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Abstract—We use Physics ideas and equations to explain and
to provide quantitative results of a possible measurement of
the charges of albumin in the human kidney. Basically we use
the diffusion equation and it is interpreted as a charge density
fluxing through out the last layers of the kidney in the urine
formation space. This study is a combination of Physics ideas to
solve and face concrete problems of global diseases by which the
presence of novel and alternatives ideas would serve to tackle
the possible complications of type-2 diabetes progress. Therefore
the comprehension of the why of the progress of certain diseases
might be seen from the Physics angle and thus to provide new
alternatives to improve the quality of life of people.

Index Terms—Diffusion’s equation, Diabetic nephropathy, al-
bumin proteins.

I. INTRODUCTION

A. Motivation of the Paper

One of the most strong world-wide pandemic is known as
the diabetes disease in their forms either type-1 or type-2
constitutes a permanent and threatening potential to continue
with the degradation of the human phisiology in particular
that of the renal apparatus, by which in most cases it turns
out to be the diabetes kidney disease (DKD in short). In this
manner novel techniques combining the criteria of medicine
and engineering are needed. Clinically speaking, the apparition
of DKD is featured for being asymptomatic since the first
diagnosis of type-2 diabetes, for instance. Commonly, the
diagnosis of DKD is given through the clinical test of albumin.
For example, in the scenario of macroalbumin in diabetic
patients, the clinical test would yield values of above of 300
mg/24 h, or around.

B. Contribution of the Paper

According to tests and biochemical studies is known that
one of the reasons of the why of the progress of DKD is
because the abundance of glucose permanently in blood so
that their dipoles are continuously exerting the cancellation
of electric charges in the intern and extern layers of the
kidney resulting in the unstoppable flux of proteins through
the glomerulus. This is translated as the feasibility of the
pass of large bunches of negatively charged proteins through
the layers of the renal glomerulus, and ending in the zone

of urine formation. Clearly, an early identification of the
very beginning of DKD might be advantageous from various
angles in the sense that the nephrologist encounters solid
positions for facing the disease in order to reconfigure the
pharmacology or another early intervention. In this paper, we
focus in the concrete task for solving the diffusion’s equation
for the bunches of albumin going through the different layers
of glomerulus. Thus the diffusion’s equation

∂

∂t
ρ(~r, t) = D~∇2ρ(~r, t) (1)

where D the diffusion constant allows to model in our case
the anomalous flux of albumin through the urine. The main
hypothesis consists in the depletion of charges in the inner
layers of glomerulus because the high dipole moment of
glucose in those type-2 diabetes characterized by having a
poor glucose’s control in large periods. Under the assumption
that the mobility of the bunches is due to the electrodynamics
of the interaction between the charges of albumin and the ones
located over the glomerular basement membrane (GBM) and
podocytes. Then the solution of (1) leads to use the well know
Gauss’s law

~∇E(~r, t) =
1

ε0
ρ(~r, t), (2)

so that the knowledge of the charge density allows us to
estimate the electric field of the charges of albumin leaving the
glomerulus. By using the divergence theorem the total charge
can be obtained in a straightforward manner

1

ε0

∫
V

ρ(~r, t)dV =
QT
ε0
, (3)

fact that lead us to use the well-known Poisson equation to
formulate a equation based entirely in electrodynamics that
would explain the transport of charges of albumin going to
the zone of urine formation,

F =
QTQN
4πε0r2

(4)

where QN becomes the noise charge exerting a Coulomb-
like force with the albumin proteins. Clearly one notes the
importance of the diffusion’s equation to go through the
electric phenomenology of central problem.
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Fig. 1. Sequence which might explain the anomalous pass of bunches of
proteins of albumin through the urine inside the human kidney. A possible
cause for this would be the presence of an anomalous concentration of dipoles
of glucose.

II. MODEL OF FLUX OF ALBUMIN THROUGH THE
GLOMERULUS

A. The Very Beginning of DKD

Fig. 1 displays a possible scenario of the fluxing and
dynamics of the proteins whose origin is the afferent vessels
system and are pushed out the glomerular zone due to the
following two-step sequence: (i) positive part of the dipole
moment of glucose cancels the negative ones located in the
intern part of the GBM, and (ii) bunches of albumin can
surpass the region composed by podocytes and move on
beyond the slit diaphragm. Albumin size might be of order
of 5nm approximately, being this enough for passing the slit
diaphragm efficiently. These proteins, (and others) can reach
the convoluted tubule and be part of the urine formation. Thus,
the radius r1 and r2 denote the variables which define the
geometry of the glomerulus. The angular dependence of these
cylinders doesn’t apply any influence in the fluxing of albumin,
so one can assume that there is symmetry along the variable θ.
However, for ends of the numerical extraction of the equation’s
parameters, we kept the scenario where the cylinder has a
height z.

