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Abstract— In this note we present a pedagogical approach of 

variable interactions applied to a 2×2 MIMO system and its 

confrontation to acquired data from a combined cycle power 

plant, is studied. The Laplace space is used as a scenario to 

compute basic operations and subsequently the resulting 

relations are transformed in convolution integrals.  The term 

responsible of interaction is then simulated and confronted to 

acquired data from dynamics variable of the power plant. 

Concretely, attention is paid to the drum level which turns out 

to be the variable of most importance inside the combined cycle 

power plant. Our approach is as a pedagogical introduction 

with a theoretical model sustained even for those cases where 

the temporal evolution of the drum level is notably affected by 

intrinsic fluctuations. Thus, a discrepancy between model and 

data results to be of order of 5%. It would suggest that the 

interaction variable formalism might be of interest to design 

model-based control theories which could be applied to those 

MIMO systems which are plagued of intrinsic and stochastic 

fluctuations. 

I.1 INTRODUCTION 

It is well-known the notable role that the advanced 
mathematical methodologies are playing inside the scenarios 
of control theory in where the necessity for implementing and 
optimizing sophisticated control systems is nowadays much 
more evident because the persistent industrial challenges. 
Essentially this necessity in implementing robust 
mathematical schemes into advanced control systems comes 
from the fact that the set point should be carefully monitored 
along the control horizon and be capable to anticipate and 
defeat those possible events containing fluctuations and 
instabilities system. In particular in power plants as those 
consisted in combined cycles [1]. A point of importance that 
should be stressed is that of the presence of instabilities as 
consequence of the interrelation of dynamic variables during 
the temporal evolution of the system and their associated 
random events. It is believed that variable interactions take 
place on multivariable systems and thus, is a potential source 
of instability [2]. In effect, as it is observed there the presence 
of variable interaction would led to unnecessary stops in 
plants. Furthermore, it has been proposed that such interaction 
has a stochastic character in the sense that it cannot be known 
with precision nor the whole mathematical interaction term 

can be measured when the system is running. Thus, naives and 
intuitive models are built. In this note, attention is paid to the 
possible scenarios where variable interactions take place and 
how it enters to the phenomenology of the problem. The 
formalism is expressed in the Laplace space which is 
commonly a recurrent territory to explore system properties. 
Once the interaction is fixed then the Laplace quantities are 
passed to the time through the well-known Faltung theorem. 
Then the system interaction term is expressed as convolution 
integral by allowing perform computational tests and 
simulations to validate the formalism. In order to illustrate all 
these ideas, the resulting computational simulations are 
confronted to acquired data from a combined cycle plant 
aimed to generate about 150 MW of power energy to a 
substantial portion of Lima city [2]. Mainly in this type of 
facilities the variable of central importance is that of the drum 
level which must be ranging in a small window of order of 1% 
of its nominal value in order to guarantee the stabilize of the 
engine dynamics appropriately. This note is structured as 
follows: in second section a brief introduction to the main 
pieces of the variable interaction formalism is presented. The 
discussion is based in the Laplace space entirely. In the end of 
the section, a convolution integral is proposed which involves 
the interaction term and which subsequently is used to 
simulate the drum level temporal evolution curve. In third 
section, an overview on the combined cycle plant together to 
the variables specification is presented. We provide a plot 
where the plant variables are displayed. In fourth section, a 
computational approach for testing the mathematical relations 
is provided. Finally, in fifth section some conclusions 
regarding the results of this note are drawn.    

I.2. THEORETICAL BACKGROUND 

A very useful technique to get information about stability 

of complex systems is that of using the Laplace space which 

enables us to go through their crucial properties. It is perhaps 

well exemplified in the typical operations for extracting the 

system poles.  Among a plethora of cases, the Laplace space 

is a recurrent territory to explore system robustness and their 

weakness. A well-known theorem also called the Faltung 

theorem provides a vision to manage the so-called 

convolution integrals in where the system acquire some kind 

of complexities because the presence of the time evolution of 

their variables. 

In this note we stress a pedagogical application of the 
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Faltung theorem to apply to the cases where a system acquires 

a different dynamics as consequence of the interaction among 

their variables. Some studies were performed at the past for 

the case of a ball mill grinding circuit where was found that 

the 3X3 MIMO system [3] contains an interesting 

phenomenology due to the confluence of variables which are 

described as interactions. 

