. The R Language railfence program works
the same way. A vector index is created according to the key
and the length of the ciphertext string. In this case it would be
01010101010101... (the binary equivalent of "boy-girl-boy-
girl" seating arrangements). All plaintext letters of index=0 are
extracted from the plaintext then all letters of index=1 and the
two strings are concatenated together resulting in the ciphertext
string C= "mgsaaaoiaaeagslneutlgslndmmsaoia".

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation and
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Kingston, Jamaica. 6

Figure 9. Frequency of Letters in the English Language

D. Letter Frequency Analysis

In cryptanalysis, letter frequency analysis is the study of the
individual letters or groups of letters in a ciphertext[9]. The
method is used as an aid to breaking classical cipher. Frequency
analysis is based on the fact that, in any given sample of written
language, certain letters and combinations of letters occur with
different frequencies. For instance, given a sample of English
language, E, T, A and O are the most common letters while Z,
Q and X are least common. The 12 most common letters in
typical English language text are: ETAOINSHRDLU with E
being the most common letter at 12.8%. An R Language
program for letter frequency analysis is given in Figure 10.

function letter_frequency_analysis()
{
ciphertext="leoxy cksboc"
ascii<-utf8ToInt(ciphertext)
hist(ascii, breaks = (97:123)-.5)
count<- hist(ascii, breaks = (97:123)-.5, plot = FALSE)
print(ciphertext)
print(count)
}

Figure 10. R Language Program For Letter Frequency Analysis

 The R language program in Figure 10 makes use of the built-
in histogram function hist(). However just using hist() by itself
will not give the desired results you have to specify the breaks
with a granularity that includes exactly one letter in each bar in
the resulting histogram by specifying: breaks = (97:123)-.5
which is a vector = (96.5, 97.5, 98.5,.......122.5). So the first bin
of the histogram will count the number of 97s (a's), and the
second bin will count the number of b's, etc.

Frequency analysis is a commonly used tool in cryptanalysis[9].
To use it to break a caesar cipher one performs a frequency
analysis of the ciphertext and compares it with the frequency
graphic in Figure 9. The letter in the ciphertext that has the
highest frequency is likely to be an "e" in the plaintext. Based
on that information you guess the key matching the most
frequent characters in the ciphertext to the most frequent
characters in the English (or whatever) language. Figure 11
shows the result of the frequency analysis program on the
ciphertext C = "leoxyc ksboc".

Figure 11. Letter Frequency of "leoxyc ksboc"

 As can be seen from Figure 11 the most frequent letters are
ascii 99 (c) and 111 (o) which corresponds to caesar cipher
shifts of K=23 and K=10. Since "e" (ascii 101) is the most
frequent letter in the alphabet the most likely possibility is that
the encryption key K=10 since 101(e)+10=111(o). Applying a
shift of -10 to ciphertext = "leoxyc ksboc" shows that our
intuition was correct resulting in plaintext P = "buenos aires" as
"l" =12 shifts by -10 to b=2, etc.. With letter frequency analysis
the code was cracked on the first try as opposed to the brute
force approach in Figure 5 which had to try all 26 keys.

Frequency analysis doesn't always work especially on such a
small sample of ciphertext but it does work most of the time.
For this case we were able to crack the code after one guess
which is typical for a caesar cipher. However in general a more
systematic method is needed whereby the frequency analysis is
used to prioritize the order of the brute force search[9]. Using a
brute force approach as illustrated in Figure 5 can work for
small keyspaces but does not scale well for large keyspaces. For
the monoalphabetic substitution cipher (a minor variation of
the caesar shift cipher) it could take around 1000 years to crack
the code even when testing 1 million keys per second[9].
However if letter frequency analysis is used it is possible to
reduce this time to a matter of seconds or minutes[9].

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation and
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Kingston, Jamaica. 7

Figure 12. Most Common Passwords from 2014

E. PASSWORD CRACKING

 Passwords are not stored on most computers for security
reasons[9]. The reason is because if someone accessed your
computer over a network and stole your password file they
would easily be able to break into your computer. To prevent
this from happening a password hash is usually stored instead
of the password itself[9]. A cryptographic hash of a text string
or a file is like a fingerprint of that data[9]. A hash is also a one-
way function in that it does not have an inverse that can be
computed directly[9].

