
16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and
Inclusion”, 19-21 July 2018, Lima, Peru. 1

Improving Motivation of Students in
Introductory Programming Courses

Jeffrey L. Duffany1, Ph.D.
Universidad del Turabo, Puerto Rico, U.S.A., jeduffany@suagm.edu

Abstract– Research has shown that many students struggle in
introductory programming classes often doing poorly or failing the
course outright. However very little has been done to suggest ways
for improving the situation. Given that there is little control of the
variation in the level of preparation of the incoming student for this
course one possible approach to improving the student performance
would be to focus on increasing the motivation of the student. One
method for doing this would be to provide evidence that they are
learning a useful tool that will in the long run save them time and
effort and potentially improve their grades. Another method is to
capture their imagination and inspire the students to be self-
motivated out of their own curiosity and desire to learn.

Keywords-- programming, motivation, active learning.

I. INTRODUCTION

Researchers studying students majoring in computer
science have found that many fail their introductory
programming class[1][2]. The average pass rate across 161
courses in 51 universities in 15 different countries on the
average found only a 67% pass rate[1]. This means that
around 33% of computer science majors fail introductory
programming on the first try. This same result is found
regardless of the programming language used in the
course[1]. This seems rather counterintuitive since computer
science students would appear to have a predisposed
motivation to want to learn programming as there is an
expectation that they may need to learn it to fulfill their
degree requirements.

It is not clear exactly how this result would extrapolate
to engineering students as the two groups of students are not
necessarily directly comparable. The exact number may be
different for engineering students but the fact of the matter is
that a significant number of engineering students struggle
and/or do not do well in their introductory programming
class. Factors in doing well no doubt include prior
preparation[6][9][10] however the result of not doing well in
any class can be due other issues such as: not paying
attention, not doing the assignments, not keeping up with the
work, etc. Like missing the first five minutes of a movie and
then not understanding fully what is happening in the movie
later on. You can watch a movie over again but you easily
cannot replay your programming class. In every
programming class the students should be given some
practice exercises either in class or for homework so they can
solidify their understanding of the programming concepts and
get used to the myriad of details that need to be taken care of
to make things work. A computer language is a language and
requires some practice to master it[18][19].

II. MOTIVATION TO LEARN PROGRAMMING

Human behaviour is driven by motivation which can be
internal or external[3][4][5]. People do things for a reason
and in many cases this is internally motivated to acheieve a
desired goal or a need to conform socially. On the other hand
external motivation comes from a recognized authority such
as the government or one's parents. Many people comply
automatically even if they do not understand the reason
simply to avoid the negative consequences. Take for example
a charity fund. Someone may donate because they are asked
to donate (external motivation) or they may wish to donate
because they believe in the cause (internal motivation).

No one questions the need for engineers to study
mathematics. However there appears to be a general
misperception among students regarding the necessity of
introductory programming course. Is it just mental
calisthenics or exactly what purpose does it serve? Are all
engineering disciplines being lumped in together and all
being forced to take programming whether they need it or
not? Is there some inherent mistrust on the part of the student
as to the wisdom of whoever developed the curriculum?

According to the ABET(American Board of Engineering
Technology) all engineering disciplines must be taught the
modern tools of engineering but in general it does not specify
exactly what those tools are[7][8]. Engineering schools can at
least partially comply with ABET by requiring an
introductory programming course for all engineering
disciplines[7].

It is important for the students to know on the first day of
class that the goal is not to try to make them a professional
programmer. There is software in many products (over 100
million lines of code in a car) and that as an engineer you
might have to work with software development for example
in interdisciplinary teams. Students should be told about the
SDLC (Software Development Life Cycle) and the fact that
they may be part of the process (for example setting
requirements phase or inspecting code). Engineers must have
a basic idea about programming even if they never write a
single line of code throughout their entire career. As
engineers it will help them if they have a general knowledge
about the inner workings of software. As such it is a good
idea to clarify the reasons for the course and get the students
to buy into it from the beginning.

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2018.1.1.349
ISBN: 978-0-9993443-1-6
ISSN: 2414-6390

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and
Inclusion”, 19-21 July 2018, Lima, Peru. 2

III. MOTIVATIONAL METHODS

Unfortunately the rather vague justifications just cited

for learning programming may not be sufficient. Fortunately
there are other methods that can be used to provide
motivation for learning introductory programming. The two
main techniques to be discussed are: (1) to illustrate tangible
benefits of knowing how to program and (2) to capture the
imagination or inspire the students which can lead to an inner
self-motivation. In addition it must be demonstrated that the
effort involved in doing this and in acquiring the skills is not
excessive in terms of the effort required and the tradeoffs
involved. Since students taking the course are likely to be in
their first semester it may not be possible to find something
they are knowledgeable about however you can plant the
seed of an idea in hope that they will remember it later on.
The important thing is that the student have a motivation to
take the learning of programming more seriously.

