
Web Environment for Robotic 
Manipulator Simulation 

Abstract— In this study, analysis, modeling, and simulation of 
three robot manipulators, in a web environment, is presented. 
Initially, a mathematical representation of manipulator 
kinematics was obtained using the Devanit Hartenberg (D-H) 
parameters. Subsequently, the three devices were modeled 
using 3D software tools, and lastly, a web simulation 
environment was generated through the use of several 3D 
frameworks. 
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I. INTRODUCTION 

Process automation has changed substantially since its 
creation. Initially, the industrial revolution based its 
development on the exploitation of hard manual labor, which 
resulted in long execution times, and tasks that posed a 
serious hazard to workers. The current world outlook, 
however, has shifted. Nowadays, development of optimal 
processes involving several production lines, diminishing 
execution times, and continuous product quality 
improvement is sought. 

Robot manipulators have been incorporated into the 
dynamic of industrial processes for years. They replace 
manual labor and use simulation environments in order to 
predict production errors and improve production line 
designs. Industrial process simulation presents important 
opportunities for resource optimization, in terms of 
algorithm design, testing, routine debugging, and global 
process views, which consider the behavior of robot 
manipulators while looking to correct possible flaws that 
may emerge. 

The use of robot manipulators in industrial process 
automation requires skilled personnel who are 
knowledgeable about their operation and handling. 
Nonetheless, given the high costs resulting from robot 
manipulator development, academia has focused on the 
market, offering development environments for industrial 
process simulation that allow companies to create, innovate, 
and optimize existing developments [1], [2]. 

However, since most robot manipulator simulators are 
not freely accessed, as they are generally licensed to the 

robot manipulator, they are costly. This has generated 
interest in development of a web interface that provides 
accurate, effective, and efficient simulations. 

The tools selected for the development of this web 
simulator and the reason for their selection is detailed below. 
Said tools include several Javascript and WebGL-based 
video game frameworks that were both considered and used, 
along with visual demonstrations of the development 
outcome with real robot examples, including KUKA, 
SCARA, and PUMA. 

II. THEORETICAL BASIS

A. Robot manipulators 

A conventional robot manipulator can be represented as a 
succession of links and unions (joints). These joints are 
commonly of the rotational or prismatic type (interlinear), 
which enable relative movement between links. Each of the 
independent motions performable by each joint, relative to 
the previous joint, defines a degree of freedom (DOF), and is 
likewise the number of independent parameters that set the 
situation (position and orientation) of the end element, 
known as the gripper. Robot manipulators are generally 
articulated arms, which behave similarly to human arms. 
When studying the behavior of a robot manipulator, the first 
task to be performed is the description of its motion, using 
the robot’s structural parameters, which are known as 
kinematics. 

B. Robot manipulator kinematics 

Kinematic analysis is concerned with the study of robot 
geometry, in relation to a fixed reference coordinate system 
as a function of time, without considering those forces that 
create motion. Kinematics also studies the position, speed, 
acceleration, and in general, all derivatives of higher-order 
position variables (in relation to time or any other variable) 
[3]. From the above, it can be concluded that kinematics is 
divided into two parts: positional kinematics and differential 
kinematics. Positional kinematics, or simply kinematics, 
studies the position and orientation of each one of the parts 
of the robot arm, while differential kinematics focuses on 



  

 

speeds and accelerations, the first of which is the principal 
focus of this project. Kinematics can likewise be analyzed 
from two perspectives: directly, so as to calculate gripper 
position and orientation, and inversely, which allows for the 
determination of the position and orientation that joints 
should have, based on the position of the final element.   

In accordance with that set out on [3], in order to solve 
this problem, the Denavit – Hartenberg (D-H) method is 
used. This method represents components’ spatial geometry 
in a general kinematic chain, and the robot arm in particular, 
in relation to a fixed reference system. This method employs 
the homogeneous transformation matrix, which describes the 
spatial relationship between two adjacent rigid components.  
The direct kinematics problem then finds a 4x4 homogenous 
transformation matrix which relates the spatial location of 
the end of the robot’s arm to its base’s coordinate system. 

