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Abstract– The concept of “rigid” element was introduced into 

the commercial FEA software in the early sixties. The main role of 

such an element was to account for special connections such as 

welding features, bolts, and specifying very stiff regions within the 

structure of interest. Unfortunately, with the passage of time, the 

functionalities/capabilities of such powerful elements have faded 

from the commercial FEA software documentation. As a result, such 

elements are the least “understood” and most “widely abused” 

features by an average user. This paper tries to address such an 

element within the confines of the Catia v5 commercial software with 

emphasis on modal and dynamic calculations. 

Keywords—virtual parts, rigid elements, finite element analysis, 

modal analysis, dynamic analysis, mechanics. 

I.  INTRODUCTION 

In the early sixties, the general purpose finite element 

program known as Nastran was developed by NASA and made 

publicly available. At that time, the scope of the software was 

limited to linear analysis. Ironically, after nearly six decades, 

the expanded version of the Nastran program makes the 

skeleton of some commercial software [1]. The original ideas 

behind the rigid elements were developed and implemented in 

Nastran. The first version of such an element was called RBAR 

which stood for “Rigid Bar” element, followed by RBE2 and 

RBE3. Since then, variations of these elements with different 

names have appeared in other commercial software. The most 

prominent ones (under a different name) are known as “Rigid 

Virtual Part”and “Smooth Virtual Part” in Catia v5 [2]. In the 

Ansys program [3] these are referred to as “CERIGID”. In other 

packages, they are known as “MPC”, or Multi Point 

Constraints.  

The documentation of these concepts in the online manuals 

is at a bare minimum or nonexistent and therefore, the users are 

in the dark on the functionalities and limitations of such 

elements. The present paper specifically addresses the Catia v5 

program which has the “Elfini” module as its FEA core solver. 

Furthermore, due to space limitation, only the “Rigid” virtual 

part is discussed. In an earlier publication [5], the author has 

discussed the use of such an element in the linear “Static” 

analysis and in this presentation, the linear “Dynamic” aspects 

are being reviewed. A more detailed discussion of the “Rigid” 

virtual part, and the extension to the so called “Smooth” virtual 

part can be found in [6]. In order to achieve this goal, some 

preliminary material on how the “Rigid” elements in general 

are formulated is needed. This will be discussed next.  

II. OVERVIEW, RIGID ELEMENTS

The original rigid element as shown in Fig. 1(a) is actually 

a misnomer. It simply represents a constraint between two 

points. If the two points are denoted by “Master” and “Slave”, 

the degrees of freedom are identical. In the simplest form, the 

displacement of the master, dictates the same displacement on 

the slave. This leads to the distance between the two points 

remaining the same, and therefore, the word “Rigid” used. 

Fig. 1, rigid element and its closely related by products 

This element was later generalized so that a master point 

drives the displacement of many other points known as slaves. 

Sometimes, this is referred to as the “Rigid Spider” element. In 

the Catia v5 program, the label “Rigid Virtual Part” is 

employed. The master point is also referred to as the “Handler 

Point”, see Fig. 1(b). Once again, the distances between all 

slave nodes and the handler point remain the same and therefore 

it constitutes as a true rigid element. In the theoretical FEA 

literature, these are also known as the MPCs or Multi-Point 

Constraints. In the case of Catia program, the handler point, and 

the support are selected by the user. All nodes lying on the 

support are the slave nodes and the entire support remains rigid 

(does not change shape) for a “Rigid Virtual Part”.  
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A more versatile version of the above element in Catia is 

known as “Smooth Virtual Part”. This is displayed in Fig. 1(c). 

Note that the “Handler Point” on the right side is now labeled 

as “Slave” and the nodes on the left side are changed to 

“Masters”. In this element framework, the nodes on the support, 

which are the master nodes, control the movement of the slave 

known (the handler point). Furthermore, the distances between 

the nodes are allowed to change which no longer qualifies it as 

a true rigid entity. The displacement of the slave node (the 

handler point) is a weighted average of the master nodes in the 

support. The issues pertaining to this matter and a more precise 

description of displacement and load transfer between the 

master and slave entities are described next. As indicated earlier, 

the present paper deals primarily with the “Rigid” virtual part 

in Catia v5. 