 Another possible alternative technique is to find a way

to make programming more entertaining or to "gamify" it or
otherwise make it more interactive and appealing[13][14].
Unfortunately this approach can require significant amounts
of effort and may not be easily applied to any particular
subject matter with equal success.

IV. ILLUSTRATIVE EXAMPLES

The main idea is to show students how easily written and

relatively short computer programs can be used to help them
solve homework problems and perform computations for lab
reports in courses such as physics and chemistry. The
following were chosen to be illustrative examples:

A. Potato Trajectory
B. Calculation of π
C. Electrical Circuits
D. Finding Roots
E. Probability and Statistics

 These examples were chosen to be easy to program and

at the same time provide tangible evidence to illustrate how
programming skills are likely to benefit the student later on.
There are many other examples that could have been chosen
so these should be considered mainly as representative.

A. POTATOES IN THE PARKING LOT
It is assumed that all students have seen either a football
game or a baseball game, basketball game or soccer game
depending on the popularity in the culture. In the game of
football the ball is frequently passed or kicked and according
to the laws of physics the path of the ball theoretically
follows a parabolic trajectory. A discussion can be held about
parabolas and how they show up in a variety of contexts as a
way to engage interest and inspire the imagination.

A classic physics lab is to give a team of students a slingshot
potato launcher. The team goes outside to an open field or
athletic field or perhaps a parking lot with a sack of potatoes
and the slingshot to study projectile motion. A team consists
of ideally 3 students: two to launch the potato with the
slingshot and one to make the measurements which includes
total time in the air and horizontal distance traveled. The goal
is to use the measurements to calculate what must have been
the initial velocity v0 and the angle at which the potato was
launched (theta). The angle of launch can be between 0 and
90 degrees but typically between 30 and 60 degrees. One
student measures with a stop watch or cellular phone the time
in the air. A rope is used to measure the total distance
travelled along the ground. According to the laws of physics
the vertical and horizontal displacements as a function of
time (t) are given by:

 x = v0*t*cos(theta) (1)

 y = v0*t*sin(theta) - 1/2gt2 (2)

A very simple computer program for calculating the values of
x and y was written using R Language[15] as shown in
Figure 1 below. There is nothing special about R language
and many other languages could have been used[16][17].

potato()
{
 n<-100
 x<-rep(0,n)
 y<-rep(0,n)
 theta<-pi/10
 v0<-88
 max<-1.2*v0*sin(theta)/16
for (i in 1:n){
 t<-(i-1)*(max/n)
 x[i]<-v0*cos(theta)*t
 y[i]<-5+v0*sin(theta)*t-16*t^2}
 y[y<0]<-0
 plot(x,y,xlab="distance(ft)", ylab= "height
(ft)", main="potato trajectory")
}

 Figure 1. R Language Program to Plot Potato Trajectory

This short 12 line program can calculate and plot the
trajectory of a potato launched from a slingshot for any initial
velocity and launch angle as specified by the user and based
on Equations (1) and (2). It automatically calculates when the
potato will hit the ground and dimensions the plot
accordingly. It also labels the plot axes and gives it a title.
The user can also specify the level of detail by specifying the
time interval between trajectory samples.

Digital Object Identifier: (to be inserted by LACCEI).
ISSN, ISBN: (to be inserted by LACCEI).

Digital Object Identifier: (to be inserted by LACCEI).
ISSN, ISBN: (to be inserted by LACCEI).

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and
Inclusion”, 19-21 July 2018, Lima, Peru. 3

Figure 2. Potato Trajectory from Launch to Landing

The output of the program is shown in Figure 2 as a parabolic
arc with the slingshot is represented as being about 5 feet off
the ground. This is a fairly short computer program showing
many important details (for example notice how the potato
hits the ground and rolls a few feet on the ground). The
student can easily add their own data and make the
calculations specific to their own experiment. The student
also can vary the initial velocity and launch angle and plot
various trajectories on the same graph.