In fact, it is not so well studied in the literature that the 

grade of importance of the variables of interaction has onto 

the output ones.  We stress the fact that the Laplace space and 

the Faltung theorem can be aspects denoting the same 

problem. 

This note is organized as follows: in second section in a 

general way the Faltung theorem is described.  In third section 

a general application to 2X2 MIMO system is provided. It is 

emphasized the cases with and without interactions. In fourth 

section, the apparition of a term similar to the  Volterra series 

is remarked [3][4]. In fifth section, a simple exercise with the 

assistance of MAPLESOFT is performed in order to illustrate 

the contribution of the interaction in the full output. Finally, 

some conclusions regarding the results of this short note are 

drawn.  

I.3. OVERVIEW TO THE FALTUNG THEOREM 

In many books the Faltung theorem is demonstrated from the 

multiplication of a two functions in the Laplace space, as 

follows 








a

sy

a

sx dyyFedxxFesfsf )()()()( 1121
 (1) 

where one is using the Laplace transformed definition, 

strictly. It is easy to demonstrate that the previous integral can 

be reduced to 




 
aa

sx dzdtzFztFe )()( 21  (2) 

which is recognized as the Laplace transformed of a new 
structure called now  G(t), 

)}({ tGL   (3) 

Therefore, the Faltung theorem resumes: “the Laplace 
transformed of  G(t) is also known as the Laplace transformed

of the convolution integral o function called G(t). In fact, this

new function is the well-known convolution integral where 
the argument of only a function is displaced,  

 
t

a
dzzFztFtG )()()( 21  (4) 

Integral (4) has actually many applications. However we 
restrict ourselves to manage it inside the control theory and 
identification theory. In particular to those containing several 
input/outputs as normally happens in complex processes. 
Therefore, we describe in a brief manner how to apply the 
integral (4) for obtaining information of the system. 

I.4.  APPLICATION TO MIMO SYSTEMS 

View of a MIMO System Without Interactions 

A 2X2 MIMO system can be described in the Laplace space 

through a matrix operation which relates in a clearly way the 

input and outputs as given below 

     
     

  
            
            

  
     
     

            

so the        the transfer functions enclose the system 

properties. The outputs are then written as follows 
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In other words, for a 2X2 MIMO system the outputs are 

actually derived from the Faltung theorem, in the sense that 

the products            

           
 

 

                   
 

 

 

      
 

 

                   
 

 

              

           
 

 

                   
 

 

 

      
 

 

                   
 

 

               

Note that this representation is lineal respect to the input and 

transfer functions. 

I.5  View of a MIMO System With Interactions 

Our proposal is as follows: for a system under variable 

interaction, we added a term “by hand” in order to couple 

inputs as a multiplication. The matrix view is given as 

     

     
  

            

            
  

     

     
  

   
             

  
 

          

    
             

and the output can be written with an extra term which gives 
account of the interaction. Moreover, a coupling constant is 
assumed “   

                              

                                                   

Again, the Faltung term is recognized now as the product of 4 terms 

in the Laplace space. It is the extended version of Eq. (1). 

I.6. THE INTERACTION TERM AS A TRUNCATED 
VOLTERRA SERIES  

We rewrite again the interaction term in the Laplace space 
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By following the Eq. (4) it is possible to convert (11) to the 
time with the inverse Laplace transformed: 

               
  

 

                    
  

 

         

One can see that the Eq. (12) can be rewritten as 

                  
  

 

          
              

  

 

By changing the variables:      , and        (13) 

gets a different form 

               
  

 

                         
  

 

This is a second order truncated Volterra series. It is 

noteworthy that the Volterra series appears as consequence of 

the variable interaction, solely. 

I.7. COMPUTATIONAL TEST OF THE EFFECT OF THE 
INTERACTION  

For instance, as illustration of interaction variable we write 

              

               
  

 

                             
  

 

Where the interaction is assumed to be a second order 

truncated Volterra series. Aside, it should be noted that the 

upper integral limits    y    are defined in according to the 

phenomenology of a particular system. In figures 1 is shown 

the curves of contribution to the interaction terms (or 

Volterra-like terms) to the output (10). To this end, we have 

used hyperbolic tangent function as entries (input) and the 
transfer functions has to be modelled as Gaussians profile. In 

Fig. (1) is noted the amplitude of the resulting interaction 

term when the transfer function  is a polynomial function of 

up to 5th order. The tangent hyperbolic is modelled also as a 

step function 
 

         
. This is quite approximated to the 

ones from the Tanh(x). In both cases (see below) there is 

contribution as seen in the amplitude of curves as a pure effect 

of variables interaction. 

