
17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica.
1

Practical approach of digital filtering applications

invariant to time, for Digital Signal Processing course

Pedro Huamaní-Navarrete, Dr
Ricardo Palma University, Peru, phuamani@urp.edu.pe

Abstract– In this article, it is presented a practical approach to

time-invariant digital filtering applications, through the design and

development of a graphic user interface using the GUIDE tool and

the Toolbox Signal Processing from the MATLAB software

(version 2018). The importance of this work will be to provide

students and professors of the Digital Signal Processing course, in

the Electronics Engineering and Mechatronics Engineering

careers, of the Ricardo Palma University in Lima-Peru, with an

interactive tool to improve the teaching and understanding of the

subject of digital filtering, allowing to choose from a total of 20

real signals sampled at 44100 Hz., such as voice, medical signal,

music, among others, and using multiple options of filter types,

cut-off frequencies, noise types, graphic representation of time and

frequency, up to the sound reproduction of the signals before and

after the filtering stage.

Keywords— digital filters FIR, digital filter IIR, real signals,

MATLAB GUIDE.

I. INTRODUCTION

Digital Signal Processing is a discipline that has become

one of the main subjects of many engineering careers at the

undergraduate and graduate levels. This is due to the need to

digitally process signals coming from the real world such as

voice, music, various animal sounds, videos, medical images,

sonar and radar signals, seismic signals, medical signals such

as EEG (Electroencephalogram), ECG (Electrocardiogram),

EMG (Electromyogram), etc.; where, in most situations, the

objective is the application of a digital filter to reduce the

noise, separate signals in frequency bands, store and transmit

digital signals, apply frequency transformation algorithms such

as FFT (Fast Fourier Transform), DCT (Discrete Cosine

Transform), DWT (Discrete Wavelet Transform), among

many other applications that today are part of our daily basis

usage of technology. To give an example, a cellphone which is

able to perform voice recognition, face recognition, fingerprint

recognition, as well as store audio, images and video files in

compressed formats, plus additional applications that make life

easier for the user.

 Taking into consideration that the number of applications

of digital signal processing is high, in this article it was

decided to show the design procedure of a graphical interface

for the application of time-invariant digital filters of the

recursive type (IIR) and non-recursive type (FIR), and use it

on a group of 16 signals digitized using the same sampling

frequency. To do this, we used the MATLAB software

(version 2018), functions and code examples from the Toolbox

Signal Processing [7], the GUI Graphical Interface feature of
the software itself, and the vast experience of this article's
author on the subject of digital filtering; all of this with the

objective of better showing the results of applying filters on

real signals, and help the students achieve a greater

understanding of the subject during the hours of laboratory

class with the MATLAB. In contrast, there are other works

done with the LabVIEW software [10] that are improving

access to the real world, but depending on an independent

hardware and with a certain resemblance to the programming

made in MATLAB’s Simulink.

 While it is true that the technology that makes use of

digital signal processing depend on hardware devices such as

FPGA (Field-Programmable Gate Array), DSP (Digital Signal

Processor) and Raspberry Pi, it is also important to note that

its implementation requires a medium to advance level of

knowledge in a programming language, specifically C++. This

can be confirmed in works [2] and [9]. For this reason, this

article shows the procedure of implementing a graphical

interface developed in the MATLAB software, which would

be most suitable for professors to present during any

simulation classes performed in a laboratory, as it would also

imply ease for the students at the moment of choosing the type

of filter, the type of signal, and to appreciate the respective

frequency spectrums and sound reproduction after the filtering

stage. In this way, a greater interest, understanding and

performance in the students of the subject of Digital Signal

Processing in the Electronics Engineering and Mechatronics

Engineering careers of the Ricardo Palma University in Lima-

Peru would be achieved.

 Therefore, for the understanding of this work, three

important sections have been included. The first one referring

to the selection of digital signals and filters used in the

developed graphical interface, where the programming codes

for re-sampling of the signals are included,

the design and frequency representation of the invariant filters

at the time. Then, the second section refers to the development

of the graphical interface using the Matlab software GUI,

where the programming used for the three designed panels is

described. And, as a final session, the results of the simulation

are shown, with four particular cases.