This base program can be modified to suit practically any
variation of projectile trajectory experiment for example the
effect of wind and/or wind resistance. The amount of effort to
write and debug this program if fairly minimal even for a
novice programmer it should only take about 20 minutes of
effort. This example clearly illustrates that writing a simple
program could save time and effort and possibly even lead to
a better grade.

What should be emphasized to the students at this point is
how this result was obtained with relatively little effort. This
will plant a seed in the minds of the student hopefully that
this technique can be extrapolated to other physics and other
lab courses. Another observation that will show them the
value of programming is the analysis of their data. In this
case they can type all the data into the program itself. This
works well for small amounts of data but does not scale very
well. Later on in the course they will learn how to capture
large amounts of data in a file that can be read into the
program.

SUMMATION TERMS PI APPROXIMATION
10 3.23231580940559 (0 DECIMAL PLACES)
100 3.15149340107099 (1 DECIMAL PLACES)
1000 3.14259165433954 (2 DECIMAL PLACES)
10000 3.14169264359053 (3 DECIMAL PLACES)
100000 3.14160265348972 (3 DECIMAL PLACES)
1000000 3.14159365358877 (5 DECIMAL PLACES)

Table 1. π approximation using Gregory-Liebniz formula

B. CALCULATION OF π
The number π is a mathematical constant defined as the ratio
of a circle's circumference to its diameter and approximately
equal to 3.14159. A summation formula to approximate π is
given by the Gregory-Leibniz series [20]:

 π = 4 /1 − 4/ 3 + 4 /5 − 4 /7 + 4 /9 − 4/ 11... (3)

Being an irrational number, π cannot be expressed exactly as
a common fraction. In other words its decimal representation
never settles into a permanent repeating pattern. Figure 3
gives the R Language code corresponding to Equation (3).

pi()
{
 sum<-1
 sign<--1
 for (i in 1:10){
 sum<-sum+sign/(2*i+1)
 sign<--sign}
 print(c("pi=",4*sum))
}

Figure 3. R Language Program to Calculate π

As individual terms of this infinite series are added to the
sum, the total gradually gets closer to π (Table 1), and with
a sufficient number of terms can get as close to π as desired.
It converges quite slowly however as shown after 1,000,000
terms it produces only five correct decimal digits of π.

The purpose of this exercise is to stimulate the student's
imagination and curiosity and create motivation for wanting
to learn about computer programming. This can work out
particularly well if the course is given in the spring semester
and one of the classes happens to fall on March 14th (π day).
It also encourages further exploration by the student. For
example what other formulas can be used to approximate π?
What happens when you increase the number of summation
terms to 100 million or a billion. These ideas can be explored
without an overbearing amount of effort to modify the code.

0 50 100 150

0
5

10
15

potato trajectory

distance(ft)

he
ig

ht
 (f

t)

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and
Inclusion”, 19-21 July 2018, Lima, Peru. 4

Figure 4. A Simple RC Circuit

C. ELECTRICAL NETWORK LABS

All engineering students are required to take lab courses and
many are required to take electrical networks lab including
mechanical, electrical and computer engineering students.
Students are required to make voltage and current
measurements in the lab and then compare those to the
theoretical calculations. Typically they start out with resistor
circuits and usually they do node and mesh analysis and end
up with either 3 (or 4) equations and 3 (or 4) unknowns.
These circuits can be very tedious to set up solve and it is a
very error-prone process. If you make a mistake you must go
back and recalculate everything.

In the vast majority of cases the students would be far better
off to write a computer program to do the calculations. Even
if their professor requires they write the solutions out by hand
at least they will have the output of the program to
corroborate their results. The tedious and extremely error-
prone substitution of variables method is replace by a simple
matrix inversion. The student can perform both mesh and
nodal analysis without much additional effort. They can also
verify that Kirchhoff's laws are satisfied at each node and
easily spot if any errors were made in in analysis. In addition
they can calculate the current and voltage for each branch of
the circuit to compare with their lab measurements.

A typical electrical network lab exercise is to measure the
gain and phase characteristics of a typical RC circuit as
shown in Figure 4 using the formulae given in Figure 5.

Figure 5. Gain and Phase Calculation for an RC Circuit

The R language code to perform calculation for gain and
phase for an RC circuit is shown in Figure 6.

rc()
{
 n<-1000
 r<-1
 c<-1e-6
 gain<-rep(0,n)
 phase<-rep(0,n)
 for (i in 1:n) {
 w<-2*pi*i*100
 gain[i]<-1/(1+(w*r*c)^2)^.5
 phase[i]<-(180/pi)*atan(-w*r*c)}
 plot(gain)
 plot(phase)
}

Figure 6. Program for RC Circuit Gain and Phase

This exercise be presented as an illustration of formula
computation, storage arrays and plotting functions. Students
do not have to know anything about circuits to write this
program. It is included to plant the seed of an idea into the
minds of the students about writing programs to help them
with future classes that incorporate laboratory components.