 
C. Manipulator description 

 
The first robot used was the SCARA manipulator 

(Selective Compliant Articulated Robot for Assembly). It is a 
very common configuration that, as implied by its name, was 
created for assembly operations. Nonetheless, it has an RRP 
configuration (Rotational – Rotational – Prismatic), that is 
different from the spherical configuration both insofar as its 
appearance and range of applications. It has three parallel 
angular joints (which enable it to move and align on a 
plane), along with a fourth prismatic joint to move the end 
effector normally to the plane. The axes of the first two 
revolute joints are vertical, causing the links to move on a 
horizontal plane, while the third element moves in relation to 
a vertical axis [4].  Once the parameters have been 
established, the next step involves setting up the 
transformation matrix in such a way that the relation 
describing the direct kinematics model is obtained. 
 

The PUMA robot (Programmable Universal Machine for 
Assembly) is a widely-known manipulator. It has six degrees 
of freedom, three of which serve to position the end effector, 
and another three for orientation [5].  In order to set forth the 
homogeneous transformation matrices that describe this 
manipulator, it is initially necessary to define the D-H 
parameters. Once obtained, the homogeneous transformation 
matrix is given for this manipulator. 
 

Finally, the KUKA KR16 robot is widely used for small 
loads, as its capacity is a mere 16 kg. It also may be installed 
with different configurations, whether on a roof or a wall. 
Additionally, it has six spherical joints, and just as with the 
PUMA robot, three of them are for positioning the end 
effector, and the other three align it [6].  

III. 3D MODELING 
This section details various industrial robot models, 

beginning with their physical composition, given by 
parameters obtained from specification documents for each 
robot. The application of specialized 3D-modeling 

technologies makes robot simulation easier, enabling the use 
of several platforms. Export to different formats enables the 
use of various technologies and programming languages. 

 
A. 3D design 

 
Firstly, the SCARA robot was evaluated, using the 

manufacturer model as a basis. Here, its specifications are 
set out, as shown in Figure 1.  

 
Figure 1. SCARA robot CAD design [7]. 

 
The tool used for converting models from 2D to 3D is 

called ARKITool [8]. This is an application installed on 
AutoCAD® that enables models to be converted and have 
surfaces applied to them. Thereafter, 3Ds Max® [9] was 
used (Figure 2). 

 

 
Figure 2. 3D model of a part of the SCARA robot. 

 
This image shows that the model is no more than a set of 

points that form the figure. The more points present, the 
more complex the object is. An object can be formed based 
on others, where separate parts are created and then 
combined to form a new object. This is defined as a polygon 
combination, as seen in Figure 3. 

 

 



  

 

Figure 3. View of the SCARA robot. 
 

In order to add motion to the robot, motion points must 
be included. To that effect, small cylinders were added and 
aligned with the center of rotation for each movable part of 
the robot, the detail of which is shown in Figure 4.  

 
Figure 4. Rotation point. 

 
A similar process was used for the generation of 3D 

models for the two remaining robot manipulators, as shown 
in Figure 5.  

 

 
 

 
Figure 5.  The KUKA and PUMA robots. 

 
B. 3D web environment 

 
Using the 3D models designed, a web environment was 

implemented for kinematic manipulator simulation, using the 
CopperLicht [10] and Babylon [11] frameworks.  At first, the 
development was carried out with CopperLicht, where 
several problems arose with the framework logic. These 
prevented the advancement of work on the simulation, and 
so, development was migrated to Babylon. Although the 
scene had to be manually created, it involved more accurate 

logic for simulation requirements. Babylon was much better 
suited to the methods and image manipulation required. The 
interfaces for each robot manipulator are shown below in 
Figure 9. 
 

 
 

 
 

 
Figure 9. Robot manipulator simulation interface. 

IV. CONCLUSIONS AND FUTURE WORK  
In this document, the process of developing a web 

environment for kinematic robotic manipulator simulation is 
presented in the form of mathematical modeling, 3D model 
generation of each manipulator, and is completed in the 
environment constructed.  

 
Other widely known environments, such as Gazebo [12] 

and V-Rep [13], have numerous features in addition to the 
direct kinematic simulation presented here. However, they 
differ in that they are not web-oriented, although they may 



  

 

use a tool developed by third parties, such as The Construct 
[14], for said purpose. 

 
This simulator may be useful as a tool for robotics 

instruction, and subsequent developments in a collaborative 
environment within the University of Manizales will 
enhance 3D web development skills. Logical continuing 
steps include the incorporation of inverse kinematics, path 
planning, dynamics, and integration with ROS, as well as 
measurement of environmental performance through 
comparison of results obtained with the tool and those 
performed using Matlab®. 
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