If someone steals your password file they will have the hash of
your password and there is no simple way they can calculate
your password from the hash. The brute-force method to get the
password is to hash every possible password until you find a
match. Figure 12 shows the most common passwords from
hacked websites. Skull security[16] maintains a website where
many of these cracked password lists (for example "rockyou")
can be downloaded. NCL challenges in past years have
historically involved various forms of password hacking[10].
Typically you are given the hash of a password and you have to
find the password. You are also given a subtle hint as to where
the password might be found among all the famous hacked
password lists on the internet [16]. The solution technique is to
download the password list and store it in a text file for example
"pw.txt". Next import the file into the R Language and compute
the hash of every password on the list until you find a match.
When you do find a match the password will be the password
that generated the matching hash (see Figure 13).

function password_crack()
{
 pwhash<-"f402749fb2d2a4f7092e67f9ee11
 a3b706a64e274d9c85fcc80b9076b4025e37"
 mydata<-scan("pw.txt", what=character(0))
 password<-as.matrix(mydata)
 hashval<-NULL
 n<-nrow(password)
 for (i in 1:n){
 tmp <- hash(charToRaw(password[i]))
 hashval <- bin2hex(tmp)
 if(hashval==pwhash)
 print(c("success: password=",password[i]))
 }}

Figure 13. R Language Program to Crack Passwords

 V. Going Beyond The Basics

 The R Language programs in this paper were only able to
explore the basic concepts of cybersecurity. However these
programs do provide a starting point for exploring more
advanced concepts. For example there are many other types of
cipher methods that were not discussed both substitution codes
and transposition ciphers. Many of these can be implemented
by modifying the code that has already been created (for
example ATBASH cipher[9], ROT13 cipher[9], etc.). Once the
basic concepts have been introduced the students should be
given one or more challenge problems. These challenges can be
explored without an overbearing amount of effort to modify the
code. For example one challenge problem would be how to
determine from the frequency analysis which keys are most
likely to crack the code. There are many ways of doing this but
the optimal method is not obvious and could easily be the basis
for a Master's or Ph.D. thesis.

R is a very powerful language that provides many tools for
statistical analysis and data mining[12]. R is supported by a
worldwide community that provides hundreds if not thousands
of add-in packages[12] most of which are of very specialized
use (for example in bioinformatics) and not particularly useful
for cybersecurity. However there are some add-on packages
that can be very useful[12]. For example the Sodium package
gives a wide variety of hash functions and utilities for public
key cryptography. Use of this package or other similar utility
would greatly extend the capabilities of R for NCL or other CTF
challenges[10][11].

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation and
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Kingston, Jamaica. 8

Another useful R Language package would be one that provides
spell checking utilities (such as hunspell) which can be
extremely useful in cryptanalysis[12]. We have already
discussed two types of cryptanalysis (brute force and frequency
analysis) unfortunately these techniques by themselves can be
very awkward, tedious and time consuming by themselves.
Students should be challenged to improve on these
cryptanalytic techniques by making them more automatic. The
goal is that the user should be able to enter a sample of
ciphertext and the program will automatically return the
corresponding plaintext without tedious manual trial and error.

function ()
{
library(hunspell)
words <- c("laccei", "engineering", "school")
hunspell_check(words)
}

[1] FALSE TRUE TRUE

Figure 14. Using the Hunspell Spell Checking Program

One method of doing this is with a spellchecker such as the
hunspell spell checking program as illustrated in Figure 14.
Figure 14 shows the hunspell algorithm processing a vector of
words including "laccei", "engineering" and "school". The
result is a logical vector that is TRUE if the word is spelled
correctly and FALSE if spelled incorrectly. In the example
"laccei" is detected as a misspelled word (FALSE) because it is
not in the hunspell dictionary whereas "engineering" and
"school are correctly identified as spelled correctly (TRUE).

Figure 5 illustrated that in a brute force cryptanalysis the result
of every key is printed out which could print a lot of
meaningless ciphertext. A much improved technique is to take
each decrypted ciphertext from Figure 5 and filter it through the
hunspell spelling checker as illustrated in Figure 14. If the result
of hunspell is TRUE then print out the resulting text and you
will find the plaintext "buenos aires" after trying the first 11
keys. Of course this approach only works if the plaintext you
are looking for is written in the same language (English,
Spanish, etc.) as the spellcheck dictionary being used.

There may be a few false positives as ciphertext can sometimes
coincide with a valid word in English or Spanish. There can also
be false negatives if the message contained a typographical
error (as in the famous example of the message sent by Lt. John
F. Kennedy from PT-109 during World War II)[9]. This is all
part of the cryptography experience that the student can learn
by solving cryptographic challenges.

V. DISCUSSION

When participating in a CTF such as NCL the competition
is limited to around 48 hours therefore time is of the essence.
Some challenges can be solved easily with pencil and paper and
yet others can be solved with online resources for example the
Simon Singh black chamber[22]. But there are more difficult
challenges that cannot be solved with online calculators. In
those cases it may be necessary to write a program to assist in
searching for the solution. For example in a recent NCL
competition a file of 10,000 signed messages was provided and
the challenge was to identify which one of the 10,000 messages
had a valid signature. This is typical of the "needle in the
haystack" type of problems found on the NCL that cannot be
solved by hand. By the end of the competition students with the
highest scores will be given gold, silver or bronze status. To get
into the gold bracket it is essential to be able to write computer
programs to help find the solutions.