II. SELECTION OF SIGNALS AND DIGITAL FILTERS

A. Selection of digital signal

In order to show the practical application of the digital
filtering operation in this article, we chose a group of 20
digitized signals with different sampling frequencies: 8000,
11025, 22050 and 44100 samples per second, and compressed

Digital Object Identifier (DOI):

http://dx.doi.org/10.18687/LACCEI2019.1.1.293

ISBN: 978-0-9993443-6-1 ISSN: 2414-6390

mailto:phuamani@urp.edu.pe

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 2

in two file formats: WAV and MP3. Also, this group of signals
was chosen from different internet websites but prioritizing the
variety among them. However, due to the different sampling
rate that was used in the digitization of each of them, we
proceeded to standardize them at a sample rate of 44100
samples per second due to it being the highest frequency of the
selected group, and to avoid the presence of aliasing. This
signals are: sine/cosine 2 Khz, man’s voice, music, happy
birthday, ECG signal, EEG signal, sonar signal, bird sound,
cockcrow, applause sound, dolphin sound, siren noise, cars
noise, bells noise, telephone ring, helicopter propellers,
ambulance siren, crying baby, train sound and barking dog.

Additionally, to read the content and sampling frequency
of the WAV and MP3 files, commonly used lines of code were
called [7]; afterwards, the sampling frequency of some signals
was changed with the RESAMPLE command [7], and then
stored in a single file SENHALES.MAT together with the
single sampling frequency and the time variable that
corresponded to 3 seconds of duration. To do this, in some
situations the size of the data vector had to be reduced.

>> [telephone, Fs1] = audioread('telephone.wav');

>> [bells , Fs2] = audioread('bells.mp3');

>> [sonar , Fs3] = audioread('sonar.wav');

>> [cockcrow , Fs4] = audioread(cockcrow.mp3');

>> [voice , Fs5] = audioread('voice.wav');

Fs5 =

 8000

>> size(voice)

ans =

 24000 1

>> voice = resample(voice , 44100 , Fs5);

>> size(voice)

ans =

 132300 1

>> save senhales telephone bells sonar cockcrow voice

B. Selection of time-invariant digital filters

The time-invariant digital filters were selected of the FIR
type (finite impulse response) or non-recursive, and IIR
(infinite impulse response) or recursive. This choice was made
due to the ease of its design and based on the commands or
functions offered by MATLAB’s Toolbox Signal Processing.

In the case of the design of the FIR filters, the FIR1
command was used, which allowed it to be designed through
the windowing method. That means, starting from the fact of
knowing the order of the filter, the sampling frequency and the
type of window. Also, from the point of view of functionality,
the option of selecting any of the following types of non-
recursive filters was added: Low-Pass, High-Pass, Band-Pass
and Band-Stop, all using an order number equal to 80, a
window Hamming type, and a Sampling Frequency of 44100
Hz as used in the digitized signals. The mathematical
expression (1) represents, in a general way, the transfer

function of the FIR filter [1], [4]. Where b0, b1, b2, b3, …, b80,
are the transfer function coefficients of non-recursive digital
filter. For this, FIR1 command of the Signal Processing
Toolbox was used; thus, filter design is Window-based finite
impulse response [7].

80

80

3

3

2

2

1

10 ...)(zbzbzbzbbzH (1)

>> help fir1

 Coeff = fir1(N , Fcuttoff , 'ftype' , window)

Where “N” variable is the number of filter delays,
“Fcutoff” is cut-off frequency as scalar variable or vector
variable, and “ftype” is filter’s type name. In the case
“window” variable, hamming window used by default. And
“coeff” variable is a row vector containing the N+1
coefficients of an order “N” FIR filter. In addition, it is
necessary to clarify that the filter designed is Type I, because
N is odd and “coeff” vector is symmetric.

Following, as an example, the code used to design and
display the magnitude of a Low-Pass filter with a cut-off
frequency of 2 kHz, and a Band-Pass filter with cut-off
frequencies of 4 kHz and 8 kHz are shown; using the content
of the website as a guide and reference [7]. This are shown in
Fig. 1 and 2.