 

III. RESTRAINT AND LOAD TRANSFER, RIGID VIRTUAL PART 

Case I: Displacement Specified at the Handler Point 

Consider the rigid virtual part shown in Fig.1 (b). Let us 

assume that the motions at the handler point are specified which 

can be three displacements and three rotations. Another way to 

view this is a specified translation in a given direction and 

rotation about an arbitrary axis [6] [7]. The slave degrees of 

freedom are then calculated from the master degrees of freedom 

from the basic kinematic expressions below. 

{𝑇}𝑑𝑒𝑝𝑒𝑛𝑠𝑒𝑑𝑛𝑡 = {𝑇}𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 + {𝑅}𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 × {𝐼𝐷⃗⃗⃗⃗ } 
[𝑅]𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 = [𝑅]𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  

where,  
{𝑇}: Translation vector = {𝑇1 𝑇2 𝑇3} 
{𝑅}: Translation vector = {𝑅1 𝑅2 𝑅3} 

{𝐼𝐷⃗⃗⃗⃗ }:  Position vector from the independent (base) to the 

dependent node {𝑡𝑖𝑝} = {𝑋𝑑 − 𝑋𝑖 𝑌𝑑 − 𝑌𝑖 𝑍𝑑 − 𝑍𝑖} 
 

The displacements and rotations of the slave nodes are then 

applied to the support and the Catia program calculates the 

nodal displacements of the entire model along with the reaction 

forces which are associated with the support of the virtual part. 

At the postprocessing stage, the sum of the x, y, and z 

components of forces and the appropriate moments are 

calculated. These six values are the forces and moments which 

are applied to the handler point resulting in the deformation. 

This establishes the process behind “Case I”.  

 

Case II: Force/Moment Specified at the Handler Point 

 

In this situation, the displacement of the handler point is 

unknown, however, the known force/moment are applied to it. 

Once again, keep in mind that a rigid virtual part is a truly rigid 

entity where relative distances (between the master and slave/ 

slave and slave) do not change. Therefore, the same kinematic 

relationships described in “Case I” apply. Following the 

notation in [7], one can write, 
[𝐾𝐹𝐸𝑀]{𝑇}𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 = {𝐹𝑂𝑅𝐶𝐸}𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  

where, [𝐾𝐹𝐸𝑀]  is the condensed stiffness matrix on the 

dependent degrees of freedom to be analyzed and 
{𝐹𝑂𝑅𝐶𝐸}𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  is the forces applied on the dependent 

nodes on the support of the virtual part. 

 

Considering the fact that the handler point displacements are 

unknown, we are short of 6 equations (three translations and 

three rotations).  The global equilibriums can be augmented 

with the following constraint equations balancing the forces and 

moments on the handler point and the slave nodes on the 

support. 

 
∑{𝐹𝑂𝑅𝐶𝐸𝑆}𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 = {𝐹𝑂𝑅𝐶𝐸𝑆}𝑎𝑝𝑝𝑙𝑖𝑒𝑑   

Here, {𝐹𝑂𝑅𝐶𝐸𝑆}𝑎𝑝𝑝𝑙𝑖𝑒𝑑  are the forces and moments 

(generalized forces) applied to the handler point. 

This completes the discussion of the restraint and load transfer 

for a “Rigid Virtual Part”. 

 

IV. ENHANCED RIGID VIRTUAL PART, (RIGID-SPRING) 

The discussion in the previous section assumes that the 

virtual part is infinitely rigid without any consideration of the 

stiffness of the portion replaced. A modified version of this idea 

in Catia v5 is the so called “Rigid Spring” virtual part where the 

stiffness of the ignored portion can be specified as a spring in 

series, with the truly rigid part. Such an element is graphically 

depicted in Fig.2. The configuration on the left refers to a 

“Rigid” virtual part whereas the one on the right corresponds to 

a “Rigid Spring” virtual part. 

Fig. 2, “Rigid” and “Rigid Spring” virtual parts. 
 

