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Abstract– The last two decades have witnessed how three-

dimensional (3D) point cloud scanning and registration algorithms 

have become increasingly popular in areas as diverse as 

cinematography, robotics, and medicine, among others. Despite 

their broad application range, such algorithms remain to be 

computationally demanding and difficult to implement. In 

particular, the task of choosing and implementing suitable 

registration-pipeline processes for specific applications continues 

to be challenging in most practical cases. This paper presents the 

implementation of a point cloud stitching system to produce 360° 

3D images from individual, partial views of a solid model. 

Performance analyses and evaluations supporting the decision-

making process allow for identifying factors leading to the best 

accuracy and computational speed of the iterative closest point 

(ICP) registration algorithms considered for the task at hand. The 

outcomes of our analysis lead to interesting findings related to two 

well-known ICP variants, while also providing useful 

implementation guidelines for developing a practical 360° 3D 

scanning system.  
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I. INTRODUCTION 

Three-dimensional (3D) point clouds allow for digitally 

representing our surrounding world. Once in a digital form, a 

3D object image can be processed to obtain properties such as 

area, volume, distribution and density, among others. With the 

advent of reliable, high-quality, and cost-effective 3D 

scanners, 3D point cloud data can be readily obtained for 

multiple faces of a solid model. 

The generation of 3D point cloud data requires two main 

steps: acquisition and processing. A variety of 3D surface data 

acquisition techniques have been proposed through the years, 

including imaging and microwave radar, computed 

tomography (CT), coded structured light, and holography, 

among others [1]. From these techniques, coded structured 

light (CSL) is one of the most cost-effective choices for 

surface reconstruction. A CSL system consists of three main 

components: a structured light projector (SLP), an imaging 

stage, and a processing stage. 

The SLP transmits coded patterns onto the surface to be 

measured. The imaging stage contains one or multiple digital 

cameras that capture images from the surface of interest when 

illuminated by the SLP. The processing stage typically uses a 

triangulation technique that allows for computing the positions 

of 3D features on the model surface. The pattern-decoding 

stage can be considered simple as the acquired patterns are 

already coded. Salvi et al. provide a detailed description on 

how coded structured light works [2]. As this method is readily 

accessible, portable, comparably cost-effective, and requires a 

small number of cameras and a single projector, it was the 3D 

scanning technique used for the analysis and implementation 

in this paper. 

The processing of point clouds requires efficient and 

reliable algorithms. Common processing areas include 

registration, segmentation, filtering, recognition, and 

visualization, usually available from various open software 

libraries online. However, not all libraries support all the 

above processing algorithms. One usually must resort to 

incorporating multiple independent libraries, which can lead to 

software incompatibilities. The Point Cloud Library (PCL), 

provides a reliable and practical solution to these issues since 

it incorporates other third-party libraries as dependencies. PCL 

supports all the mentioned processing areas, facilitating the 

process of implementing a practical solution [3], [4]. 

Nonetheless, gathering all these components does not 

solve the entire problem. Additional challenges in the 

algorithm selection, parameter configuration, data size, 

computational complexity, quality of 3D point clouds, and 

validation, need to be correctly addressed to achieve an 

effective implementation. 

In the recent literature, several approaches have addressed 

the performance evaluation of registration algorithms. 

Bellekens et al. studied state-of-the-art registration algorithms 

including ICP and four of its variants. They included a 

theoretical formulation as well as a performance evaluation in 

terms of accuracy and computational speed [5]. Salvi et al. 

provided a classification scheme and an analysis of different 

coarse and fine range image registration techniques [6]. Attia 

et al. evaluated the performance of most used 3D point clouds 

registration algorithms focusing on their suitability for 

dimensional control. They provided a theoretical and 

experimental comparison of four registration algorithms, 

including the ICP [7]. Although these approaches 

accomplished their analysis goals, they did not provide 

practical descriptions of the underlying 3D scanning system or 

reported the usage of structured light projector data. This 

paper provides a reference for PCL-based applications, 
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discussing practical considerations for physical 

implementation and evaluating algorithmic performance under 

different registration parameters in the framework of a 

functional prototype to produce 360° 3D stitched images. 

The rest of this paper is organized as follows. Section II 

provides a theoretical definition of ICP and two of its variants. 

Section III details a practical 3D scanning setup where 

algorithms could be evaluated. Section IV describes the 

experimental setup to acquire evaluation data, the obtained 

results, and their analysis. Lastly, Section V provides 

concluding remarks.  

