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Abstract– This document presents a prototype that uses 

Network Coding as a tool for the recovery of lost packets in a 

butterfly network which is implemented using Software Defined 

Networking (SDN). The system is based on Ryu as the SDN 

controller; modules were developed for setting up the rules of the 

switches that structure the butterfly network, one without network 

coding and another for using it. Two complementary applications 

were developed, one for performing the tasks associated to network 

coding that requires generating new packets and the other for 

performing the necessary tasks to recover lost packets. Finally, the 

results of several tests performed using the prototype are presented 

and discussed and conclusions are drawn. 
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I.  INTRODUCTION 

At all times, thousands of people require access to the 

Internet, whether for business, education, or entertainment 

purposes. However, as the network grows, the need to 

optimize its operation becomes a priority. 

The standard protocols used in current networks allow the 

interoperability of devices. However, within a specific 

organization, many of these protocols are not required, and 

only a few of them are needed for certain tasks. Therefore, 

there exists the need to provide network administrators with a 

way to customize their networks in order to improve their 

performance and optimize the handling of data [1]. 

Within this context, Software Defined Networks (SDN) 

[2] present an option to create customized solutions for better 

control and management of the data circulating through the 

network due to its ease of implementation, capacity of 

improvement and adaptability to the present circumstances 

within the needs of the network. Examples of applications 

developed for SDN are described in [3-6]. 

SDN is a networking architecture that decouples the 

control and switching planes [7]. The switches or white boxes 

are required to be extremely efficient at their task of switching 

and must reduce their intelligence to a minimum. 

 The intelligence of the control plane is derived to a 

controller (Fig. 1) that executes software modules that define 

the functionality of the switches and generate rules that must 

be installed on them. Several controllers are available as 

shown in [8]. These modules are written in high level 

programming languages such as C, Java, Python, etc. The 

controller communicates with the switches by means of a 

protocol (e.g. Openflow); in the switch side, this protocol 

allows manipulating the flow table of the switch.  

Fig. 1 SDN architecture 

Network Coding [9] is defined as the technique for 

performing "encoding on a node of a network", where the term 

"encoding" is left open for any type of input and output data 

handling on the node. That is, intermediate nodes in the 

network not only forward the data, but also process it for 

specific tasks [10]. 

Network Coding has been used with Software Defined 

Networks. For example in [11] authors propose an optimized 

routing algorithm to improve network performance by 

optimizing the network topology using network coding. In [12] 

a cache management framework based on SDN where a 

controller is responsible for determining the optimal caching 

strategy and content routing via linear network coding is 

described. In [13] it is show how network coding improves 

latency and reduces packet re-transmission. In addition [14] 

presents a SDN architecture exploiting Network Coding as a 

Service. 

One of the problems that frequently occur in IP networks 

is the loss of packets due to errors in the links that interconnect 

a set of nodes. In this case, the traditional approach to solve 

this problem is based on the use of protocols with resending 

mechanisms from the terminals that generated the information 

[15]. 

The use of Network Coding as a tool to design and 

implement a data recovery mechanism within a butterfly 

network implemented using Software Defined Networks is 

proposed as an alternative to the traditional solution of lost 

packets. 

The remaining of the paper is organized as follows:  

Section II explains the use of network coding as a recovery 

mechanism, Section III presents the implemented system 

consisting of the butterfly network implemented with software 

defined network and the network coding application developed 

to recover packets, Section IV describes the results obtained, 

and finally, conclusions and future work are presented in 

Section V. 
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II. RECOVERY OF LOST PACKETS USING NETWORK CODING 

Network Coding is thus intended to give a level of data 

processing to network nodes in order to improve the operation 

of the net. For understanding the operation of Network Coding 

for recovery of packages the scenario described below is 

proposed, which is shown in Fig. 2:  a) a butterfly network that 

has two sources and two destinations: Server1 communicates 

with Client1 and Server2 communicates with Client2. Six 

switches named as s1, s2, s3, s4, s5 and s6 are used to send 

data; b) the links between s1 and s3, and, s2 and s4 have 

losses, which means that they may lose packets with a rate 

greater than zero (error rate > 0); c) the rest of the links have 

no losses, i.e. their error rate is equal to zero (error rate = 0); 

and, d) the link between s5 and s6 is slower than the other 

links, i.e. it has greater delays in packet transmission than the 

other links (delay (1) <delay (2)). 