Fig. 1. Morphology of the output by effect of the interaction for the case 

where Eq. 10 is used together with a polynomial. 

II BRIEF OVERVIEW TO THE INTERACTION MECHANISM IN

MIMO SYSTEMS IN THE LAPLACE SPACE 

A.  System Without Interactions: The Common Case 

In the language of I/O it is possible to write down the master 
equation in the Laplace space as follows  

Y = H X. (16) 

Where both Y and X denote the output and input ones 
respectively, whereas H the transfer matrix. Eq. (1) becomes 
the simplest representation to establish relations between I/O 
variables. Often (16) denotes a linear system. Let us now to 
restring ourselves to this debate to a simple system consisting 
in one of type 2×2 MIMO. For instance, the master equation 
(1) can be explicitly represented in the Laplace space by  

11 12

21 22

( ) ( )( ) ( )

( ) ( )( ) ( )

G s G sN s V s

G s G sP s C s


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   




   
   



,  (17) 

where the output ones are related with their input ones through 
the matrix elements of the transfer matrix. For example the 
variable N(s) can be written as a linear combination of their 
input ones thereby giving  

11 12( ) ( ) ( ) ( ) ( )N s G s V s G s C s  .   (18) 

This is rather acceptable from the point-of-view of the linear 
system theory. The way how (18) is written is sometimes 
called the representation of output N(s) without interactions. 

B.  Introduction to Variables Interaction 

Let us to suppose that for some physical reason the output 
variable P(s) is again inside the processing cycle and therefore 
gets interaction with V(s). It implies to modify the equation 
(18) with an extra term, 

11 12 11( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )N s G s V s G s C s G s V s P s  

(19) 

so that in (4) the interaction appears as a product of the input 
V(s) by the output P(s). One can note that the transfer function 
G11(s) is kept together to V(s). It means that no new transfer 
function is established despite of the fact of the interaction is 
assumed. By putting the corresponding term of P(s) as seen in 
(1) inside (4), one gets  

 
11 12 11

21 22

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N s G s V s G s C s G s V s

G s V s G s C s

   





 (20) 

From matrix MIMO system defined in (5) it is easy to see that 
the interactions are now governed by the product V(s)·C(s) 
and the self-interaction V(s)·V(s). Because the lack of 
information about the self-interaction one can neglect such 
term  

( ) ( ) 0V s V s  .       (21) 

In this way it is possible to define the variable N(s) in a manner 
much more simplified as written below 
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11 12

11 22
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(22) 

where the interaction adds an extra term consisting of the 
product of up to 4 quantities in the Laplace space. 

C.  Usage of the Faltung Theorem 

Once the products are well defined in the Laplace space, it 
is quite advantageous to use the Faltung Theorem in the sense 
that the product of two functions in the Laplace space can also 
be written as a convoluted integral. Mathematically speaking 
one can write the full interaction term from the Laplace space 
to the time, 

11 22

11 22
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t
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g t V d g t C d     



 
(23) 

where the transfer functions appear to be delayed as noted in 
the integrals. In addition, expression (8) is carefully defined in 
order to extract a Volterra-like term which would give account 
of the memory of the system under certain circumstances. 

D.  Apparition of the Volterra-like Integral 

From (23) the variables interaction term is defined as the 
product of two convolutions. It is also admissible to rewrite 
again (8) in the manner as given below [4],  

11 22

0

( ) ( ') ( ) ( ') '

t t

g t g t V C d d         ,  (24)

where one can observe the nonlinear character of the 
interaction term. On the other hand, we performed the next 
changes 

1

2

' ' t

t

   

   

    
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 , (25) 

Together to the product dτdτ’=(-dβ1)( -dβ2)= dβ1 dβ2. In this 
way one arrives to a double integral with their “input” 
functions which appears to be delayed,   

11 1 22 2 1 2 1 2

0

( ) ( ) ( ) ( )

t t

g g V t C t d d         .