Fig. 2. Plotting of the radial part of the difusion’s equation Eq.(9) being
governed by integer-order Bessel ’s functions as seen in the geometry of
Fig.1. The small islets in the bottom panel is interpreted as singles bunches
of albumin passing through the last layers of the human kidney.

B. Solving the Diffusion’s Equation

In order to solve the diffusion’s equation ∂
∂tu(~r, t) =

D~∇2u(~r, t) where D the diffusion’s constant, we proceed to
use the cylindrical coordinate system by assuming that the
glomerulus has the form as the one sketched in Fig. 1:

1

D

∂

∂t
u(~r, t) =

1

r

∂

∂r

(
r
∂

∂r
u(~r, t)

)
+

(
1

r2

∂2

∂θ2
+

∂2

∂z2

)
u(~r, t).

(5)
The usage of the method of separation of variables lead us to
write the function u(~r, t) = R(r)Θ(θ)Z(z)T (t), in according
to the variables belonging to the coordinate system. Thus,
when u(~r, t) is inserted in (1) and dividing both sides of
equation by R(r)Θ(θ)Z(z)T (t) [6], we can disengage the
equations in the following manner

1

DT (t)

dT (t)

dt
= −λ (6)

1

rR(r)

∂

∂r

(
r
∂R

∂r

)
+

(
1

Θr2

∂2Θ

∂θ2
+

1

Z

∂2Z

∂z2

)
= −λ. (7)

Eq. (2) can be solved in a straightforward manner resulting
in T (t) = T0Exp(−λDt). However, Eq. (3) requires a
refined methodology as to introduce new quantities that would
guarantee its closed-form solution. For instance, 1

Z
∂2Z
∂z2 =

−m2 implying that the first side of Eq. (3) is written as
1

rR(r)
∂
∂r

(
r ∂R∂r

)
+ 1

Θr2
∂2Θ
∂θ2 +k2. Multiplying by r2 and forcing

to 1
Θ
∂2Θ
∂θ2 =−`2 and accommodating conveniently we have

φ2 d
2R

dφ2
+ φ

dR

dφ
+
[
φ2 − `2

]
R(r) = 0, (8)
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with φ = qr, and q =
√
λ−m2 and which is essentially the

Bessel’s equation, having as closed-form solution to R(φ) =
E`J`(φ) + F`W`(φ) with J` and W` the Bessel and Weber
functions. In the other hand, Θ(θ) = C`Sin(`θ) +D`Cos(`θ)
and Z(z) = AmSin(mz) + BmCos(mz). With the boundary

conditions, m = n1π
z1

and ` = n2π
θ1

, with n1,2 integer
numbers, and z1 and θ1 values corresponding to the geometry
of glomerulus. Throughout the paper, we will assume that
q =

√
λ(1− m2

λ ) ≈
√
λ, implying that λ >> (n1π

z1
)2. The

solution of (1) can be written in the following form:

u(~r, t) = T0Z0Θ0

∞∑
`=−∞

Exp[−λD(t− t0)]Sin
(
n1πz
z1

)
Sin
(
n2πθ
θ1

)
[g`(qr)J`(qr) + h`W`(qr)]

J`(qr2)W`(qr1)− J`(qr1)W`(qr2)
(9)

where las functions g`(qr) and h`(qr) are given by
R2W`(qr1)−R1J`(qr2) and R1J`(qr2)−R2J`(qr1), respec-
tively. The inner and outer radius r1 and r2 denote the radial
distances or displacements made by the compound described
by u(~r, t). A simple illustration is seen in Fig.2. The sum over
all integer number Bessel functions is applied on `, by which
we are accepting all contributions. In this formulation of the
solution of u(~r, t) we can define that the beginning of the
dynamics starts with T0 = 0. The boundary conditions taken
for the solution of (1) has demanded Z(0) = Z(z1) = 0
as well as Θ(0) = Θ(θ1) = 0. In addition, the part
radial: R(qr1) = R1 and R(qr2) = R2 indicating that the
compound of proteins have values when is moving out from
the microvascular veins to the slit diaphragm and podocytes.
The solution of (1) actually follows the common procedure
when the differential equation contains the main structure of a
Bessel’s function. In general, from (5) we can anticipate that
the mathematical shape of any compound might be governed
by radial and temporal term, fact which leads us to write
u(~r, t) ≈ Exp[−λDt]J`(qr). This form was obtained in [7]
from a phenomenological derivation.