The encoding process should be performed in s5, which 

takes the incoming packets from nodes s1 and s2, and 

generates a new packet p3 (coded packet) through the binary 

sum (XOR, exclusive or) of p1 and p2. The packet p3 is 

forwarded to node s6. Switches s3 and s4 receive packets from 

nodes s1 and s2, respectively, and forward them to Client1 and 

Client2 respectively, as well as to s6. Switch s6 receives a 

copy of the packets that arrive to s3 and s4 originated in s1 or 

s2, as well as the packet p3 sent by s5. This process of data 

exchange in the network is shown in Fig. 3. 

Due to the speed difference of the links, p3 will arrive at 

s6 after p1 and p2 have arrived (2 * delay (1) < delay (2)). 

Therefore, switch s6 can take one of the following actions:  

a) If packet p3 has been received, and both p1 and p2 

have been received, then p3 is discarded, since packet 

recovery is not necessary, this is shown in Fig. 4. 
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Fig. 2. Basic scenario for analysis 
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Fig. 3. Packet Flow 

b) If packet p3 is received, but only one of the packets is 

received, either p1 or p2, then the missing packet is 

reconstructed using p3 and forwarded to the 

corresponding node to be delivered to its destination, 

the recovery of p1 is shown in Fig. 5. 

c) If packet p3 is received, and no other packet is 

received, p3 is discarded and no other action is taken. 

In this case, packet retrieval must be done using 

recovery mechanisms of superior layers at the client. 

This scenario has the following advantages: a) a certain 

level of capacity is provided to the network to recover lost 

packets without the need for terminals or sources to be aware 

of this loss; b) automatic packet recovery at this level allows to 

decide if it is more convenient that hosts use protocols that do 

not employ resending, such as UDP; c) in the case of TCP, the 

number of resends decreases significantly, due to a reduction 

in the probability of loss. 

However, there are also some possible disadvantages: a) 

the processing level at nodes s5 and s6 is increased, which 

could increase the total network delay; b) This packet recovery 

mechanism does not help when both packets are lost, and the 

coded packet generated does not have any purpose. 

 

III. IMPLEMENTED PROTOTYPE 

The system was implemented using seven virtual 

machines that were configured inside a physical machine, six 

VM are hosts and one is used for instantiating six virtual 

switches for the overall structuring of a virtual network 

environment using Mininet [16]. The virtual machines were 

configured using VMWare Workstation 12 and Ubuntu Linux 

as the operating system. 
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Fig. 4. Packets p1 and p2 arrive to s6 without any losses 
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Fig. 5. Packet recovery of p1 at s6 
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VMs were assigned names according to each of the 

functions performed within the implemented scenario, as 

follows: NC Master, NC Host1, NC Host2, NC Host3, NC 

Host4, NC Switch5 and NC Switch6, whose functions are 

detailed below (see Fig. 6 and Fig. 7). NC Master is the central 

virtual machine of the network environment; it executes both 

the virtual network in Mininet and the Ryu [17] controller. 

To generate the virtual network, a script made in Python 

was used. This script allows stablishing loss rate and delays on 

each link via a configuration file; also, it defines six virtual 

switches called s1, s2, s3, s4, s5 and s6 and interconnects them 

according to a butterfly topology. On s1, in port one is 

connected NC Host1, port 2 is used to interconnect the port 1 

of s2, and port 3 is used to interconnect the port1 of s5. On s2, 

in port one is connected NC Host2, port 2 is used to 

interconnect the port 2 of s4, and port 3 is used to interconnect 

the port 2 of s5. Same configuration is used on s3 and s4.  

While port 3 of s5 is connected with port 3 of s6, and port 4 of 

s5 is used to connect NC Swith5, and port 4 of s6 is used to 

connect NC Swtich6. 

Each of the virtual switches on the network is connected 

to a Ryu controller, housed within the NC master, via the local 

network interface. Two modules described next will generate 

rules and send them to Ryu controller, and the Ryu Controller 

will send those rules to the switches using the protocol 

OpenFlow [18], the rules specify how the traffic will flow on 

the network. 