>> Fs = 44100;

>> N = 2^17;

>> order = 80;

>> Fcutt1 = 2000;

>> window = hamming(order + 1);

>> B1 = fir1(order , Fcutt1 / (Fs/2) , window);

>> [H1 , F] = freqz(B1 , 1 , 'whole' , N , Fs);

>> mH1 = 20*log10(abs(H1));

>> figure(1),

>> plot(F(1:N/2000) , mH1(1:N/2))

>> Fcutt2 = [4000 8000];

>> B2 = fir1(order , Fcutt2 / (Fs/2) , window);

>> [H2 , F] = freqz(B2 , 1 , 'whole' , N , Fs);

>> mH2 = 20*log10(abs(H2));

>> figure(2),

>> plot(F(1:N/2000) , mH2(1:N/2))

>> xlabel(' Frequency (KHz) '),

>> ylabel(' Magnitude (dB) '), grid

On the other hand, for the case of the design of the IIR
filters, the BUTTER command was called, which uses a
designing based on the approximation of the Butterworth
analog function. That is, starting from the fact of knowing the
order of the filter and the sampling frequency. Also, from the
functionality point of view, the option to select any of the
following types of recursive filters was added: Low-Pass,
High-Pass, Band-Pass and Band-Stop, all using the order
number equal to 8, and a Sampling Frequency of 44100 Hz.

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 3

Fig. 1. Magnitude of the Low Pass filter with a cut-off frequency of 2 KHz.

Fig. 2. Magnitude of the Band-Pass filter with cut-off frequency of 4 and 8

KHz.

The mathematical expression (2) represents, in a general
way, the transfer function of the IIR filter [1], [4]. Where b0,
b1, b2, b3, …, b8, a1, a2, a3, …, a8, are the transfer function
coefficients of recursive digital filter.

 8

8

3

3

2

2

1

1

8

8

3

3

2

2

1

10

...1

...

)(

)(
)(

zbzazaza

zbzbzbzbb

zX

zY
zH (2)

For this, BUTTER command of the Signal Processing
Toolbox was used. This Matlab function designs a Butterworth
IIR digital filter using the specifications supplied [7].

>> help butter
 [NUM , DEN] = butter(N , Fcutoff , 'ftype');

Where “N” variable is the number of filter delays,
“Fcutoff” is cut-off frequency as scalar variable or vector
variable, “ftype” is filter’s type name. In addition, “NUM” and
“DEN” variables return the filter coefficients in length “N+1”
vectors for numerator and denominator, respectively. These
coefficients are listed in descending powers of Z.

Likewise, two types of filters were added, called All-Pass
filter and Notch filter, both of order 2 and with a straight
design from a mathematical expression [8]. In the
mathematical expressions (3), a1 and a2 are positive
coefficients smaller and equal to 1. These allow to place the
poles inside the unit circle and to have stable All-Pass filters.
On the other hand, in the mathematical expression (4), the G
variable is chosen so that gain at low frequencies is unity, wo
variable is the center frequency for Notch filter design, and r

variable is radial distance 0 ≤ r <1. If it is close to the unit
circle, the frequency response in deeper and narrower in width
[13].

) 1(*) 1(

 *

)(

)(
)(

1

2

1

1

1

2

1

1

zaza

zaza

zX

zY
zH (3)

 221

0

21

0

)cos(21

)cos(21

)(

)(
)(

zrzwr

zzw
G

zX

zY
zH

 (4)

Then, as an example, the code used to design and display
the magnitude of the following recursive filters [7] is shown:
High-Pass with cut-off frequency of 7 kHz, All-Pass and
Notch filter with a center frequency of 5 kHz. This is shown in
Figs. 3, 4 and 5, respectively.

>> Fs = 44100;

>> N = 2^17;

>> order = 8;

>> Fcutt1 = 7000;

>> [B1 , A1] = butter(order , Fcutt1 / (Fs/2) , 'high');

>> [H1 , F] = freqz(B1 , A1 , 'whole' , N , Fs);

>> mH1 = 20*log10(abs(H1));

>> figure(3),

>> plot(F(1:N/2000) , mH1(1:N/2))

Fig. 3. Magnitude of the High-Pass filter with a cut-off frequency of 7 KHz.