C. Implication of the Bessel’s Function in their Interpretation
as Diffusion of the Bunches of Albumin

According to Eq.3 once we know the charge density of
albumin then we proceed to calculate the total charge. In Fig
3, up to 4 different scenarios of the morphology of the charges
or compounds of proteins of albumin as function of radial
variable are plotted. For this exercise, we have assumed the
following numerical values: r1=10nm, r2=50nm, R1 = 1 r.u,
R2 = 2r .u, (r.u=radial units), Θ0=25rad, Z0=10nm, T0=1,
n1=2, n2=3, z1=π and Θ1 = π/4. Thus, we can evaluate now
for the variables in the following values: θ = π/5rad, and
z = 5/2nm. The diffusion’s constant D is set to 0.14 or a 50%
of the H2O value (0.28 in 25oC). We only left to the variables
r and t to be the independent ones for analysis. In fact, Fig.
3 displays up to 4 different values of the integer number `.
We have plotted u(r, t) for ` = [1, 4]. All these distributions
are showing their peaked morphology which indicates that
there exists a prominent bunching of albumin proteins. In
praxis, from the peaked distribution we can link this with the
anomalous accumulation of proteins and therefore, the albumin
excretion rate might be estimated approximately. For instance

Fig. 3. In top panel, different curves for the values of the integer number
`=[1-4], of the closed-form solution of the diffusion’s equation (1) u(r, t = 1)
for the first nanometer of displacement is shown. In bottom panel, by assuming
that the bunching described by u(r, t = 1) has a total charge, the integration
over the volume (in cylindrical coordinates) is plotted.

the case where ` = 1 the peak value reaches 0,40 a.u. Another
peak is seen in r=0.8 a.u. radial for ` = 2. According to the
frame explained in Fig. 1, it is interpreted as the quantity of
proteins which has surpassed the area populated by podocytes
[8]. Finally, the case of ` = 4 indicates that u(r, t) would
be the case of the most prominent peak in r=0.7. The peaked
bunches of albumin might be considered hypothetically as the
very beginning of the DKD. This is founded on the basis that
the size of these bunches (≈10 nm) are passing through the slit
diaphragm whose size is of order of 5 to 15 nm [9]. Therefore,
the filtration of these bunches is imminently an alert of degree
of degradation of the glomerular layers of kidney. Indeed a
noise given by others proteins are also expected. From Fig.
3 the integration over a finite cylindrical volume displays a
total negative charge for ` = 4, fact that can be intrerpreted as
the screening of positive proteins such as the Tamm-Horsfall.
It is actually connected with the idea of electrodynamics that
states that ~∇ · ~EAL = u(r,t)

ε , with ε permittivity of medium,
and ~EAL is interpreted as the electric field of the bunch of
albumin leaving the glomerulus. Indeed, the electric potential
can also be estimated with ρAL = −ε~∇2Φ(~r).
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D. Physics of the Detection of Albumin and Tamm-Horsfall
Proteins

By assuming that the product of charge densities is governed
by the Coulomb force as written in Eq. 4 the expected
signal leaving the real glomerulus, we write below the master
equation,

F(t) = GGM(t)⊗ GGL(t) + GTHP(t) (10)

with GGM(t) and GGL(t) the contributions of charge denoting
the renal glomerulus and glucose, respectively. The main crite-
rion is that the dipole moment of glucose induces asymmetry
in the charge densities located along the glomerulus [9]. It
should be noted that the GTHP(t) models the THP (Tamm
Horsfall Proteins THP). The term F(t) contains explicitly the
charged albumin proteins which are proportional to the charge
density of the product of glomerulus and glucose respectively.
To note that this analogue to the intensity of the Coulomb-like
electric force. Below is presented the following expressions
for signal approximation Exp(− k

T xt) → Exp(−at) with
a = k

T x,

[GGM(t)⊗ GGL]m×n (t) =

∫ ∫
dωdβJm(βt)Exp(−aβ)×

× [βnδ(αβt− ω)] . (11)

Where the Bessel functions are in according to Eq. 9 the radial
solution of the Diffusion’s equation. With the simplest case
when the diagonal is considered, we can make more concrete
our proposal,