Two scenarios also were stablished: the first one without 

using network coding, while the second one uses network 

coding. In order to stablish each scenario, two modules for 

Ryu were developed. These modules generate rules that 

control network devices. 

The first module generates rules that allows traffic from 

NC Host1 to be sent to NC Host3 using the link between s1 

and s3, and from NC Host2 to NC Host4 using the link 

between s2 and s4. In this case, all the links associated to s5 

and s6 are not used; neither NC Switch5 nor NC Switch6 are 

used. Therefore, on this first scenario, network coding will not 

be used (Fig. 6). The information of the rules are outlined on 

Table I, where mac_NC_H1, mac_NC_H2, mac_NC_H3 and 

mac_NC_H4 corresponds to MAC address of NC Host1, NC 

Host2, NC Host3 and NC Host4 respectively. 

 

 
Fig. 6. Network environment implemented without network coding 

 

TABLE I. 

 RULES FOR FIRST SCENARIO  

switch 
Input 

port 
src. MAC dst. MAC 

Output 

port 

s1 

  

1 mac_NC_H1 mac_NC_H3 2 

2 mac_NC_H3 mac_NC_H1 1 

s2 

  

1 mac_NC_H2 mac_NC_H4 2 

2 mac_NC_H4 mac_NC_H2 1 

s3 

  

1 mac_NC_H3 mac_NC_H1 2 

2 mac_NC_H1 mac_NC_H3 1 

s4 

  

1 mac_NC_H4 mac_NC_H2 2 

2 mac_NC_H2 mac_NC_H4 1 

 

The second module allows generating rules that allow 

traffic to flow from NC Host1 to NC Host3 using two routes: 

s1 - s3 and s1 - s5; and from NC Host2 to NC Host4 using two 

routes: s2 - s4 and s2 - s5. In this case, all the links are used, 

and the module generates rules to send the generated coded 

packet from s5 to s6, structuring a SDN that uses network 

coding (Fig. 7). 

The rules required on the second scenario are show in 

Table II. It can be seen that if a packet is received from NC 

Host1, this packet has to be forward to s3 and to s5, using the 

correct ports in the switch; the same applies to packets 

received from NC Host2, but they are forwarded to s2 and s4 

instead. Also, this module, for those packets that arrive to s5 or 

s6 and that need to be send to NC Switch5 or NC Switch6, the 

rule establish to change the destination MAC address 

(represented as mac_NC_S5 or mac_NCS6) in order to avoid 

been rejected by NC Switch5 or NC Switch6. 

The remaining virtual machines (NC Host1, NC Host2, 

NC Host3, NC Host4, NC Switch5 and NC Switch6) are 

connected to the NC Master. The information about IP 

Address and MAC Address of each virtual machine is 

presented in Fig. 8. 

 
Fig. 7. Network environment implemented with network coding 

 

Fig. 8. Network configuration 
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TABLE II.  

RULES FOR SECOND SCENARIO  

Switch Input 

port 

src MAC dst MAC new dst 

MAC 

Output 

port 

s1 

  

  

  

1 mac_NC_H1 mac_NC_H3 - 3 

2 mac_NC_H3 mac_NC_H1 - 3 

3 mac_NC_H1 mac_NC_H3 - 2 

3 mac_NC_H3 mac_NC_H1 - 1 

s2 

  

  

  

1 mac_NC_H2 mac_NC_H4 - 3 

2 mac_NC_H4 mac_NC_H2 - 3 

3 mac_NC_H2 mac_NC_H4 - 2 

3 mac_NC_H4 mac_NC_H2 - 1 

s3 

  

  

  

1 mac_NC_H3 mac_NC_H1 - 3 

2 mac_NC_H1 mac_NC_H3 - 3 

3 mac_NC_H3 mac_NC_H1 - 2 

3 mac_NC_H1 mac_NC_H3 - 1 

s4 

  

  

  

1 mac_NC_H4 mac_NC_H2 - 3 

2 mac_NC_H2 mac_NC_H4 - 3 

3 mac_NC_H4 mac_NC_H2 - 2 

3 mac_NC_H2 mac_NC_H4 - 1 

s5 

  

  

  

  

  