>> a1 = 0.2;

>> a2 = 0.7;

>> B2 = conv([-a1 1] , [-a2 1]);

>> A2 = conv([1 -a1] , [1 -a2]) ;

>> [H2 , F] = freqz(B2 , A2 , 'whole' , N , Fs);

>> mH2 = 20*log10(abs(H2));

>> figure(4),

>> plot(F(1:N/2000) , mH2(1:N/2))

>> axis([0 Fs/2000 -350 50])

>> Fc = 5000;

>> G = 0.85;

>> r= 0.85;

>> wo = (2*pi)*(Fc / Fs);

>> B3 = G*[1 -2*cos(wo) 1];

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 4

>> A3 = [1 -2*r*cos(wo) r*r];

>> [H3 , F] = freqz(B3 , A3 , 'whole' , N , Fs);

>> mH3 = 20*log10(abs(H3));

>> figure(5),

>> plot(F(1:N/2000) , mH3(1:N/2))

>> xlabel(' Frequency (KHz) '),

>> ylabel(' Magnitude (dB) '), grid

>> axis([0 Fs/2000 -100 10])

Fig. 4. Magnitude of the All-Pass filter.

Fig. 5. Magnitude of the Notch filter with a center frequency of 5 KHz.

As shown in Fig. 4, the All-Pass filter passes the
frequencies in their entirety. While in Fig. 5 the Notch filter
passes all frequencies except that of 5 KHz.

III. DEVELOPMENT OF THE GRAPHICAL INTERFACE

For the design and development of the graphic interface,
the GUIDE tool (Graphical User Interface Development
Environment) was used, which improves the interaction with
the student by using object-oriented programming and friendly
interfaces composed of buttons, text fields, selection boxes,
among others. This paper has taken as reference a work of
graphic interface with Matlab for images [11], [12].

In this way, the GUIDE tool made it possible to design a
GUI (Graphical User Interface) in an easy and appropriate
way, reducing the programming task to the degree of selecting,
dragging and customizing properties [5]. Therefore, to develop
the graphic interface of this proposal, objects such as Push
Button, Radio Button, Button Group, Check Box, Pop-up

Menu, Axes, Edit Text, Static Text, Toggle Button and Panel
were used [6]. Next, a block diagram of the simulation
graphical interface is shown. In this diagram, there is 3 blocks
mains that working one after one. Then, every block main has
some options. The first block allows to select one of the 20
signals, as well as to add or not two types of noise. In addition,
in this block, there is the option of playing the audio of the
chosen signal and see time or frequency graph. The second
block allows filter select and see graphics on the frequency.
And, the third block allows to select the graph of the filtered
signal in the time domain or the frequency. See Figs. 6a, 6b
and 6c.

(a)

(b)

(c)

Fig. 6. Diagram of the Graphical Interface for Filtering Digital. a) First block.

b) Second block. c) Third block.

Signal select:

Voice, Sonar,

Cockcrow,

EEG, ECG,

Telephone

ring, etc.
Noise B

Noise A

INPUT

SIGN

PANEL

FIRST BLOCK

PLAY: listen to

selected signal.

Play

Time

Frequency

GRAPH: see selected

signal graphic.

Play

Frequency

IIR filter

FIR filter

GRAPH: see selected

filter graphic.

Play

DIGITAL

FILTER

PANEL

 SECOND BLOCK

Filter select:

Low Filter,

High Filter,

Notch Filter,

etc.

 THIRD BLOCK
Time

Frequency

GRAPH: see filtered

signal graphic.

GRAPHIC

PANEL

PLAY: listen to

selected signal.

Play

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 5

A. Input Signal Panel

In this panel three elements were inserted, a Pop-up Menu
and two Check Boxes. The Pop-up Menu was loaded to list the
16 real signals sampled at 44100 Hz, with the purpose of
choosing one of them for the application of digital filtering.
Once the desired signal was chosen, the interface proceeds to
plot it as a time function in the first Axes. On the other hand,
the Check Boxes were used to choose the options of White
Noise and/or 1 kHz Tone that can be added to the real signal,
chosen from the Pop-up Menu. This allowed observing the
performance of the digital filters in the presence of two noises
mixed with the original signal, one of the random types and the
other deterministic. An example of the SINE/COSINE
selection with White Noise is shown in Fig. 7a, and Fig. 7b
shows the graph of that signal, which in turn can be
reproduced by clicking on the Push Button labeled PLAY.

Fig. 7. a) Input Signal Panel of the GUI developed in MATLAB. b)
Graph of the chosen signal in time.