 

II. ITERATIVE CLOSEST POINT ALGORITHMS 

ICP algorithms provide a framework for resolving 

geometric registration problems. Registration is of particular 

interest in computer vision since it allows for image 

reconstruction. A registration algorithm is able of producing a 

single point cloud representing the union of different, 

overlapping point clouds acquired at distinct times and views. 

Registration algorithms can be classified into rigid and non-

rigid. The former assumes point clouds with six degrees of 

freedom (DoF), whereas the latter deals with additional DoF 

as it can be applied to object shapes that could change over 

time. 

Following the classification proposed by Rusinkiewicz 

and Levoy [8], registration algorithms can be seen as a 

sequence of six steps: (1) point selection, (2) matching, (3) 

rejection, (4) weighting, (5) assigning error metric, and (6) 

minimizing error. Hereafter we will use this classification to 

describe Iterative Closest Point (ICP) algorithms and their 

variants. 

A. ICP Generalities 

The ICP developed by Besl and McKay [9] belongs to the 

class of rigid and fine registration techniques that assume an 

initial alignment is available. Registration can be pairwise, 

when only two point clouds are processed at a time; or multi-

view, where an entire dataset is processed on the spot. Multi-

view techniques are beyond the scope of this paper. 

In pairwise registration we shall refer to one of the point 

clouds as the source and the other one as the target. Let the 

source be
21( , , ..., )

n
P p p p=    and the target 1 2( , , ..., )mQ q q q=    , 

where ip and jq represent individual points of each cloud. The 

goal of an ICP is to iteratively minimize the Euclidean 

distance (error step) between corresponding pairs of 

correspondences ,i jp q (matching step) aiming at overlapping 

the point clouds as well as possible. But not all 

correspondences are necessarily good, and thus, a 

correspondence rejection method is applied to increase 

convergence. Holtz et al. provide a detailed description of 

such methods [4]. 

Further improvements to the original ICP include initial 

down-sampling of points to speed up the process (point 

selection step) and the application of a coarse registration as 

the initial alignment assumed by fine techniques. 
 

B. ICP Variants 

Although several variants of the original ICP algorithm 

have been proposed, two of the most widely used include 

point-to-point and point-to-surface. 

ICP Point to Point (ICP-PP) defines its error metric as the 

sum of the Euclidean distances between pairs of corresponding 

points. The error function has a closed-form solution that can 

be found by means of the Singular Value Decomposition 

(SVD) method [9]. 

ICP Point to Surface (ICP-PS), proposed by Chen and 

Medioni [10], utilizes a point-to-plane error metric. As 

opposed to ICP-PP, no closed-form solution is available. The 

Levenberg-Marquardt method may be used to solve the 

problem. 

 The fundamental difference between ICP-PP and ICP-PS 

stems from the definition of their error metrics and, 

consequently, their minimization methods. Experimentally, 

their implementations provide different execution times and 

convergence rates, as discussed in Section IV. 

III. A PRACTICAL 3D POINT CLOUD SCANNING SETUP 

 In order to evaluate the algorithm variants, a complete 

360° 3D scanning-through-stitching system was implemented. 

Figure 1 illustrates the system organization. By changing the 

ICP algorithm, the system performance could be evaluated.  

Before delving into the evaluation details, we describe how the 

system was integrated. 

 

Fig. 1. 3D point cloud scanning and stitching system setup. 

 

The system had three main components: (1) point cloud 

generation, (2) point cloud registration, and (3) system control. 

These components are explained below. 

A. Point Cloud Generation 

 The generation of point clouds was handled by means of 

the Texas Instruments (TI) 3D Machine Vision Reference 

Design (TIDA-00254), which provides a three-dimensional 

photography system that employs structured light to support 

3D scanning. 

 The TIDA-00254 reference design is fast and reliable. It 

is available as a 3D scanner solution as part of TI's Digital 

Light Processor (DLP) portfolio [11]. Our implementation was 

integrated using a Point Grey Flea3 digital camera, a TI's 
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1 BSD is the Berkeley Standard Distribution, providing open software through 

the Open Source Initiative (OSI) http://opensource.org 

LightCrafter 4500 evaluation module pattern programmable 

projector, and the DLP Structured Light software development 

kit (SDK). The TIDA includes a user's guide illustrating 

practical system implementations from calibration to point 

cloud generation [12]. 