VI. SUMMARY AND CONCLUSIONS

 For most electrical and computer engineering students
intermediate programming is a required course. Typical topics
taught are advanced array operations, reading data from files,
writing data to files, string conversions, string manipulations,
pointers, searching, sorting of data and numerical methods. It
was observed that the topics taught in intermediate
programming were very well matched with the cybersecurity
programming tasks needed for CTF competitions. Long the
realm of graduate courses cybersecurity is gradually beginning
to trickle down to the undergraduate level.

Educators should do their best create learning experiences
that the student can relate to for example by incorporating
popular culture into the teaching materials. Judicious choice of
teaching material can spell the difference between engaging or
not engaging the interest of the student. One method for
improving student engagement would be to provide evidence
that they are learning a skill that will in the long run be useful
to them in some way. Many cybersecurity concepts can be
introduced and learned using techniques suitable for
intermediate programming classes. The intent is to create
learning experiences that inspire the students to be self-
motivated out of their own curiosity and desire to learn.

 It should be clear that there is nothing inherently wrong with
the current approach to the teaching of intermediate
programming. This paper presents an alternative based on the
premise that it might be more stimulating to the intellectual
curiosity of the student if the theme revolved around concepts
in cybersecurity. Some of this material might equally be applied
to some extent in an introductory first course in programming
however cybersecurity makes use of advanced techniques more
suitable for application in intermediate programming courses.

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation and
Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Kingston, Jamaica. 9

REFERENCES

[1] R.M. Felder and R. Brent, "Active Learning: An
Introduction." ASQ Higher Education Brief, 2(4), August
2009.

[2] Yacob, A. and Saman, M., "Assessing Level of Motivation
of Learning Programming Among Engineering Students",
Frontiers in Education Conference (FIE) 16(3), 2006, p. 211-
227.

[3] Cobb, S. (2016). Mind This Gap: Criminal Hacking and
the Global Cybersecurity Skills Shortage, a Critical Analysis.
Retrieved from
https://www.virusbulletin.com/uploads/pdf/magazine/2016/V
B2016-Cobb.pdf.

[4] Brown, Dan, The Da Vinci Code (1st ed.), US: Doubleday,
April 2003, ISBN 0-385-50420-9.

[5] Dunin, Elonka (2009). "Kryptos: The Unsolved Enigma".
In Daniel Burstein & Arne de Keijzer (editors). ISBN 978-0-
06-196495-4.

[6] Leune, K., & Petrilli, S. J. 2017). Using Capture-the-Flag
to Enhance the Effectiveness of Cybersecurity Education.
Proceedings of the 18th Annual Conference on Information
Technology Education - SIGITE 17.

[7] "NSA's GenCyber Reaches New Territories":
https://www.nsa.gov/news-features/press-
room/Article/1618775/nsas-gencyber-reaches-new-territories/

[8] Tobey, D. H., Pusey, P., & Burley, D. L. (2014). Engaging
learners in cybersecurity careers. ACM Inroads, 5(1), 53-56.

[9] Stallings, W. "Cryptography and Network Security", ISBN
978-0-13-609704-4, Fifth Edition, Prentice Hall, 2011.

[10] National CyberLeague Regular Season:
https://www.nationalcyberleague.org/regular-season

[11] National Collegiate Cyber Defense Competition:
http://www.nationalccdc.org/

[12] Ihaka, R. and R. Gentleman (1996). "R: A language for
data analysis and graphics," Journal of Computational and
Graphical Statistics , 5 , 299-314.

[13] Bronson, G. (2010). C++ For Scientists and Engineers,
3rd edition, Course Technology/CENGAGE Learning.

[14] Zak, D. (2013) Programming with Microsoft Visual Basic
2012, Course Technology/CENGAGE Learning.

[15] Seitz, J. "Black Hat Python: Python Programming for
Hackers and Pentesters", ISBN 978-1-59327-590-7, No Starch
Press, 2015.

[16] Skull Security Hacked Password Repository Website:
https://wiki.skullsecurity.org/Passwords

[17] Grace Hopper 2018 Conference @ Anita B.ORG:
https://ghc.anitab.org/ghc-18/

[18] Zodiac Killer Ciphers:
http://www.zodiackillerciphers.com/

[19] ASCII code: https://en.wikipedia.org/wiki/ASCII

[20] UNICODE: https://en.wikipedia.org/wiki/Unicode

[21] UTF-8: https://en.wikipedia.org/wiki/UTF-8

[22] The Simon Singh Black Chamber (www.simonsingh.net/
The_Black_Chamber/chamberguide.html).