  

  

1 mac_NC_H1 mac_NC_H3 mac_NC_S5 4 

2 mac_NC_H2 mac_NC_H4 mac_NC_S5 4 

1 mac_NC_H3 mac_NC_H1 mac_NC_S5 4 

2 mac_NC_H4 mac_NC_H2 mac_NC_S5 4 

4 mac_NC_H1 mac_NC_H3 N/A 1 

4 mac_NC_H2 mac_NC_H4 N/A 2 

4 mac_NC_H3 mac_NC_H1 N/A 1 

4 mac_NC_H4 mac_NC_H2 N/A 2 

s6 

  

  

  

  

  

  

  

1 mac_NC_H1 mac_NC_H3 mac_NC_S6 4 

2 mac_NC_H2 mac_NC_H4 mac_NC_S6 4 

1 mac_NC_H3 mac_NC_H1 mac_NC_S6 4 

2 mac_NC_H4 mac_NC_H2 mac_NC_S6 4 

4 mac_NC_H1 mac_NC_H3 N/A 1 

4 mac_NC_H2 mac_NC_H4 N/A 2 

4 mac_NC_H3 mac_NC_H1 N/A 1 

4 mac_NC_H4 mac_NC_H2 N/A 2 

 

Additionally, two applications for performing network 

coding tasks were developed and were written using Python. 

These applications are required given that neither OpenFlow 

nor the switches can perform the network coding tasks for 

themselves. 

NC Host1, NC Host2, NC Host3 and NC Host4 just 

function as terminal equipment, as either a client or a server, 

and only send and receive data frames. NC Switch5 and NC 

Switch6 are hosts that execute one of the applications that 

perform the network coding process through a binary sum of 

the frames sent by the terminals. Besides, these applications 

are responsible for receiving frames from each terminal (NC 

Host1, NC Host2, NC Host3 and NC Host4), and perform the 

binary addition for the network coding tasks, both generate 

new frames or coded packets as a result of the network coding 

process, and recover lost frames if needed. 

 

IV. RESULTS 

The tests consist of sending ICMP packets on the network. 

In order to synchronize some tasks and send data at the same 

time from both terminals (NC Host1 and NC Host2) the Linux 

at command was used. Using Wireshark the frames sent and 

received at each terminal are captured, and with this 

information, the number of frames that are lost considering 

several percentages of losses in the links between s1 and s3, 

and between s2 and s4 are calculated. The percentage of losses 

are calculated for both scenarios, the one without using 

network coding, and the one using network coding. Based on 

the difference between the percentages of losses obtained for 

both cases, the recovery percentage is also estimated. 

It is not the intend at this stage of the paper to analyse the 

time difference or the delays introduced by the use of network 

coding, nor to analyse the level of redundancy, nor to calculate 

the number of additional frames generated as result of the 

binary sum of frames sent by each terminal. 

By using network coding, a clear decrease in the 

percentage of losses is observed from the results. Table III 

presents a summary of the average results obtained without 

and with network coding under different percentages of pre-

established losses. 

In Fig. 9, it is noticed that when applying network coding 

to the system, the percentage of losses decreases considerably, 

especially in values below 80%. This is because, without 

network coding, each link has an independent probability of 

losing frames, which is pre-set in the configuration file 

However, when applying network coding the probability 

of loss is reduced, since there is the possibility of retrieving the 

information through the new coded frames that travel through 

the network. There is only loss of information if both links lose 

their frames at the same time, i.e. the probability that a frame 

does not reach its destination is no longer the probability of 

loss of each link, and it becomes the probability that both links 

lose packets concurrently. This probability is calculated as the 

probability of simultaneous occurrence of two independent 

events, since the link between s1 and s3 and the link between 

s2 and s4 do not depend on each other for their operation they 

are considered independent. 

Therefore, the probability of loss in the butterfly network 

with network coding is calculated as the product of the 

probability of loss between the s1 - s3 link and the s2 - s4 link. 

The results obtained in the tests prove that the percentages 

of obtained losses are close to the percentages of expected 

theoretical losses for a network with network coding where the 

probability of loss of the network is equal to the probability of 

simultaneous losses in the two links of the butterfly network. 