The stiffness of the resulting spring needs to be estimated 

which can be done in relatively straightforward situations such 

as a one-dimensional geometry, under axial, bending, and 

torsional loading. To be more specific, the simple estimates 

based on elementary strength of material formulas are shown in 

Fig. 3. This figure is only for illustrative purposes. The 

variables “G” and “E” are the shear and Young’s modulus 

respectively, whereas, “J” and “I” are the polar and bending 

moments of area. Furthermore, “A” is the cross sectional area. 

If the length of the virtual part is represented by “LVP”, and the 

left end of the part is clamped, the important stiffnesses are 

given by the following expressions: 

 

 

Master node
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Fig. 3, A generic, simplified problem for illustration purposes 
 

The spring constants can be translational and/or rotational in 

nature and up to six such constants can be inputted in the 

appropriate dialogue box which is provided in Fig. 4. Note that 

one can also specify such values using experimental data if 

available. 

Fig. 4, The input box for specifying the “Rigid Spring” virtual VP stiffness. 
 

V. THE CASE STUDIES UNDER CONSIDERATION 

  In the present paper, the geometry under the consideration 

is very simple so that the salient parts of the discussion are not 

lost to insignificant details. These geometries are shown in Fig. 

5. For the case of axial and bending modes, the cross section is 

square, whereas for the torsional study, the cross section is 

circular. The material in all cases is assumed to be linear and 

elastic with the Young’s modulus E = 200 GPa, and Poisson’s 

ratio υ = 0.266. The material density is taken to be ρ = 7860 

kg/m3. The details of the dimensions of the part studied are 

presented next.  

In reference to the geometries shown in Fig. 5, the actual 

total length of the bar is 𝐿 = 150 𝑚𝑚  . This total length is 

consisting of two parts. 𝐿𝑀𝑃 = 100 𝑚𝑚  and 𝐿𝑉𝑃 = 50 𝑚𝑚 . 

The subscripts “MP” and “VP” refer to the “Modeled Part” and 

“Virtual Part” respectively. Looking at Fig. 5, the “Modeled 

Part” is the solid grey color and the “Virtual Part” is the 

transparent grey color. 

 

 

 

 

 

 

 

 

 
Fig. 5, Geometry and boundary conditions of the case studies considered 

VI. AXIAL MODES OF A CLAMPED BAR  

 The bar under consideration is that of Fig.6, whose left end 

is fixed, and the right end is free. The axial vibration in the Z-

direction are of primary interest. Two cases are considered in 

the analysis. In the first instance, the virtual part is “Rigid”, 

followed by “Rigid Spring” virtual part. 

Case (a) Rigid Virtual Part, Axial Vibration:  

The location of the “Handler” point has no effect on the 

analysis, however, for the sake of uniformity (with the case of 

“Rigid Spring” analysis) it is placed at the centroid of the virtual 

part. This means, it is placed at a distance of 125 mm from the 

fixed end. The mass of the virtual part, is calculated based on 

the density of the material and placed at the handler point. This 

mass has the numerical value of 𝑚𝑉𝑃 = 0.0393 𝑘𝑔. 

Fig. 6, Model used for Case (a), “Rigid” virtual part, axial 

This particular problem has an analytical solution based on 

“Bar” theory with a lumped mass 𝑚𝑉𝑃 attached to the free end 
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[9]. The natural frequencies are computed from the equation 

below, where 𝑐 = √
𝐸

𝜌
 

2𝜋𝑓𝑛𝐿𝑀𝑃

𝑐
tan

2𝜋𝑓𝑛𝐿𝑀𝑃

𝑐
=

𝜌𝐴𝐿𝑀𝑃

𝑚𝑉𝑃
   where 𝑛 =  1 2 3 … 

The frequency  𝑛 has been normalized to have the units of Hz. 

The above theoretical frequencies are based on stress wave 

propagation ie, solving the one-dimensional partial differential 

equation governing the deformation. 

 Based on a mesh convergence study, an extremely fine mesh 

of linear tetrahedron elements has been used which is also 

shown in Fig. 7 below for the sake of completeness. This mesh 

has been maintained for all other analysis and case studies. 

Fig. 7, The discretized mesh and the zoomed view for case (a) 

 The calculated first three natural frequencies associated with 

the axial vibration are given in the Table I below. The middle 

column consists of the Catia generated frequencies whereas the 

third column is the one calculated from the theoretical formula 

presented earlier.  