(26) 

And which can be recognized as a second order Volterra-like 
term. Actually to speak about Volterra series in a consistent 
manner, C(s) = V(s).  In one hand (26) changes the scenario to 
one most phenomenological: the inclusion of variable 
interactions brings us an extra term consisting in one which is 
featured by having memory (to some extent) [3]. It would have 
to be reflected on the permanent states of fluctuations and 
instabilities along the control horizon. Remarkably the 
interaction term would give a nonlinear piece to the 
mathematical formulation of the problem. In praxis Eq. (26) 
can be used for computational tests and simulations.  

E.  Full Expression in Time 

 The application of the Faltung theorem in (20) taking into 
account the Volterra-like term (24) would give a relation 
which should reflect the dynamics of a system under its 
temporal evolution, including its own interactions. Therefore 
the full expression corresponding to the output variable N(t) is 
written as 
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Where the additional Volterra-like term appears as an 

extension of the linear case. It is possible to associate to this 

expression a coupling constant whose role would be that of 

tuning the interaction strength, 

11 12

0 0

11 1 22 2 1 2 1 2

0

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t

t t

N t g t V d g t C d

g g V t C t d d

      

      

    

  



 

(28) 

with λ=0 the case without interactions is obtained. It is 

important to clarify that λ also appears as a tuning parameter 

of the action of the interaction to dynamics plant. 

I. PLANT OF COMBINED CYCLES AND DATA 

A.  Plant Highlights 

  Data is extracted from a Power Plant Facility, located in 
Lima. The combined cycle processes is featured in providing 
an extra power of up to 75 MW. It is because the plant contains 
capabilities to convert heat in mechanical energy for feeding a 
secondary engine. A short explanation is as follows: plant uses 
two engines, one which is the main engine, aimed to generate 
150 MW being fueled by nature gas, solely (gas comes from 
natural gas reservoir). This engine in the same time which is 
providing power electricity is also expulsing heat around the 

400 C. This heat is used for heating water which is sent to a 
drum (it should be noted the importance in using this heat as a 
mechanism for avoiding local environment contamination). A 
valve regulates the water flux to the drum. Note the 
importance of the valve as an independent variable from a 
control system point-of-view. Consequently, the water vapor 
formed in the drum serves is to produces a vapor flux to push 
out the second engine. This second engine is capable to 
produce up to 75 MW. Thus, both engines are able to produce 
225 MW. All this dynamics defines a combined cycle plant. In 
addition, the constant and stable production of oversaturated 
vapors is a must for the efficient functionality of the engines. 
Runs of the cycle combined plant might consider fluctuations 
in up to 0.5%. In table 1 some specifications of the most 
relevant variables used in this work are listed. In the present 
study, a concrete run is taped. Data is then stored for each 
variable during a run of 120 minutes. Beyond this time, 
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variables get stable with minor instabilities. Data taking 
considers a negligible systematic error. Because only a set of 
values are taken, no any statistical error is assumed.      

TABLE I.  COMBINED CYCLE PROCESS VARIABLES 

Plant 

Variable 

Variable Specifications 

Units Type Range Setpoint 

Drum Level Cm Output -20 to 30 0 

Valve Position % Input 0 to 100 35 

Water Flux Kg/s Input 0 to 80 56 

Drum Pressure Bar Output 0 to 250 110 

B.  Variable Dynamics 

The set points listed above actually correspond to the optimal 
values which had to be reached for an efficient functionality. 
For this run, no any alert was registered. Variables behavior 
are plotted in figure 1 where are displayed their individual 
evolution during the first 120 minutes as well. It should be 
remarked that the curves exposed in Fig. 1 share the same 
morphology during the first 35 minutes. However, the drum 
level curve is affected by the water flux and valve position. On 
the 45th minute the drum level tries recover its set point 
reaching the level “0” around the 52th minute. Interestingly, 
the drum pressure becomes stable just in this time and appears 
to keep its stability over the upcoming minutes. The plot also 
indicates us that the time evolution of the valve position and 
water flux share approximately the same morphology as well. 
We claim that similar values of the valve position and water 
flux might give place to the presence of variable interaction by 
originating a dip on the drum level at the 44th minute. The 
evident irregularity that the drum level manifests over the 
upcoming minutes might have its origin in the instabilities of 
the valve position and water flux as well. The combined cycle 
plant targets to keep the drum level at its zero value during a 
complete run, without any strong fluctuations along the 
control horizon.     