Prior to the real signal being selected via the Pop-up Menu,
it is necessary to open and read the file SENHALES.MAT.
Then, the variable corresponding to the chosen signal is
assigned to a global variable. To do this, the variables "x"
(filter input signal), "y" (filter output signal), "B" (vector with
the numerator coefficients of the filter transfer function), and
"A" (vector with the coefficients of the denominator of the
filter transfer function) were globally declared in the function
OpeningFcn. Next, the MATLAB code used for such a case is
shown.

function P_OpeningFcn(hObject, eventdata, handles, varargin)

 global x;

 global y;

 global A;

 global B;

Then, the following program code consisting of 20 "case"
was entered into the Callback function of the Pop-up Menu.

global x

Fs = 44100;

N = 2^17;

F = linspace(0 , Fs , N);

inf = get(hObject,'Value');

axes(handles.axes1);

load senhales

RB = get(handles.checkRB,'Value');

TONE = get(handles.checkTONE,'Value');

switch inf

 case 1

 x=tone+RB*wgn(length(t),1,0)/5+ …

 TONE*cos(2*pi*1000*t); x = x(1:1470);

 plot(t(1:1470) , x), axis([0 1470/Fs -2.5 2.5])

 xlabel('Time (milli-seconds)'), ylabel('Volts')

 case 2

 x=voice+RB*wgn(length(t),1,0)/5+ …

 TONO*cos(2*pi*1000*t);

 plot(t , x),

 xlabel('Time (seconds)'), ylabel('Volts')

 . . .

 case 20

 x=train+RB*wgn(length(t),1,0)/5+ …

 TONO*cos(2*pi*1000*t);

 plot(t , x),

 xlabel('Time (seconds)'), ylabel('Volts')

end

B. Digital Filter Panel

In this panel eight objects were inserted, a Pop-up Menu,
two Static Text, two Edit Text, two Radio Button and a Button
Group that participated as a container for the Radio Button. In
this way, the Pop-up Menu is able to list the 6 types of filters,
in order to choose one of them and apply it to the original
signal selected in the previous panel. Then, we continued with
the input of the cut-off frequency or frequencies, depending on
the case. To represent the text "cut-off frequencies" two Static
Text were used, and to enter the numerical values of such cut-
off frequencies two Edit Text were used. Likewise, two Radio
Buttons were used to allow the selection of the type of filter
between FIR and IIR.

Therefore, in the case of the FIR filter, the choice of the
Low Pass, High Pass, Bandpass and Bandpass filters were
allowed, while in the case of the IIR filter, two more known
filters, such as All-Pass and Band-Stop, were additionally
allowed.

Once the type of filter was selected from the Pop-up Menu
of the DIGITAL FILTER Panel, the frequency response in
magnitude in the central Axes was plotted. Said graph was
made from 0 to half the sampling frequency. Fig. 8 shows the
choice of a FIR Band-Pass filter with cut-off frequencies of 4
kHz and 7 kHz, from the DIGITAL FILTER Panel; and, Fig. 9
represents the frequency spectrum of the selected filter
magnitude.

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 6

Fig. 8. Digital Filter Panel GUI developed in MATLAB.

Then, with the choice of the input signal and the type of
filter, the filtering operation will proceed. Afterwards, the
result of said operation will be visualized as a function of time
in an Axes type object; and in turn, it will be possible to
reproduce said signal by clicking on the Push Button labeled
PLAY and located on the time graphic. See Fig. 10.

Fig. 9. Frequency spectrum of the magnitude of the selected filter.

Fig. 10. Temporal representation of the filtered signal.

Next, part of the program code used in the Callback
function of the POPUPMENU labeled as POPURMENU3 is
shown. As extensive as this code is, it is only showing the
design cases of the low pass and high pass filters of both FIR
and IIR.

function popupmenu3_Callback(hObject, eventdata, handles)

 global A

 global B

 Fs = 44100;

 N = 2^17;

 F = linspace(0 , Fs , N);

 inf = get(hObject,'Value');

 Fc1 = get(handles.editFc1 ,'String'); Fc1 = str2double(Fc1);

 Fc2 = get(handles.editFc2 ,'String'); Fc2 = str2double(Fc2);

 axes(handles.axes3);

 switch inf

 case 1

 if get(handles.radioButtonFIR, 'Value') == 1

 order = 80;

 B = fir1(order , Fc1/(Fs/2) , 'low'); A = 1;

 else

 order = 8;

 [B,A] = butter(order , Fc1/(Fs/2) , 'low');

 end

 case 2

 if get(handles.radioButtonFIR, 'Value') == 1

 order = 80;