 Despite the advantage of having the TIDA-00254 and 

integrating the basic 3D scanning system, this was not enough.  

As any 3D scanner of its type, this assembly could only 

generate individual 3D point clouds of specific objects' poses, 

due to the limited field of view of a single optical sensor. In 

order to see the entire object surface, a means for changing the 

sensor's object view was needed. In our implementation we 

chose mounting the object on a rotating stage, allowing for 

exposing all its views in 360°, to the sensor. 

 A rotating stage provided the advantages of maintaining 

the same rotational axis for all solid model views, allowing for 

a controllable angular position, and enabling the solution to be 

integrated as a package. Such a stage was implemented 

through a 200-step stepper motor controlled by an 

MSP430G2553 microcontroller, interfaced via a USB 2.0 port 

to the host computer. This solution enabled precise rotation 

with a resolution of 1.8° per step, synchronized and controlled 

from host. These attributes contributed to producing a precise 

and streamlined 360° 3D scanning solution. 

B. Point Cloud Registration 

 The usage of a rotating stage also facilitated the selection 

of the registration algorithm, as each rigid transformation 

between scans was known. Therefore, as explained in Section 

II, an ICP algorithm providing rigid registration techniques 

was utilized to provide for the point cloud registration. 

C. System Control 

 With all components identified, it was realized that 

multiple software, data, and hardware modules needed to be 

integrated into a minimally supervised solution. To this end, a 

Python script was developed, able to work as "glue-logic", 

integrating and synchronizing the proper execution of all 

components. Figure 1 illustrates the organization of this code. 

D. Practical Considerations 

 Several practical challenges needed to be overcome to 

achieve proper system performance. One major problem was 

controlling the amount of glare in the captured images to be 

able to optically calibrate the system. The usage of non-

reflective materials to cover the camera's field of view proved 

to be effective for such a purpose. Another problem was the 

relative point of view of the camera with respect to the 

projector to capture the calibration pattern. Using a fixed-

frame mount or a camera-behind-projector set-up helped in the 

process. Figure 2 shows the particular setup used in this 

implementation.  After the first few clouds were captured, the 

presence of outliers in the image became a problem for the 

stitching process. The application of an outlier removal 

algorithm prior cloud processing helped reducing the number 

of bad-correspondences during registration. Lastly, but not less 

important, keeping the amount of overlap between successive 

captures between 10% and 15% proved a good measure to 

support the registration process. 

 
Fig. 2. Camera-behind-projector setup with non-reflective black cloth  

used for improving calibration process. 

IV. EXPERIMENTAL DESIGN, RESULTS, AND ANALYSIS 

 To validate the system functionality, we started out by 

generating 3D point clouds with the TIDA-00254. After the 

successful generation of multiple point clouds, the main data 

set was generated. It consisted of 35 point clouds representing 

different poses of a figurine of our campus' mascot (Figures 3 

and 4). Then, two main steps were carried out: algorithm 

selection and algorithm analysis. 

A. Algorithm Selection and Setup 

 The clouds were registered by means of an ICP algorithm 

implemented using PCL. PCL is a C++-coded, BSD1-licensed, 

open-source, software library that supports n-dimensional 

point clouds processing and visualization [3], [4]. PCL 

provides multiple implementations of ICP, including non-

linear, generalized, joint, point to surface, point to plane, 

among others. Each implementation requires the user to 

provide multiple parameters for the process to work properly. 

Evaluation of the ICP-PP and ICP-PS variants was important 

because although they both provide the best tradeoff between 

accuracy and speed [7], it was not clear how they performed 

with respect to each other. 

 Its implementation was done on a Windows-based PC 

with a 2.20 GHz Intel i5-5200U Core CPU. The fixed 

parameters for both ICP methods were 81e−=  and 40 

iterations. It can be shown that the registration error function 



16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 

Inclusion”, 19-21 July 2018, Lima, Peru. 4 

had a minimum at 40 iterations [5]. Moreover, the PCL 

StatisticalOutlierRemoval class was used with a 2.5 threshold 

and a mean k of 50. 

 

Fig. 3. UPRM mascot figurine utilized to generate 3D point clouds. 

 

 

Fig. 4. Single 17,859-point, 3D point cloud of mascot figurine. 
 

 The parameters evaluated included: Maximum 

Correspondence Distance (MCD), Fitness Score (FS), k-

neighborhood (k), and down-sample Leaf Size (LS). The MCD 

is defined as the maximum distance at which a correspondence 

between two clouds is considered.  The fitness score is the sum 

of the squared distances between source and target clouds. 