Figure 1.  Variable behavior curves of the drum pressure (top), valve 

position (first middle), water flux (second middle) and the drum level 

(bottom) for 120 minutes of data taking. To note the dip at the drum level 
curve between 42 and 47

th
 minute of running machine [8]. 

II. TESTING THE MODEL THROUGH NUMERICAL 

INTEGRATION

In order to test the semi-empirical model as given by the 
Eq. 13 we have assigned a physical meaning to the functions 

defined there. Thus V () the valve position, C () the water 

flux, and N(t, ) the drum level whereas the parameter  
denoting the strength of interaction. In this way we write down 
the transfer functions 

( 30.5) 2( 30.5)

3
11( ) ( 30.5)

t

g t Heav t e e
    

   


(29) 

2( 20.5)( 20.5)

52
22 ( ) ( 20.5)

tt

g t Heav t e e
   

   


(30) 

with Heav(t-r) the well-known Heaviside function, “r” a 
nominal number denoting the delay. In the Laplace space 
these transfer functions are found as 

30.5 30.5 20

11 22

3 5 (9 20 )
( ) , ( )

(1 3 ) (2 5 ) (1 2 )(2 5 )

s s se e e s
G s G s

s s s s

   
  

   
 (16) 

which would identify the system. In Fig. 2 is depicted the 

integral (28) for different values of  [5]. For all plots is used 
Eq.  (28) with an upper integration limit of up to 80 minutes. In 
a first sight one can see the effect of inserting the interaction 
by means the presence of two peaks and a flat behavior 
between them as observed on the upper panels (left / right). 
Note that in according to the these combined cycles processes 
N(t) =  0 [4]. 

Figure 2.  The modeling of the drum level for different values of the 

parameter . Upper left panel: 1.1, upper right panel: 0.75, lower left panel: 

0.0001 and lower right panel the same but with a different upper limit of 

integration t as given in Eq. (28).  

So the dip found on data can be interpreted as the apparition of 
two sharp peaks as consequence of variable interaction. In this 
case the drum pressure and valve defines a type of interaction 
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inside the drum [5]. It leads to modify roughly the morphology 
of the drum level to some extent. It is noteworthy that the 
presence of a dip might also be perceived as a transition phase 
between linear to nonlinear thereby changing the intrinsic 

system properties. While parameter  takes small values, the 
presence of a second peak turns out to be negligible as seen in 

lower left panel. For this case  = 0.0001. It suggests that the 
drum level [6] goes to the case without interaction and a 
“tanh” shape is obtained. In figure 3 a full 3D plot is displayed 

for the drum level depending on  and t. Clearly the plot 

demonstrates that high values of  might be incoherent with 
data and plant phenomenology [7]. Therefore one can restrict 

to  values between 0 and 1 as dictated by the plant processes. 

In future a full 44 shall be studied to understand the 
phenomena which are not perceived directly in plant. All plots 
were obtained with the assistance of MAPLESOFT [4].  

Figure 3.  (Top) The 3D modeling with Maple Soft[4] of the drum level as 

function of  and time according to Eq. 28. Note that the interaction increases 

when  is large. (Bottom) Evolution of the drum level variable  from Eq. 27 

that should be 0. 

III. CONCLUSION

In this note, we have presented a pedagogical introduction 

about the usage of the theory of system identification applied 

to a concrete case of physical variables in a combined cycles 

power stations. For this end we have investigated the effect of 

variable interaction in a combined cycle power plant process 

for a single run. The numerical simulation yields some 

similarity to acquired data in the sense that the presence of a 

dip as noted in the drum level can be interpreted as the 

presence of two peaks on the nominal behavior during its 

temporal evolution. Indeed, an interaction parameter arises as 

a module which tunes the coupling of the interaction term to 

the linear case. This parameter is expected to be between 0 

and 1 in order to be consistent to data. Therefore, variable 

interaction might be embedded in systems whose complexity 

overlaps the perception and might be a source of nonlinear 

behavior. This methodology might be of interest for those 

students whom are trying to relate a first course of systems 

with real applied engineering as is done in power plants.  
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