TABLE I 

Axial Frequencies of Vibration (Hz), “Rigid” Virtual Part 

 Catia (Rigid) Theoretical Formula 

mode 1 8682 8645 

mode 2 29364 29250 

mode 3 52932 52810 

  The FEA results are in excellent agreement with theory as 

reflected in the table. The deformation modes of the FEA 

calculations are also in good agreement with the theoretical 

ones but are not displayed due to the space limitations. Keep in 

mind that the position of the handler point used for a rigid 

virtual part is irrelevant. 

Fig. 8, The single degree of freedom approximation 

A simple, single degree of freedom approximation to the 

problem at hand is also presented in Fig. 8. Here, the lumped 

mass associated with the virtual part is attached to the linear 

spring using a massless rigid bar as indicated. The stiffness of 

the spring is the same as the stiffness of the modeled portion of 

the bar. Namely, 𝑘𝑀𝑃 =
𝐴𝐸

𝐿𝑀𝑃
. The natural frequency of the 

SDOF system is then given by  = √
𝑘𝑀𝑃

𝑚𝑉𝑃+𝑚𝑀𝑃/3
. Using the 

data for the present problem, the frequency value estimated by 

this expression is  = 8795  Hz which a reasonable 

approximation to the value reported in table I.  

Case (b) Rigid Spring Virtual Part, Axial Vibration:  

As a next model, a “Rigid Spring” virtual part is representing 

the latter 𝐿𝑉𝑃 = 50 𝑚𝑚 of the 150 𝑚𝑚 part as shown in figure 

9 below. The axial stiffness of this spring is calculated based on 

half the length of the virtual part, ie 0.5𝐿𝑉𝑃 = 25 𝑚𝑚 . The 

rationale behind using 0.5𝐿𝑉𝑃 has to do with the fact that the 

mass of the virtual part is represented by a lumped value at the 

centroidal location. 

Fig. 9, Model used for Case (b), “Rigid Spring” virtual part, axial 
 

The exact location of the handler point should be taken into 

account when the stiffness of VP is calculated. In our analysis, 

because the lumped mass is placed at the centroid, the stiffness 

is calculated as shown below 𝑘𝑉𝑃 =
𝐴𝐸

0.5𝐿𝑉𝑃
= 8𝐸 + 8 𝑁/𝑚 . 

This value based on the direction shown in Fig. 3, should be 

inputted as depicted below. 

 

 

 

 

 

Fig. 10, Specified spring stiffness for case (b) 
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is why it looks so dark.
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Fixed end

𝑚𝑉𝑃

Fixed end

𝑘𝑀𝑃

 

 

8𝐸 + 8 𝑁 𝑚



16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 

Inclusion”, 19-21 July 2018, Lima, Peru. 

 5 

 

The calculated first three natural frequencies associated with 

the axial vibration using the “Rigid Spring” virtual part are 

given in the Table II below. Note that the second column entries 

are the same theoretical values displayed in Table I, namely 

theoretical formula presented earlier (length of the bar being 

𝐿 = 𝐿𝑀𝑃 + 𝐿𝑉𝑃 = 150 𝑚𝑚) . The details of the theoretical 

values are given immediately below which can also be found in 

[9] . 

The natural frequencies are computed from the expression 

  𝑛 =
(2𝑛−1)

4𝐿
√
𝐸

𝜌
  where 𝑛 = 1 2 3 … 

The frequency  𝑛 has been normalized to have the units of Hz. 

The above theoretical frequencies are based on stress wave 

propagation ie, solving the one-dimensional partial differential 

equation. Furthermore, length of the bar is 𝐿 = 𝐿𝑀𝑃 + 𝐿𝑉𝑃 =
150 𝑚𝑚. 

TABLE II 

Axial Frequencies of Vibration (Hz), “Rigid Spring” Virtual Part 

 Catia (Rigid Spring) Theoretical Formula 

mode 1 8331 8407 

mode 2 24503 25220 

mode 3 44182 42040 

As the approach in case(a), a single degree of freedom system 

can be developed which still takes into account the stiffness of 

the ignore portion of the model. In this situation, the two springs 

associated with the “Modelled Part” and the “Virtual Part” are 

placed in series with an equivalent stiffness. 

