
Web Environment for Robotic
Manipulator Simulation

Abstract— In this study, analysis, modeling, and simulation of
three robot manipulators, in a web environment, is presented.
Initially, a mathematical representation of manipulator
kinematics was obtained using the Devanit Hartenberg (D-H)
parameters. Subsequently, the three devices were modeled
using 3D software tools, and lastly, a web simulation
environment was generated through the use of several 3D
frameworks.

Keywords— robot manipulator, web environment, 3D
modeling

I. INTRODUCTION

Process automation has changed substantially since its
creation. Initially, the industrial revolution based its
development on the exploitation of hard manual labor, which
resulted in long execution times, and tasks that posed a
serious hazard to workers. The current world outlook,
however, has shifted. Nowadays, development of optimal
processes involving several production lines, diminishing
execution times, and continuous product quality
improvement is sought.

Robot manipulators have been incorporated into the
dynamic of industrial processes for years. They replace
manual labor and use simulation environments in order to
predict production errors and improve production line
designs. Industrial process simulation presents important
opportunities for resource optimization, in terms of
algorithm design, testing, routine debugging, and global
process views, which consider the behavior of robot
manipulators while looking to correct possible flaws that
may emerge.

The use of robot manipulators in industrial process
automation requires skilled personnel who are
knowledgeable about their operation and handling.
Nonetheless, given the high costs resulting from robot
manipulator development, academia has focused on the
market, offering development environments for industrial
process simulation that allow companies to create, innovate,
and optimize existing developments [1], [2].

However, since most robot manipulator simulators are
not freely accessed, as they are generally licensed to the

robot manipulator, they are costly. This has generated
interest in development of a web interface that provides
accurate, effective, and efficient simulations.

The tools selected for the development of this web
simulator and the reason for their selection is detailed below.
Said tools include several Javascript and WebGL-based
video game frameworks that were both considered and used,
along with visual demonstrations of the development
outcome with real robot examples, including KUKA,
SCARA, and PUMA.

II. THEORETICAL BASIS

A. Robot manipulators

A conventional robot manipulator can be represented as a
succession of links and unions (joints). These joints are
commonly of the rotational or prismatic type (interlinear),
which enable relative movement between links. Each of the
independent motions performable by each joint, relative to
the previous joint, defines a degree of freedom (DOF), and is
likewise the number of independent parameters that set the
situation (position and orientation) of the end element,
known as the gripper. Robot manipulators are generally
articulated arms, which behave similarly to human arms.
When studying the behavior of a robot manipulator, the first
task to be performed is the description of its motion, using
the robot’s structural parameters, which are known as
kinematics.

B. Robot manipulator kinematics

Kinematic analysis is concerned with the study of robot
geometry, in relation to a fixed reference coordinate system
as a function of time, without considering those forces that
create motion. Kinematics also studies the position, speed,
acceleration, and in general, all derivatives of higher-order
position variables (in relation to time or any other variable)
[3]. From the above, it can be concluded that kinematics is
divided into two parts: positional kinematics and differential
kinematics. Positional kinematics, or simply kinematics,
studies the position and orientation of each one of the parts
of the robot arm, while differential kinematics focuses on

speeds and accelerations, the first of which is the principal
focus of this project. Kinematics can likewise be analyzed
from two perspectives: directly, so as to calculate gripper
position and orientation, and inversely, which allows for the
determination of the position and orientation that joints
should have, based on the position of the final element.

In accordance with that set out on [3], in order to solve
this problem, the Denavit – Hartenberg (D-H) method is
used. This method represents components’ spatial geometry
in a general kinematic chain, and the robot arm in particular,
in relation to a fixed reference system. This method employs
the homogeneous transformation matrix, which describes the
spatial relationship between two adjacent rigid components.
The direct kinematics problem then finds a 4x4 homogenous
transformation matrix which relates the spatial location of
the end of the robot’s arm to its base’s coordinate system.

C. Manipulator description

The first robot used was the SCARA manipulator

(Selective Compliant Articulated Robot for Assembly). It is a
very common configuration that, as implied by its name, was
created for assembly operations. Nonetheless, it has an RRP
configuration (Rotational – Rotational – Prismatic), that is
different from the spherical configuration both insofar as its
appearance and range of applications. It has three parallel
angular joints (which enable it to move and align on a
plane), along with a fourth prismatic joint to move the end
effector normally to the plane. The axes of the first two
revolute joints are vertical, causing the links to move on a
horizontal plane, while the third element moves in relation to
a vertical axis [4]. Once the parameters have been
established, the next step involves setting up the
transformation matrix in such a way that the relation
describing the direct kinematics model is obtained.

The PUMA robot (Programmable Universal Machine for
Assembly) is a widely-known manipulator. It has six degrees
of freedom, three of which serve to position the end effector,
and another three for orientation [5]. In order to set forth the
homogeneous transformation matrices that describe this
manipulator, it is initially necessary to define the D-H
parameters. Once obtained, the homogeneous transformation
matrix is given for this manipulator.

Finally, the KUKA KR16 robot is widely used for small
loads, as its capacity is a mere 16 kg. It also may be installed
with different configurations, whether on a roof or a wall.
Additionally, it has six spherical joints, and just as with the
PUMA robot, three of them are for positioning the end
effector, and the other three align it [6].

III. 3D MODELING
This section details various industrial robot models,

beginning with their physical composition, given by
parameters obtained from specification documents for each
robot. The application of specialized 3D-modeling

technologies makes robot simulation easier, enabling the use
of several platforms. Export to different formats enables the
use of various technologies and programming languages.

A. 3D design

Firstly, the SCARA robot was evaluated, using the

manufacturer model as a basis. Here, its specifications are
set out, as shown in Figure 1.