Diag{[GGM(t)⊗ GGL]m×n (t)} =

∫ ∫
dωdβJn(βt)Exp(−aβ) [βnδ(αβt− ω)] . (12)

The closed-form integration [10], for the signal GGM⊗GGL(t)
= GS(t) reads

GS(t) = A1

( 1
αt )

n[(
1
αt

)2
+
(
a
αt2

)2]n+ 1
2

. (13)

with A1 = 2nΓ(n+1/2)
(αt2)n

√
π

. For the THP, we considered the same
structure as given by the signal, but without the presence of
the parameters α,

GTHP(t) =

∫
Jn(βt)Exp(−aβ)βndβ. (14)

We perform the integration in a straightforward manner result-
ing in

GTHP(t) = A2
tn

[a2 + t2]
n+1/2

, (15)

con A2 = 2nΓ(n+1/2)√
π

. We can see that the parameters a in
given inside of signal and noise, however α does only with
signal. It is because the modeling of signal is derived from the
fact that the albumin flux has as origin the electric interaction
between glomerulus and glucose.

E. Near-to-End Model: Quantifying the Efficiency and Purity
of Proteins Detection

Here we introduce the definitions of efficiency and purity,
as part of a near-to-end model which would be required to be
consistent with previous ideas as given in [1]. Consider the net
amount of negatively charged proteins leaving the glomerulus
P1 and the total composition of charges coming from others
electrical sources (cations)

∑
j Cj , and the efficiency of senses

charges can be written as

Ef =
P1∑
j Cj

. (16)

We define the purity as the ratio between the signal plus noise
and the total charged compounds which has the chance of
being filtering by the glomerulus,

Pf =
P1 + P2

P1 + P2 +
∑
j Cj

. (17)

The received signal is maximum when the product of the
purity and efficiency does it in the same manner, independently
with or without any attenuation since we assume that these
quantities exhibits their maximum values during the first times
when albumin is filtering. In this manner the received signal
can be estimated as the product of the purity and efficiency
and reads Ψ = Ef × Pf

Ψ =
P1∑
j Cj
× P1 + P2

P1 + P2 +
∑
j Cj

,

Ψ ≈ P2
1 + P1P2∑

j Cj(P1 + P2)
. (18)

The approximation as seen in (16) is due to the neglecting of
the quadratic term in (

∑
j Cj)2. In this manner we obtain that

the received signal is made of two terms, one belonging to
the pure signal coming from the charges of albumin and the
second signal which can be understood as noise,

Ψ ≈ P2
1∑

j Cj(P1 + P2)
+

P1P2∑
j Cj(P1 + P2)

. (19)

It is interesting note that the derivation is phenomenological
but it valids the argument that the product of negatively
charged albumin and THP plays the role as noise including
to the albumin itself. Again, the received signal derived from
simple statistical arguments is in agreement with the the
phenomenon of repulsion which would occur between albumin
and THP little later both have passed to the subsequent
processes of formation of urine. Eq. 17 can be used in order
to acquire a most precise view of the prospective detection of
proteins through a nanosensor located few mm near to kidney.
Clearly one expects the detection made a nanosensor with a
resolution of 1 per mile. We use Eq. 11 and 13 whereas the free
parameters are obtained from a stochastic manner since most
of them are related with the random nature of the dynamics of
the proteins. In Fig,4 up three scenarios of detection of charged
proteins are plotted. The best scenario of signal detection
is seen in the bottom panel when signal surpasses notably
the noise or background distribution for the first second of
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Fig. 4. Charge concentration of albumin and Tamm Horsfall proteins when
both are simultaneously sensed by an expected nano sensor.

detection. From the third second of detection both proteins
are fully indistinguishable each other. It is interesting that
this can be explained in terms of the Coulomb forces in the
sense that same sign charges are repulsed each other and move
away of the range of the nanodetector. It makes a very small
charge concentration measurement of order of less than 10%
as seen in Fig.6 (C). One can see that the input-output view can
approximately reach interesting results which to some extent
can be also interpreted in the Physics side.