Note once again the simplicity of the program in Figure 6.
This program can be easily be edited to handle subsequent
lab assignments (typically an RL circuit and RLC circuit) so
you don't have to start from scratch each time you have a new
lab assignment. The output of the program is shown in
Figures 7 for the Gain (G) and Figure 8 for the Phase (P).

Figure 7. The Transfer Function |H| Gain for an RC Circuit

0 20 40 60 80 100

0.
85

0.
90

0.
95

1.
00

frequency (khz)

ga
in

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and
Inclusion”, 19-21 July 2018, Lima, Peru. 5

Figure 8. The Transfer Function Phase fc for an RC Circuit

Figure 7 shows the Gain (G) decreasing with frequency in a
typical low-pass filter effect as the impedance of a capacitor
(Zc) decreases to zero at high frequencies. Correspondingly
Figure 8 shows the phase shift fc going from zero to -30 on
its way asymptotically to -90 degrees at high frequencies.
The phase shift fc can be measured with an oscilloscope but
getting an accurate reading is not easy. Students will benefit
by making these calculations before going into the lab so
they have a good idea of the results they should expect.

D. Finding Polynomial Roots

The factoring polynomial equations shows up in many
engineering problems including circuit and system analysis,
dynamical systems and system stability analysis. There are
many techniques that can help to factor a polynomial (find
the roots of polynomials) including the quadratic formula,
polynomial division and Descartes rule of signs. Polynomial
roots can be real, imaginary, rational or irrational. In some
cases where it may be difficult to find the roots it can be
helpful to plot the graph. This can be used with mathematics
as well as engineering courses.

Equation (4) shows an example of a quartic polynomial:

f(x) = x4 - x3 - 6x2 + 4x + 8 (4)

whose 4 real roots are located at x = 2, x = 2, x = -1, and x =
-2. There is a double root at x=2 and two negative roots one
at x = -1 and the other at x = -2.

function ()
{
 n<-200
 x<-rep(0,n)
 y<-rep(0,n)
 a<-1
 b<--1
 c<--6
 d<-4
 e<-8
 for(i in 1:200){
 x[i]<-(i-100)/40
 y[i]<-a*x[i]^4+b*x[i]^3+c*x[i]^2+d*x[i]+e
 }
 plot(x,y)
}

 Figure 9. R Language Program to Plot a Quartic Polynomial

Figure 9 shows a computer program for plotting a quartic
polynomial written in R Language. It can easily be adapted to
other degree polynomials. To use it just take the coefficients
of the polynomial and enter them in the program as variables
a,b,c,d, and e as indicated in Figure 9. The result of running
the program on Equation (4) is shown in Figure 10.

Figure 10. Plot of quartic polynomial in Equation (4).

Figure 10 clearly shows there are real roots f(x) = 0
somewhere around x= -1 and x = -2 and possibly x =2. The
program can be used iteratively to identify or shed light on
the location and possibly the nature of the roots (real,
imaginary, irrational).

0 20 40 60 80 100

-3
0

-2
5

-2
0

-1
5

-1
0

-5
0

frequency (khz)

ph
as
e

-2 -1 0 1 2

0
5

10

quartic polynomial

x

y

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and
Inclusion”, 19-21 July 2018, Lima, Peru. 6

E. Statistics and Data Analysis

Frequently in university lab courses such as physics or
chemistry data is taken during the lab and then analyzed
somehow usually according to some mathematical formula.
Using a calculator can work for small datasets but is very
cumbersome and tedious for larger datasets. If an error is
made the whole calculation may have to be done over again.
Using a computer program can be much more efficient
especially if any data entry or computation error is made.