Figure 1. SCARA robot CAD design [7].

The tool used for converting models from 2D to 3D is

called ARKITool [8]. This is an application installed on
AutoCAD® that enables models to be converted and have
surfaces applied to them. Thereafter, 3Ds Max® [9] was
used (Figure 2).

Figure 2. 3D model of a part of the SCARA robot.

This image shows that the model is no more than a set of

points that form the figure. The more points present, the
more complex the object is. An object can be formed based
on others, where separate parts are created and then
combined to form a new object. This is defined as a polygon
combination, as seen in Figure 3.

Figure 3. View of the SCARA robot.

In order to add motion to the robot, motion points must
be included. To that effect, small cylinders were added and
aligned with the center of rotation for each movable part of
the robot, the detail of which is shown in Figure 4.

Figure 4. Rotation point.

A similar process was used for the generation of 3D

models for the two remaining robot manipulators, as shown
in Figure 5.

Figure 5. The KUKA and PUMA robots.

B. 3D web environment

Using the 3D models designed, a web environment was

implemented for kinematic manipulator simulation, using the
CopperLicht [10] and Babylon [11] frameworks. At first, the
development was carried out with CopperLicht, where
several problems arose with the framework logic. These
prevented the advancement of work on the simulation, and
so, development was migrated to Babylon. Although the
scene had to be manually created, it involved more accurate

logic for simulation requirements. Babylon was much better
suited to the methods and image manipulation required. The
interfaces for each robot manipulator are shown below in
Figure 9.

Figure 9. Robot manipulator simulation interface.

IV. CONCLUSIONS AND FUTURE WORK
In this document, the process of developing a web

environment for kinematic robotic manipulator simulation is
presented in the form of mathematical modeling, 3D model
generation of each manipulator, and is completed in the
environment constructed.

Other widely known environments, such as Gazebo [12]

and V-Rep [13], have numerous features in addition to the
direct kinematic simulation presented here. However, they
differ in that they are not web-oriented, although they may

use a tool developed by third parties, such as The Construct
[14], for said purpose.

This simulator may be useful as a tool for robotics

instruction, and subsequent developments in a collaborative
environment within the University of Manizales will
enhance 3D web development skills. Logical continuing
steps include the incorporation of inverse kinematics, path
planning, dynamics, and integration with ROS, as well as
measurement of environmental performance through
comparison of results obtained with the tool and those
performed using Matlab®.

V. ACKNOWLEDGMENTS
The authors would like to thank those undergraduate

Systems and Telecommunications Engineering students at
the University of Manizales who were involved in the
various stages of this project for their valuable contributions,
as well as the Faculty of Sciences and Engineering for the
time granted to the researchers for the implementation
thereof.

REFERENCES

[1]. C.A: Jara, F.A: Candelas, F. Torres, “Laboratorios virtuales y

remotos basados en EJS para la enseñanza de robótica
industrial”, Universidad de Alicante. 2010.

[2]. R. Pollak, J. Schützner and T. Bräunl, "RoboSim- Robot

Manipulator Simulation", Robotics.ee.uwa.edu.au, 2015. [Online].
Available: http://robotics.ee.uwa.edu.au/robosim/. [Accessed: 09-
Oct- 2017].

[3]. J. Craig. Introduction to Robotics. México: Pearson, 2005.

[4]. O. Vivas, "Predictive Control of a SCARA Robot", Ingeniare,

vol. 14, no. 2, pp. 135-145, 2006.

[5]. G. Kim, "Programming and Controlling PUMA Robots Arms",
Open-robotics.com, 2005. [Online]. Available: http://open-
robotics.com/wp/wp-content/uploads/presentation/programming-
and-controlling-puma-arms.pdf?ckattempt=1. [Accessed: 08- Oct-
2017]

[6]. Kuka Robotics, "KUKA Robots industriales - Pequeños Robots",

Kuka-robotics.com, 2015. [Online]. Available: http://www.kuka-
robotics.com/es/products/industrial_robots/small_robots/.
[Accessed: 10- Nov- 2017].

[7]. Epson Robotics. Epson SCARA G6 Product Detail, 2015.

[Online]. Available: http://robots.epson.com/product-detail/3.
[Accessed: 19- Jun- 2017].

[8]. ARKITool “ARKISoft, utilidades CAD.", Arkisoft.es, 2017.

[Online]. Available: http://www.arkisoft.es/programas/arkitool.
[Accessed: 15- Nov- 2017].

[9]. Autodesk. 3ds Max | “3D Modeling, Animation & Rendering

Software | Autodesk", Autodesk.com, 2017. [Online]. Available:
http://www.autodesk.com/products/3ds-max/overview.
[Accessed: 19- Jun- 2017].

[10]. “CopperLicht –Open Source JavaScript 3D Engine using

WebGL", Ambiera.com, 2015. [Online]. Available:

http://www.ambiera.com/copperlicht/. [Accessed: 19- Nov-
2017].

[11]. "Babylon.js demos & documentation", Babylon.js, 2015. [Online].

Available: http://www.babylonjs.com. [Accessed: 19- Jun- 2017].
[12]. Open Source Robotics Foundation, "Gazebo", Gazebosim.org,

2016. [Online]. Available: http://gazebosim.org. [Accessed: 16-
Aug- 2017].

[13]. Coppelia Robotics, "Coppelia Robotics v-rep: Create. Compose.

Simulate. Any Robot", Coppeliarobotics.com, 2016. [Online].
Available: http://www.coppeliarobotics.com/index.html.
[Accessed: 12- Aug- 2017].

[14]. The Construct, "The Construct – Just Simulate!",

Theconstructsim.com, 2016. [Online]. Available:
http://www.theconstructsim.com. [Accessed: 17- Aug- 2017