III. ESTIMATION OF THE ALBUMIN EXCRETION RATE

The peak of the distribution
∫
u(r)dV for ` = 4 shown in

Fig. 3 yields a value of order of 0.2. It is interpreted as the
maximum value per glomerulus. Now we pass to estimate the
AER from the value Max[

∫
u(r)`=4dV ]=0.2. For this end, we

use the expression

AER =
MPR

vPR × s
×VTOT (20)

where MPR mass of protein of albumin, VTOT total volume
for both kidneys, and vPR full volume of proteins. Firstly,
we assume that the net number of human glomerulus is 106

(both kidneys). Thus, we can estimate VTOT= 0.2 64 (10µm)3

106, where 0.2=p`=4 denotes the estimated of the peak of
curve when `=4 as seen in Fig. 3 bottom panel. The value
of 0.64 is obtained from the case of cylindrical geometry. On
the other hand, vPR=π(2nm)2 2nm = 8π (nm)3 (assuming
a cylindrical geometry). Finally, MPR= 1,6 (1nm)3kg, which
is the albumin’s mass. A straightforward calculation, yields
AER≈0.82 (1n)kg/s, where 1n=10−9. This value is actually
of order of 150 mg/day and, in somewhat, can be interpreted
as the very beginning of the DKD in patients having an older
diagnosis of type-2 diabetes of order of 10 years [10]. The
error of calculation is given by

∆AER

AER
=

√(
∆p`
p`

)2

+

(
∆VTOT

VTOT

)2

+

(
∆vPR

vPR

)2

(21)

where the main source of error would come from the capacity
of the model to make predictions of peak of the maximum
quantity of albumin bunches leaving the renal glomerulus.
However the volumes as written in (6) can also be subject to
systematic errors either by measurement or theoretical model.
A rapid calculation of ∆AER yields 7%, roughly.

On the other hand in Fig. 5, up to 4 smooth density his-
tograms for t = 0.22s (top panels), t = 0.72s (middle plots), and
t = 1.7s (bottom panels) are displayed. Yellow arrows indicate
the presence of noise. Although we use bandwidth plotting
the displaying of these distribution might be interpreted to
some extent as signal and noise. These plots are actually
showing their time evolution of the charged bunches going
to the convoluted tubule, previous to the urine formation.
These plots are expressing the different bandwidth used in this
exercise. We have employed 0.1, 0.15 and 0.3. The case of a
bandwidth of 0.1 is showing the complexity in the diffusion of
the proteins leaving the glomerulus. Actually, the importance
of this resolution is perceived as a kind of advantage from
the point of view of the nano networking which demands the
deployment of very sensitive nanodetectors around the last
layers of glomerulus. The reason of such deployment has its
ground in the fact that these prospective nanodevice might
produce emissions of THz waves, as alarm when the patient
is under events of high excretion of albumin into the urine.

IV. CONCLUSION

In this paper, we have solved as closed-form the diffusion’s
equation in cylindrical coordinates and its interpretation is
given in terms of the evolution of compound passing through
the renal glomerulus. The compound is understood to be a
bunch of proteins of albumin. These giant proteins are leaving
the glomerulus because the electrodynamics with the shielding
of charges over the inner and outer layers of glomerulus.
These results would support the idea that the deployment of a
nanosensor near to the glomerulus might be advantageous for
the anticipation of the very beginning of DKD, by assuming
the central hypothesis that the dynamics of the bunches of
albumin is entirely governed for repulsion and attraction
electric forces. Finally we have added to this study a view from
the input-output theory and adapted to the phenomenology of
anomalous transport of charged proteins resulting in possibles
curves of charges concentration detection of both signal and
noise. This approach turns out to be valid since explains also
the electrodynamics of the bunches of charges expelled by the
kidney due to the presence of high concentrations of glucose.

REFERENCES

[1] World Health Organization, Definition, diagnosis and classification of di-
abetes mellitus and its complications: Report of a WHO consultation. Part
1: Diagnosis and classification of diabetes mellitus, Geneva, Switzerland,
World Health Org., 1999.

[2] Stuart J Shankland and Martin R Pollak, A suPAR circulating
factor causes kidney disease, Nature Medicine 17, 926927 (2011)
doi:10.1038/nm.2443.

[3] Jochen Reiser, Akt2 relaxes podocytes in chronic kidney disease, Nature
Medicine 19, 12121213 (2013) doi:10.1038/nm.3357.

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and 
Inclusion”, 19-21 July 2018, Lima, Peru. 



Fig. 5. Smooth density histograms as a possible result of charge detection
for t = 0.22s (top panels), and t = 0.72s (middle plots) with the numerical
values of the curve

∫
u(r)dV for ` = 1. Yellow arrows indicate the location

of noise such as THP being also excreted together with the urine.

[4] Guillaume Canaud, Frank Bienaimé, Amandine Viau, Caroline Treins,
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