VII. BENDING MODES OF A CLAMPED BAR 

 The bar under consideration is that of Fig.5, whose left end 

is fixed, and the right end is free. The bending vibration in the 

X-direction is of primary interest. Two cases are considered in 

the analysis. In the first instance, the virtual part is “Rigid” 

followed by “Rigid Spring” virtual part. 

Case (c) Rigid Virtual Part, Bending Vibration: 

This is precisely what is shown in Fig. 11. Note that since the 

theoretical solution to be used corresponds to transverse 

vibration (ie in X-direction), the rotary inertia of the virtual part 

needs to be ignored. This issue is important enough that needs 

to be explained further. 

 

Fig. 11, Model used for Case (c), “Rigid” virtual part, bending 

 

The original and the exaggerated deflected shape of the end 50 

mm of the bar is shown in Fig 12. Note that in principle, the 50 

mm section (the rigid virtual part) not only translates but also 

rotates. This leads translational inertia due to displacement, but 

also rotary inertia due to Y-axis rotation. In the present paper, 

this rotary inertia which amounts to 
1

12
𝑚𝑉𝑃𝐿𝑉𝑃

2  is ignored. 

 

 
12, The effect of translational and rotary inertia 

 

For comparison purposes, a theoretical solution is not 

readily available in the literature. It would be grossly unfair to 

use the frequency formula available in the literature, which 

involve the total length of the beam being 150 mm. A reference 

finite element model using beam elements only has been 

created in Catia. The results of this model will be used for 

comparison purposes. In the reference model, it is assumed that 

the latter 50 mm of the bar is rigid. Therefore, 20 beam elements 

are used to model the first 100 mm and 10 beam elements to 

model the end 50 mm. All of these 30 elements have the true 

10x10 mm cross section. However, the Young’s modulus of the 

end 50 mm is 100 times larger than the steel (which makes the 

first 100 mm section). The density of the shorter section is the 
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same as steel. For all practical purposes, the shorter section is 

acting as a rigid bar. See Fig.13 for the visual explanation. 

Fig.13, The model used as a reference for comparison purpose 

The mass of the right 50 mm section is directly taken into the 

consideration by using the actual density of steel. This is 

symbolically shown in Fig. 13 as the 11 lumped masses on this 

section which incidentally can be misleading. The calculated 

first three natural frequencies associated with the bending 

vibration are given in the Table III below. The middle column 

consists of the Catia generated frequencies whereas the right 

column is the one calculated from the reference model 

described above in Fig. 13. 

TABLE III 
Bending Frequencies of Vibration (Hz), “Rigid” Virtual Part 

 Catia (Rigid) Reference Values 

mode 1 379 362 

mode 2 2676 2365 

mode 3 8409 7303 

  The FEA results are in reasonable agreement with 

“Reference Values” as reflected in the table III. In the case of 

bending, the position of the handler point affects the results. In 

the present analysis, the centroid of the virtual part is the most 

reasonable location for such a point. 

Case (d) Rigid Spring Virtual Part, Bending Vibration:  

Geometrically speaking this is the same problem considered in 

case (c) except that the “Rigid Spring” virtual part is used. In 

order to use this feature, the transverse stiffness of the “VP” has 

to be calculated. This is easily estimated from the expression  

Fig. 14, Model used for Case (d), “Rigid Spring” virtual part, bending 

𝑘𝑉𝑃  =
3𝐸𝐼

(0.5𝐿𝑉𝑃)
3   𝑘𝑉𝑃 𝜃𝑦 =

𝐸𝐼

0.5𝐿𝑉𝑃
 readily available in strength 

of materials textbooks. The mass is the translational mass of the 

virtual part as discussed earlier. This can also be seen in Fig. 

14. 

The translational spring stiffness in the “X” direction is 

calculated as 

𝑘𝑉𝑃  =
3𝐸𝐼

(0.5𝐿𝑉𝑃)
3 = 3.2𝐸 + 7 𝑁/𝑚  

The rotational spring stiffness about the “Y” axis is given by 

𝑘𝑉𝑃 𝜃𝑦 =
𝐸𝐼

0.5𝐿𝑉𝑃
= 6.67𝐸 + 3 𝑁.𝑚/𝑟𝑎𝑑 

The above values are inputted as shown in Fig. 15. 