Correspondences were determined by means of a Nearest 

Neighbor Search which, in turn, was specified by the k 

parameter. Finally, the VoxelGrid class of PCL, filtered and 

down-sampled the clouds by approximating each set of points 

contained in a 3D voxel grid with their centroid [3]. So, the 

leaf size determined the filter size. 

B. Algorithm Analysis 

 The performance of both ICP-PP and ICP-PS methods, in 

terms of execution time (ET) and FS was evaluated against 

MCD, LS, and k parameters. The algorithms were first fed with 

the Stanford Bunny point cloud data set to assess their 

functionality [13]. Then, the UPRM mascot data set was used 

throughout the experiments. 

 In the first evaluation, the results for the MCD showed 

that ICP-PS outperformed ICP-PP in both evaluation criteria 

(see Figure 5). However, the differences in ET and FS were 

about 1 minute and 0.2mm, respectively, for MCD > 35cm. 

Moreover, the tendency was towards a decrease in FS as MCD 

increased. The second evaluation revealed an inversely 

proportional relation between execution time (ET) and filter 

size (see Figure 6). The fitness score (FS) showed a rapid 

growth for filter sizes above 0.08. In the third evaluation, 

results for the k parameter showed that ICP-PS outperformed 

ICP-PP for most of the tests (see Figure 7). The FS curves 

showed a dome-like shape, so we had minima at k=3 

(minimum feasible k value) and k=100 (maximum evaluated). 

ET exhibited its largest evaluated value for the latter case. 

 

Fig. 5. Fitness score (FS) and Execution time (ET) as a function of MCD 

values for ICP-PP and ICP-PS methods. 

 

 

 

Fig. 6. FS and ET as a function of LS for ICP-PP and ICP-PS methods. 

 

 
Fig. 7. FS and ET as a function of k values for ICP-PP and ICP-PS methods. 

 

C. Lessons Learned and Recommendations  

Leaf Size 
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 The implementation approach and ensuing evaluation led 

to interesting findings. First, the proposed setup proved to be 

effective in generating high-quality 3D point clouds 

registration (see Figure 8). To the best of our knowledge there 

is no existing literature that used FS as accuracy metric, 

however the results herein provide substantial evidence to 

validate the metric. Second, the performance analysis showed 

that, in general, ICP-PS performs better than ICP-PP in terms 

of computing speed and accuracy. The computing speed and 

accuracy were characterized by means of ET and FS, 

respectively. It was shown that the computing speed decreased 

when only a subset of the clouds was used for computation. 

This result aligns well with previous theoretical results 

predicting that sampling the points accelerates the registration 

process [4]. On the other hand, it was also evidenced that both 

algorithms failed for LS values greater than or equal to 0.5, for 

k values smaller than 3, and for MCD values smaller than 30 

cm. Lastly, the results presented here have the potential of 

decreasing the implementation time for PCL-based 

applications or, in general, for similar applications, by 

reducing uncertainty in the decision-making process. 

 

 
Fig. 8. 3D 360-degree view of Tarzan generated from the registration of 35 

separately-scanned point clouds. The resulting cloud contains 526,842 points. 
 

V. CONCLUSION 

 This paper presented a step-by-step process to implement 

a functional 3D point cloud scanning system able to produce 

360° images of a solid model constructed by stitching 

individual partial scans of it. Performance analyses carried on 

two ICP variants: point-to-point and point-to-surface, allowed 

for identifying the algorithms and factors leading to the best 

accuracy and computing speed in the system implementation. 

It was found that ICP-PS performed better than ICP-PP for the 

evaluated criteria, making the former the algorithm of choice 

for this application. The system implementation took 

advantage of multiple readily available technologies: a TI DLP 

and camera subsystem enabled the point cloud generation, an 

open-source PCL facilitated the point cloud registration 

algorithms, an MSP430 microcontroller enabled the rotating 

stage, and the python scripting language enabled the 

development of the necessary programming to perform the 

system integration and process automation. The general 

process followed in this implementation provides valuable 

guidelines for implementing similar applications while the 

analyses and evaluations provide objective criteria for quickly 

making time consuming design decisions. The validity of the 

proposed process was assessed through the stitching of a solid 

model composed of 35 individual point clouds, resulting in a 

single representation of 526,842 points. 
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