Suppose you had for example a dataset containing the height
(in cm) and weight (in kg) of a sample of 10 adults.
Generally speaking the taller a person is the more they
weigh. The students are asked to plot the data and draw a
linear regression line that minimizes the mean squared error
between the regression line and all of the data points. The
following R Language program shows how the data can be
entered into two vectors "height" and "bodymass".

regression ()
{
height <- c(176, 154, 138, 196, 132, 176, 181,
169, 150, 175)
bodymass <- c(82, 49, 53, 112, 47, 69, 77, 71, 62,
78)
plot(bodymass, height, pch = 16, cex = 1.3, col =
"blue", main = "HEIGHT PLOTTED AGAINST BODY
MASS", xlab = "BODY MASS (kg)", ylab = "HEIGHT
(cm)")
abline(lm(height ~ bodymass))
}

Figure 10. R Language Program for Data Analysis

This R Language program creates the plot shown in Figure
11. The "plot" function creates the scatterplot of the original
data, the "lm" function (linear model) does the linear
regression and the "abline" function draws the straight line
representing the linear regression. The linear regression line
represents a predictive model in that given the height of
someone you can predict their weight and vice versa.

V. DISCUSSION
In the previous section five examples (A-E) were given to
illustrate how simple computer programs could be written to
solve homework problems or to analyze lab data in courses
that engineering students must take. It is likely that in
general writing a program will save the student time in the
long run allowing them to produce better results and in the
bottom line help them to get better grades. That in and of
itself should provide a positive motivation for learning the
discipline of computer programming. Also there is a software
reuse factor whereby the student can reuse code to solve
similar problems thus saving even more time and effort.

Figure 11. Body Mass vs. Height Regression Analysis

Ultimately the student must learn to judge whether it is
worthwhile to write a program in any given case or not.
Suppose it takes 3 minutes to solve a problem by pencil and
paper but it takes 10 minutes to write a generic program to
solve the same problem. Assume that it takes 30 seconds to
enter the data in to program but it solves the entire problem
in less than one second. If I am only going to solve this
problem once then it probably does not make much sense to
write a program for it. However if I am going to have to
solve 10 of these problems then it could easily make a sense
to just bite the proverbial bullet and write the program.

Another factor at work is that the paper and pencil approach
assumes you never make a mistake and that is clearly an
erroneous assumption. Human beings get tired and are more
likely to make a mistake when fatigued however computers
do not suffer the same disadvantage. If you make a mistake
with the paper and pencil approach you have to do all the
calculations over again. With the programming approach you
can simply fix the error and run the program over again.

There is also another factor that needs to be considered and it
is called the learning curve phenomenon. When you first start
programming it might take you 30 minutes to write a simple
program which could have a significant impact on the above
analysis regarding whether to even write a program. If that is
the case it would almost never make sense to take the
programming approach. However this does not recognize the
fact that that as your programming skills improve the time it
takes to write and debug a program decreases which changes
the whole dynamic.

50 60 70 80 90 100 110

13
0

14
0

15
0

16
0

17
0

18
0

19
0

HEIGHT PLOTTED AGAINST BODY MASS

BODY MASS (kg)

H
E

IG
H

T
(c

m
)

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and
Inclusion”, 19-21 July 2018, Lima, Peru. 7

VI. SUMMARY AND CONCLUSIONS

This paper describes a method for motivating students to
learn programming by either (a) showing them how it can
save time and effort and perhaps even lead to better grades or
(b) by stimulating their intellectual curiosity.

Research has shown that many students struggle in
introductory programming classes[1] often doing poorly or
failing the course outright. However very little has been done
to suggest ways for improving the situation. Introductory
programming is one of those classes that builds on itself so if
you do not get it the first time you may be in for serious
difficulties later on. Students from all engineering disciplines
take introductory programming and there is a wide range of
abilities of the students coming in the class. Some may have
studied some programming in high school or learned it on
their own[6]. Others may have no exposure to programming
at all and that can be rather intimidated. Recognizing this fact
and assuming that we want students to be successful it would
be unfortunate if a student transferred out of engineering
because of the introductory programming class. Most high
schools understand the need for college preparatory courses
in physics and chemistry and math to help students be
successful in college but not all high schools require
programming and even today it is still more of an elective.

Given that there is little control of the variation in the
preparation of the incoming students one possible approach
to improving the student performance would be to focus on
increasing the motivation of the student. One method for
doing this would be to provide evidence that they are
learning a useful tool that will in the long run save them time
and effort and potentially improve their grades. Another
method is to capture their imagination and inspire the
students to be self-motivated out of their own curiosity and
desire to learn.