Fig. 15, Specified spring stiffness for case (d) 

As far as a theoretical solution, it can be found in standard 

vibration textbooks [9], [10], The first three transverse 

frequencies are given by: 

 𝑛 =
(𝛽𝑛𝐿)

2

2𝜋
√

𝐸𝐼

𝜌 𝐿4
      

Where  𝛽1𝐿 = 1.875  𝛽2𝐿 = 4.694 𝛽3𝐿 = 7.855   

The length L is the total length, namely  𝐿 = 𝐿𝑀𝑃 + 𝐿𝑉𝑃 =
150 𝑚𝑚 . It is worth mentioning that the above three 

frequencies are actually the first three roots of a frequency 

equation given by 

cos(𝛽𝑛𝐿) cosh(𝛽𝑛𝐿) + 1 = 0 where 𝑛 = 1 2 3… .. 

The term cosh (𝑥) is the well hyperbolic trigonometric function 

expressed by 

cosh(x) =
𝑒 + 𝑒− 

2
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The calculated first three natural frequencies associated with 

the bending vibration using the “Rigid Spring” virtual parts are 

given in the Table IV which are recorded in the second column. 

The third column are the theoretical values discussed 

immediately above. 

TABLE IV 
Bending Frequencies of Vibration (Hz), “Rigid Spring” Virtual Part 

 Catia 

 (Rigid Spring) 

Theoretical 

Formula 

 Fully 3D 

FEA Analysis 

mode 1 378 362 372 

mode 2 2613 2270 2283 

mode 3 8014 6355 6202 

The entries in the last column, namely column 4 are the Catia 

results based on the full, three-dimensional analysis of the 

entire bar with length of 150 mm. Note that there is a significant 

difference between the “Rigid Spring” virtual part calculations 

and the latter two columns. The deformation modes of the FEA 

calculations are in reasonable agreement with the theoretical 

ones but are not displayed due to the space limitations. 

VIII. TORSIONAL MODES OF A UNIFORM SHAFT 

  In engineering applications, shafts and particularly shafts 

with a uniform cross section are the most common components 

for transferring power. Shafts have the important property that 

their circular cross sections remain planar and do not warp in 

torsion. Due to their widespread applications, the twisting 

vibration of such parts is of great significance.  

The part under consideration is a shaft of length 𝐿 =
150 𝑚𝑚 with a circular cross section of radius 𝑅 = 10 𝑚𝑚. 

This is displayed in Fig. 16. The plan is to model the first 𝐿𝑀𝑃 =
100 𝑚𝑚  of the shaft with linear tetrahedron elements. The 

subscript “MP” refers to the “Modelled Part”. The end 𝐿𝑉𝑃 =
50 𝑚𝑚 is to be consisting of the Virtual Part, or “VP”. The 

exact location of the handler point is not relevant if “Rigid” or 

“Rigid Spring” is employed and the deformation is purely 

torsional. Regardless, for the sake of consistency, the handler 

point is positioned at the centroid of the portion which is not 

modelled.  

 

Fig. 16, The shaft under torsion and the associated dimensional parameters 

The theoretical torsional natural frequencies are computed 

from the expression 

  𝑛 =
(2𝑛−1)

4𝐿
√
𝐺

𝜌
  where 𝑛 =  1 2 3 … 

The frequency  𝑛 has been normalized to have the units of Hz.  

Case (e) Rigid Virtual Part, Torsional Vibration:  

 Here, the 50 mm right end of the bar is replaced with a 

“Rigid” virtual part, as shown in Fig. 17. Since only torsional 

vibration is considered, the exact location of the handler point 

is irrelevant. However, it is placed at the centroid of the virtual 

part as in the previous cases. In the case of pure torsion, the 

translational mass of the virtual part does not contribute to the 

analysis, whereas its rotary inertia about the Z-axis is the 

determining factor. The value of the rotary inertia is calculated 

below. 