 B = fir1(order , Fc1/(Fs/2) , 'high'); A = 1;

 else

 order = 8;

 [B,A] = butter(order , Fc1/(Fs/2) , 'high');

 end

 case 3

 . . .

 end

 [H,F] = freqz(B , A , 'whole' , N , Fs);

tH = 20*log10(abs(H));

plot(F(1:N/2)/1000 , tH(1:N/2))

xlabel(' Frequency (KHz)'), ylabel('dB')

axis([0 Fs/2/1000 -100 10])

C. Graphics Panel

In this panel, two Toggle Buttons elements were inserted to
choose the type of graphic representation: time or frequency,
as long as the input signal and the digital filter to be used have
been selected. See Fig. 11.

Fig. 11. Graphics Panel of the GUI developed in MATLAB.

Next, the program code used in the Callback function of
the Radio Button labeled as TIME is shown.

function radioButtonT_Callback(hObject, eventdata, handles)

 global B; global A;

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 7

 global x; global y;

 set(handles.radioButtonF, 'Value' ,0);

 Fs = 44100; N = 2^17;

 y = filter(B,A,x);

 axes(handles.axes2);

 M = max(y); m = min(y);

 t = linspace(0 , length(y)/Fs , length(y));

 plot(t , y)

 axis([0 length(y)/Fs 1.25*m 1.25*M])

 xlabel('Time (milli-seconds)')

 ylabel('Volts')

 axes(handles.axes1);

 M = max(x); m = min(x);

 plot(t , x),

 axis([0 length(x)/Fs 1.25*m 1.25*M])

 xlabel('Time (milli-seconds)'),

 ylabel('Volts')

On the other hand, the program code used in the Callback
function of the second Radio Button labeled as FREQUENCY
was the following:

function radioButtonF_Callback(hObject, eventdata, handles)

 global B; global A;

 global x; global y;

 set(handles.radioButtonT, 'Value' ,0);

 Fs = 44100;

 N = 2^17;

 y = filter(B,A,x);

 ty = 20*log10(abs(fft(y,N)/N));

 F = linspace(0 , Fs, N);

 axes(handles.axes2);

 plot(F(1:N/2000) , ty(1:N/2)),

 axis([0 Fs/2000 -100 2])

 xlabel('Frequency (KHz)'),

 ylabel('dB')

 tx = 20*log10(abs(fft(x,N)/N));

 F = linspace(0 , Fs, N);

 axes(handles.axes1);

 plot(F(1:N/2000) , tx(1:N/2)),

 axis([0 Fs/2000 -100 2])

xlabel('Frequency (KHz)'), ylabel('dB')

IV. SIMULATION RESULTS

In order to visualize the results of the application of digital
filters type FIR and IIR, 5 signals were chosen random:
SONAR SIGNAL, TELEPHONE RING, COCKCROW,
APPLAUSE SOUND and TRAIN SOUND, then the program
allows to choose the signal to be filtered with or without added
noise, followed by the choice of the type of filter with its
respective cut-off frequency or frequencies, and finishing with
the selection of the graphic form between time or frequency.
Additionally, the chosen signal can be reproduced before and
after being filtered.

A. First simulation

To the chosen SONAR SIGNAL, a white noise is added.
Then, a Low-Pass IIR type filter is selected with a cut-off
frequency of 4 kHz, and the Push Button labeled
FREQUENCY is clicked to visualize the result in the
frequency domain. See Fig. 12.

B. Second simulation

A TELEPHONE RING signal is chosen with no noise is
added. Then, the Band-Pass FIR type filter is selected with
cut-off frequencies of 2 and 3 kHz, and a click on the Push
Button labeled FREQUENCY to visualize the result in the
frequency domain. See Fig. 13.

Fig. 12. First simulation complete graphic interface.

Fig. 13. Second simulation complete graphic interface.

C. Third simulation

To the chosen COCKCROW signal, a one-tone noise is
added. Then, a High-Pass FIR type filter with cut-off
frequency of 4.5 kHz is selected, and a click on the Push
Button labeled TIME shows the result in the time domain. See
Fig. 14.

D. Fourth simulation

To the chosen APPLAUSE SOUND signal, a one-tone
noise is added. Then, the Notch IIR type filter is selected with
a central frequency of 1 kHz, and the Push Button labeled
FREQUENCY is clicked to visualize the result in the
frequency domain. See Fig. 15.