The basic idea is that instructors should perhaps take a
different approach from what they have been doing. Instead
of going directly to teaching the programming language the
instructor might spend some time proactively to illustrate to
the student that it may be beneficial and that they are
learning a tool. Many students say they never write code after
the introductory programming course. The result is that you
see many students still engaged in tedious paper and pencil
hand calculations using their programmable calculator from
high school with the drudgery of the calculations interfering
with the learning process itself. Instructors should enable
students by discussing several options that are either free or
very inexpensive for example Microsoft Visual Studio free
version, R Language MATLAB or Octave[9][15][16][17].
Instructors could also include examples of programming that
can help students in their other courses for example in
physics or chemistry or other courses they are likely to take.

 Recently there has been a trend towards what is called
"active learning"[11][12][18] where the passive teaching
techniques are reduced to a minimum while the student is
more "actively" engaged in the learning process through a
variety of techniques. However for active learning to work
the student must be motivated to learn in the first place.

REFERENCES
[1] C. Watson and F. Li, "Failure Rates in Introductory Programming

Revisited", ITiCSE '14 Proceedings of the 2014 Conference on Innovation
& Technology in Computer Science Education, Pages 39-44.

[2] J. Bennedsen and M. Caspersen, “Programming in Context: A Model-First
Approach to CS1,” Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, Norfolk, 3-7 March 2004,
pp. 477-481.

[3] C. Maharaj, E. Blair, S. Chin Yuen Kee, "The motivation to study: an
analysis of undergraduate engineering students at a Caribbean university",
Journal of Further and Higher Education, Volume 42, 2018 - Issue 1,
Pages 24-35.

[4] Yacob, A. and Saman, M., "Assessing Level of Motivation of Learning
Programming Among Engineering Students", Frontiers in Education
Conference (FIE) 16(3), 2006, p. 211-227.

[5] L. Faessler, H. Hinterberger, M. Dahinden and M. Wyss, "Evaluating
student motivation in constructivistic, problem-based introductory
computer science courses", Proceedings of ELEARN 2006 p. 1178-1185.

[6] Y. Qian and J. Lehman, "Correlates of Success in Introductory
Programming: A Study with Middle School Students", Journal of
Education and Learning; Vol. 5, No. 2; 2016 ISSN 1927-5250 E-ISSN
1927-5269.

[7] "Criteria For Accrediting Engineering Programs (2014-2015",
Accreditation Board for Engineering and Technology (ABET), October
26, 2013 .

[8] "Criteria For Accrediting Computing Programs", (2013). Accreditation
Board for Engineering and Technology (ABET), October 26, 2013.

[9] Kelleher, J.C. and Pausch, R., (2005) "Lowering the Barriers to
Programming: A Taxonomy of Programming Environments and
Languages for Novice Programmers", ACM Computing Surveys. 37(2)
83-137.

[10]R. ALTURKI, "Measuring and Improving Student Performance in an
Introductory Programming Course", Informatics in Education, 2016, Vol.
15, No. 2, 183–204 183 © 2016DOI: 10.15388/infedu.2016.10

[11]R.M. Felder and R. Brent, "Active Learning: An Introduction." ASQ
Higher Education Brief, 2(4), August 2009.

[12]Bonwell, C.; Eison, J. (1991). Active Learning: Creating Excitement in the
Classroom AEHE-ERIC Higher Education Report No. 1. Washington,
D.C.: Jossey-Bass. ISBN 1-878380-08-7.

[13]Domínguez, A., Saenz-de-Navarrete, J., de-Marcos, L., Fernández-Sanz,
L., Pagés, C., Martínez-Herráiz, J.J. "Gamifying learning experiences:
Practical implications and outcomes". Computers & Education. 63. pp.
380-392. http://dx.doi.org/10.1016/j.compedu.2012.12.020.

[14]de Freitas, S.&Oliver, M., 2006. "How can exploratory learning with
games and simulations within the curriculum be most effectively
evaluated?", Computers & Education, 46(3), 249-264.

[15]Crawley, Michael J. Statistics: An Introduction using R. Wiley, 2nd
edition, 2014. ISBN 978-1-118-94109-6.

[16]Pratap, R. (2005). Getting Started With MATLAB 7: A Quick
Introduction For Scientists and Engineers", Oxford University Press.

[17]Zak, D. (2013) Programming with Microsoft Visual Basic 2012, Course
Technology/CENGAGE Learning.

[18]Duffany, J.L. "Active Learning Applied to Introductory Programming",
LACCEI 2015 Conference, Santo Domingo, Dominican Republic.

[19]Duffany, J.L. "Choice of Language for an Introductory Programming
Course", LACCEI 2014 Conference, Guayaquil, Ecuador.

[20] Wikipedia page on PI: https://en.wikipedia.org/wiki/Pi.