  𝑉𝑃 𝜃𝑧 =
1

2
𝑚𝑉𝑃𝑅

2 =
𝜋

2
𝜌𝐿𝑉𝑃𝑅

4 = 6.17𝐸 − 6 𝑘𝑔.𝑚2  

Fig. 17, Model used for Case (e), “Rigid” virtual part, torsion 

 

The theoretical solution of this problem comes from a 

frequency equation which closely resembles that of “Rigid” 

virtual part in axial vibration. Similar to that situation, the 

length of the bar on the torsion is based on the “Modeled Part”, 

ie 𝐿𝑀𝑃 . 
 

The natural frequencies are computed from the equation below, 

where 𝑐 = √
𝐺

𝜌
 

2𝜋𝑓𝑛𝐿𝑀𝑃

𝑐
tan

2𝜋𝑓𝑛𝐿𝑀𝑃

𝑐
=

𝜌𝐴𝐿𝑀𝑃

𝑚𝑉𝑃
   where 𝑛 =  1 2 3 … 

The frequency  𝑛 has been normalized to have the units of Hz. 

The first three natural frequencies associated with the torsional 

vibration are given in the Table V. The second column consists 

of the Catia generated values frequencies whereas the third 

 

Clamped End

Y

X

Z

𝐿𝑀𝑃

𝐿
𝐿𝑉𝑃

Torsional
vibration

 𝑉𝑃 𝑧 =
1

2
𝑚𝑉𝑃𝑅

2
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column is the one calculated from the theoretical formula 

presented earlier (length of the bar being 𝐿𝑀𝑃 = 100 𝑚𝑚) 

 

TABLE V 

Torsional Frequencies of Vibration (Hz), “Rigid” Virtual Part 

 Catia (Rigid) Theoretical Formula 

mode 1 5433 5433 

mode 2 18383 18380 

mode 3 33190 33190 

The agreement is just about perfect as recorded in the table. 

Such perfect matches are strictly coincidental and in general do 

not take place in numerical simulation. 

Case (f) Rigid Spring Virtual Part, Torsional Vibration:  

As in the previous cases of axial and bending vibration, this 

is essentially the same problem considered in case (e) except 

that the “Rigid Spring” virtual part is used. The first 

requirement here is to estimate the torsional stiffness of the 

“Virtual Part” as displayed in Fig. 18. 

Fig. 18, Model used for Case (f), “Rigid Spring” virtual part, torsional 

The stiffness of this torsional spring is based on strength of 

materials formulas and given by 𝑘𝑉𝑃 𝜃𝑧 =
𝐺𝐽

0.5𝐿𝑉𝑃
. Note that the 

length, 0.5𝐿𝑉𝑃 is used as the rest of the spring (the last 25 mm) 

which is not engaged and primarily goes for a ride. In this 

expression, J is the cross sectional polar moment of inertia 

given by  =
𝜋

2
𝑅4, where R is the shaft radius. 

As for the mass of the virtual part, due to the torsional motion, 

its rotary inertia is of significance. This inertia is estimated from 

 𝑉𝑃 𝜃𝑧 =
1

2
𝑚𝑉𝑃𝑅

2 . Due to the absence of the translational 

motion of the mass 𝑚𝑉𝑃 , its value only appears as a part of 

 𝑉𝑃 𝜃𝑧. Using the data provided in the problem, the following 

estimates are arrived at. 

 𝑉𝑃 𝜃𝑧 =
1

2
𝑚𝑉𝑃𝑅

2 =
1

2
0.039(0.01)2 = 6.17𝐸 − 6 𝑘𝑔.𝑚2 

𝑘𝑉𝑃 𝜃𝑧 =
  

0.5𝐿𝑉𝑃
= 9.93𝐸 + 4 𝑁.𝑚/𝑟𝑎𝑑 

Keep in mind that G, the shear modulus calculated from, 

 =
𝐸

2(1+𝜈)
 , where 𝜈 = 0.266 is the Poisson’s ratio for steel. 

The information calculated above can be inputted in Catia 

using the dialogue boxes shown in Fig. 19. 

Fig. 19, the dialogue boxes for describing the torsional data 

The calculated first three natural frequencies associated with 

the torsional vibration using the “Rigid Spring” virtual parts are 

given in the Table VI which are recorded in the second column. 