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 8

Fig. 14. Third simulation complete graphic interface.

Fig. 15. Fourth simulation complete graphic interface.

E. Fifth simulation

To the chosen TRAIN SOUND signal, a white noise is
added. Then, All-Pass type filter is selected, and the Push
Button labeled FREQUENCY is clicked to visualize the result
in the frequency domain. See Fig. 16.

Fig. 16. Fifth simulation complete graphic interface.

Thus, in the hours of laboratory class, the students of the
Digital Signal Processing subject of the Electronic Engineering
and Mechatronics Engineering careers of the Ricardo Palma
University, Lima - Peru, would be able to perform digital
filtering simulations with real signals, observing the time and
frequency graphs, and listening to the result of the application

of the different filters. This would allow to improve the
understanding of this topic, as well as giving the users a source
code that can be expanded and manipulated by themselves to
add new signals of their own interest.

DISCUSSIONS
The graphic interface developed and presented in this

article shows certain limitations. Among them, the choice of a
fixed order number for the FIR and IIR filters, which restricts
the student to observe and compare the performance of digital
filtering, when the number of delays increases or decreases.
The order 80 for the FIR filter and 8 for the IIR filter were
taken randomly, without going over doing the computational
effort generated at the time of the filtering operation. Another
limitation is related to the designation of a fixed sampling
frequency equal to 44100 Hz, this prevents visualizing the
presence of aliasing at the time of digital filtering. Also, the
design procedure was restricted to using the windowing
method for the FIR filters, particularly the Hamming window
since it presents an adequate frequency response and is the
default option when using the FIR1 function of MATLAB [3],
[7]. In the same way, the design procedure for the IIR filters
was based on the approximation of the analog function,
particularly using the Butterworth function due to its flat
response in the passing band and being able to avoid the use of
attenuation data at while using the BUTTER function of
MATLAB [3], [7].

However, this first version developed by the author can be
improved, fixing with the limitations mentioned above, as well
as others of great interest that would arise as a
recommendation of other teachers, or of the students enrolled.

On the other hand, the use of this computer tool provides
substantial benefits in the teaching-learning process,
because it will allow students to visualize and hear the result of
the application of digital filters using real signals.
This in turn will allow, that the evaluations of practices and
exams are not only limited to mathematical analysis, but also
to a practical observation using graphic representations of the
frequency spectrum, both for the digital filter and for the signal
of entry and exit of the same. In this way, the understanding of
digital filtering applications would be further improved, taught
in the laboratory classes of the subject digital signal
processing, thus allowing an increase in the level of education
and with it a probable increase in the result of the grades.

CONCLUSIONS

The developed graphic interface will allow the teacher of
the subject to teach its use in a practical and direct way,
with the possibility that he himself or the students themselves,
are in the capacity to extend or complement part of the
programming code, according to the desired interest.

Likewise, the selection of 20 real signals to apply digital
filtering operations was adequate because it will allow the
student to observe and hear to the attenuation of a frequency

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 9

range or bands, giving the developed interface an interactive
characteristic by using appropriate elements to perform the
selection of the signal and the digital filter. In addition, due to
the simplicity of the programming code in the MATLAB
software, it is also possible for the students themselves to add
more lines of programming code in order to increase the types
of digital filters in the Pop-up Menu of the DIGITAL FILTER
Panel, or increase the number of real signals in the Pop-up
Menu of the INPUT SIGN Panel.

Finally, this graphical interface will be put to use in the
next academic cycle with the purpose of testing and receiving
opinions and suggestions from professors and students alike.
This can be considered to be a starting point since from this
point users can increase more tools, such as zoom, application
of filter banks, cascaded and multi-band, visualization of the
spectrogram, change of sampling rate, interaction in real time,
among countless other applications of digital filtering.

REFERENCES

[1] A. Oppenheim & R. Schafer, Tratamiento de Señales en Tiempo
Discreto, 3ra ed. Madrid, España: Editorial Prentice Hall, 2009.

[2] I. Rodríguez, Filtrado Digital de Señal con DSP, Trabajo Fin de Grado,
Universidad de la Rioja, España, 2016-2017.

[3] P. Diniz, E. Da Silva e S. Netto, Processamento Digital de Sinais -
Projeto e análise de sistemas. 2nd ed. Brasil: Editorial Bookman, 2014.