It is verified that the percentage of losses using network 

coding is kept less than 50% provided that the percentages of 

losses in each of the links does not exceed 70%, once this 

value is exceeded the losses of the network approach to those 

values obtained without network coding. 

It can be seen how the values obtained in the performed 

tests follow the trend of theoretical curves as shown in Fig. 9 

for tests without network coding and for tests with network 

coding. 
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Fig. 9 Losses with and without Network Coding 

 

V. CONCLUSIONS 

The applications developed to implement the mechanisms of 

network coding and the modules for Ryu are indispensable for 

this prototype.  

The modules generate rules that the controller has to install 

on the switches in order to command the forwarding of every 

frame to the applications that generate coded packets and 

recover lost packets. In addition, due to the limitations of 

OpenFlow and the incapability of switches that are not able to 

edit the content of a data frame beyond the headers of layer 2, 

3 or 4 protocols. 

For the tests, ICMP was used because it is ease to monitor it 

and to interpret the obtained results. ICMP does not perform 

resend in case of no response, and this facilitates the 

determination of the number of lost packets and the number of 

recovered packets thanks to network coding. The individual 

request and response mechanism of ICMP allows a step-by-

step tracking of the path of each packets through the network 

with a butterfly topology, which facilitated obtaining the 

results. 

As the percentage of losses in each link increases, network 

coding becomes less efficient in recovering lost packets, 

because of the greater probability of two simultaneous losses 

in the network.  

 

 
TABLE III.  

TESTS RESULTS  

% of losses 

(configured) 

% of 

losses 

obtained 

for link 

s1 - s3 

without 

Network 

Coding 

% of 

losses 

obtained 

for link 

s2 - s4 

without 

Network 

Coding 

% of 

losses 

with 

Network 

Coding 
(theoretical) 

% of 

losses 

obtained 

with 

Network 

Coding 

0% 0.0% 0.0% 0% 0.0% 

10% 7.6% 5.9% 1% 0.1% 

20% 16.4% 16.0% 4% 1.3% 

30% 25.5% 27.1% 9% 5.3% 

40% 37.3% 36.7% 16% 13.7% 

50% 46.7% 46.5% 25% 20.4% 

60% 61.3% 53.9% 36% 33.4% 

70% 67.5% 68.5% 49% 33.4% 

80% 74.5% 81.5% 64% 63.3% 

90% 87.8% 88.3% 81% 76.1% 

100% 100.0% 100.0% 100% 100.0% 
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Fig. 10. Recovery percentage obtained 

 

 

The network coding mechanism for lost packets recovery is 

considered a very promising tool for link loss values of less 

than 50%, as can be seen in Fig. 10. Once this value is 

exceeded, the percentage of losses expected in the network 

increases, approaching the value of losses without network 

coding. Table IV resumes the recovery percentage obtained 

considering certain percentage of loss packets. 

Based on the obtained results, it is verified that the 

prototype allows the use of network coding as an error 

recovery tool, where lost packets in one of the links of the 

butterfly network can be recovered base on a new coded 

packet sent through the network.  

 
TABLE IV.  

RECOVERY PERCENTAGE OBTAINED 

% of Losses with 

Network Coding 

% of recovery 

obtained link s1-s3 

% of recovery 

obtained link s2-s4 

0.0% 0.0% 0.0% 

0.1% 7.5% 5.8% 

1.3% 15.1% 14.7% 

5.3% 20.2% 21.8% 

13.7% 23.6% 23.0% 

20.4% 26.3% 26.1% 

33.4% 27.9% 20.5% 

33.4% 34.1% 25.1% 

63.3% 11.2% 18.2% 

76.1% 11.7% 12.2% 

100.0% 0.0% 0.0% 

 

The implemented prototype using SDN generates delays due 

to the need to control the order in which the frames arrive to 

different nodes, as well as the processing done in the data 

encoding and decoding equipment. Simulation of simultaneous 

transmission of packets with at command allowed to send 

packets with the least possible time difference.  

These time differences between packets are due to the 

internal clock of the processors of each terminal and cannot be 

fully synchronized by an NTP server due to intrinsic delays, as 

well as the rest of the applications that are running in each of 

the terminals, which occupy time spaces in the processor that 

cannot be controlled. 
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