The third column are the theoretical values discussed 

immediately above. 

TABLE VI 
Torsional Frequencies of Vibration (Hz), “Rigid Spring” Virtual Part 

 Catia 

 (Rigid Spring) 

Theoretical 

Formula 

 Fully 3D 

FEA Analysis 

mode 1 5323 5283 5283 

mode 2 16777 15850 15850 

mode 3 29486 26420 26418 

 

The last column, namely column 4 are the Catia results based 

on the full, three-dimensional analysis of the entire bar with 

length of 150 mm. Although the first two modes are in 

reasonable agreement with each other, the relative error is 

relatively high in the third mode. It is worth reminding the 

reader that the theoretical formula was stated in the early part 

of this section. However, it is repeated below for convenience. 

 𝑛 =
(2𝑛−1)

4𝐿
√
𝐺

𝜌
  where 𝑛 =  1 2 3 … 

 

 
9.93𝐸 + 4  x   a 

6.17𝐸 − 6   x 2

0.039   
But not needed



16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 

Inclusion”, 19-21 July 2018, Lima, Peru. 

 9 

 

The frequency  𝑛 has been normalized to have the units of Hz. 

Furthermore, the length L is based on 𝐿 = 𝐿𝑀𝑃 + 𝐿𝑉𝑃 =
150 𝑚𝑚. 

IX. THE RATIONALE FOR THIS STUDY 

  The focus of the material presented in this paper was the 

functionalities and performance of the “Rigid” and “Rigid 

Spring” elements in modal frequency calculations. These 

elements were discussed in reference to the Catia v5 

commercial finite element package. It is important to clarify the 

need for such studies. At the early stages of the mechanical 

design, very frequently, there is a need to study the dynamic 

behavior of the part under a transient/harmonic load. The 

method of choice for such a purpose is “Linear Dynamics” 

analysis which can be effectively used for such studies.  

 A concrete example is depicted in Fig. 20 where the SAE 

Mini-Baja [11], [12] is displayed. This all-train vehicle is 

widely used by mechanical engineering students in their 

capstone design project, where they are expected to design, 

fabricate, and test the vehicle according to the specifications set 

by the Society of Automotive Engineers (SAE). The use of 

“Static” finite element analysis has become fairly standard in 

this project but “Dynamic” calculations is very rare. Part of the 

reason is the complexity and lack of expertise/code 

documentation in commercial codes on this topic.  

Fig. 20, the SAE Mini-Baja, engine modeled with “Rigid” virtual part 

 Imagine that one of the goals of the analysis is to find the 

dynamic response (such as stresses) of the Mini-Baja when a 

wheel experiences an impulsive load. This can happen when the 

vehicle passes over a speed bump. Based on the material 

presented in this paper, one way to efficiently model such a 

problem is to treat the engine unit as a lumped mass placed at 

the handler point of a “Rigid” or “Rigid Spring” virtual part as 

shown in Fig. 20. In terms of a dynamic response, the details 

including the stiffness of the engine may not be consequential. 

In the event that the “Rigid Spring” virtual part is used, the 6-

spring stiffnesses can be easily determined from the “Static” 

analysis of the structure, or from the experimental data if 

available. 

X. CONCLUDING REMARKS 

 In implementing the ideas (rationales) presented in the 

previous section and employing “Linear Dynamics”, first, one 

needs to calculate the vibration frequencies of the different 

modes. The reader is reminded that the concept of “Linear 

Dynamics” relies on the modal superposition approach and 

therefore, extracting this information is critical. In many 

structural dynamics applications, the response of the system is 

dictated by only a limited number of modes.  

A total six different cases were studied in this paper. They 

involved the classical modes of deformation, namely, axial, 

bending, and torsion. For each, both the “Rigid” and “Rigid 

Spring” virtual parts were utilized. In general, the results were 

acceptable for the calculated frequencies, however, the 

correlation with theory was better for the lower modes. The 

concept of force superposition enables on to use more 

complicated loading conditions in a real-world problem. The 

general observation with even our simple loading conditions is 

that, although there can be substantial saving of computing 

resources, one should be careful in the interpretation of the 

results.   
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