[4] A. Antoniou, Digital Filters: analysis, design, and signal processings
applications, nueva edición. Editorial McGraw-Hill, 2018.

[5] D. Barragán, “Manual de Interfaz Gráfica de Usuario en Matlab”,
Ecuador 2007. [Online]. Disponible:
https://www.dspace.espol.edu.ec/bitstream/123456789/10740/19/%255
Bmatlab%255D_MATLAB_GUIDE.pdf

[6] A. Borrero, “Herramienta Software para el Control Remoto de una
Fuente de Alimentación mediante Interfaz Gráfica”, Proyecto Fin de
Carrera, Departamento de Teoría de la Señal y Comunicaciones,
Universidad de Sevilla, capítulo 3, p. 56, 2011. [Online]. Disponible:
http://bibing.us.es/proyectos/abreproy/11986/fichero/CAP%C3%8DTU
LO+3%252FCAP%C3%8DTULO+3.pdf

[7] Mathworks R2018b. Signal Processing Toolbox. Funciones. 2018.
[Online]. Disponible:
https://la.mathworks.com/products/signal/features.html#preprocesamien
to-de-se%C3%B1ales

[8] M. Martínez, A. Serrano y J. Gómez, “Introducción al Procesado Digital
de Señales”, Escuela Técnica Superior de Ingeniería, Departamento de
Ingeniería Electrónica, Capítulo 7, 2009-2010. [Onlilne]. Disponible:
http://ocw.uv.es/ingenieria-y-arquitectura/1-1/tema7.pdf

[9] J. Ortega y N. Fierro, “Desarrollo de una interfaz interactiva de
comunicaciones entre un DSP y Matlab”, Síntesis Tecnológica, págs.
39-44, 2004, [Online]. Disponible:
http://mingaonline.uach.cl/scielo.php?script=sci_arttext&pid=S0718-
025X2004000100007&lng=es&nrm=iso&tlng=es

[10] R. Krneta, D. Damnjanovié and M. Dokovié, “Labview-based
laboratory environment for learning of filtering concepts”, 6th IEEE
International Symposium on Applied Computacional Intelligence and
Informatics, Romania, 2011.

[11] Q. Yang, Y. Xv and S.H. Wang, “MATLAB Application in Digital
Image Processing Auxiliary Teaching,” China Electric Power
Education, no. 10, Apr. 2013, pp. 115-116, doi:10.3969/j.issn.1007-
0079.2013.10.058.

[12] Yunming Du, Jing Tian, Lina Gai and Wenke Liu, “Digital Image
Processing Teaching Auxiliary System based on MATLAB Graphical
User Interface” 7th International Conference on Information Technology
in Medicine and Education, doi: 10.1109/ITME.2015.67

[13] Wang Chun and Xiao Wei, “Second-order IIR Nothc Filter Design and
implementation of digital signal processing system” Proceedings of the
2nd International Symposium on Computer, Communication, Control
and Automation (ISCCCA-13), pags 0576-0578, 2013, [Online].
Availabe. https://www.scientific.net/AMM.347-350.729

https://www.dspace.espol.edu.ec/bitstream/123456789/10740/19/%255Bmatlab%255D_MATLAB_GUIDE.pdf
https://www.dspace.espol.edu.ec/bitstream/123456789/10740/19/%255Bmatlab%255D_MATLAB_GUIDE.pdf
http://bibing.us.es/proyectos/abreproy/11986/fichero/CAP%C3%8DTULO+3%252FCAP%C3%8DTULO+3.pdf
http://bibing.us.es/proyectos/abreproy/11986/fichero/CAP%C3%8DTULO+3%252FCAP%C3%8DTULO+3.pdf
https://la.mathworks.com/products/signal/features.html#preprocesamiento-de-se%C3%B1ales
https://la.mathworks.com/products/signal/features.html#preprocesamiento-de-se%C3%B1ales
http://ocw.uv.es/ingenieria-y-arquitectura/1-1/tema7.pdf
http://mingaonline.uach.cl/scielo.php?script=sci_arttext&pid=S0718-025X2004000100007&lng=es&nrm=iso&tlng=es
http://mingaonline.uach.cl/scielo.php?script=sci_arttext&pid=S0718-025X2004000100007&lng=es&nrm=iso&tlng=es

