
16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 1

A Recovery Prototype based on Network Coding and

Software Defined Networks

Víctor Pilco, Eng.1, Iván Bernal, Ph.D.1, and David Mejía, M.Sc.1
1 Escuela Politécnica Nacional, Ecuador, {victor.pilco, ivan.bernal, david.mejia}@epn.edu.ec

Abstract– This document presents a prototype that uses

Network Coding as a tool for the recovery of lost packets in a

butterfly network which is implemented using Software Defined

Networking (SDN). The system is based on Ryu as the SDN

controller; modules were developed for setting up the rules of the

switches that structure the butterfly network, one without network

coding and another for using it. Two complementary applications

were developed, one for performing the tasks associated to network

coding that requires generating new packets and the other for

performing the necessary tasks to recover lost packets. Finally, the

results of several tests performed using the prototype are presented

and discussed and conclusions are drawn.

Keywords-- Network Coding; Computer Networks; IP

Networks; Software Defined Networking; Software Systems.

I. INTRODUCTION

At all times, thousands of people require access to the

Internet, whether for business, education, or entertainment

purposes. However, as the network grows, the need to

optimize its operation becomes a priority.

The standard protocols used in current networks allow the

interoperability of devices. However, within a specific

organization, many of these protocols are not required, and

only a few of them are needed for certain tasks. Therefore,

there exists the need to provide network administrators with a

way to customize their networks in order to improve their

performance and optimize the handling of data [1].

Within this context, Software Defined Networks (SDN)

[2] present an option to create customized solutions for better

control and management of the data circulating through the

network due to its ease of implementation, capacity of

improvement and adaptability to the present circumstances

within the needs of the network. Examples of applications

developed for SDN are described in [3-6].

SDN is a networking architecture that decouples the

control and switching planes [7]. The switches or white boxes

are required to be extremely efficient at their task of switching

and must reduce their intelligence to a minimum.

 The intelligence of the control plane is derived to a

controller (Fig. 1) that executes software modules that define

the functionality of the switches and generate rules that must

be installed on them. Several controllers are available as

shown in [8]. These modules are written in high level

programming languages such as C, Java, Python, etc. The

controller communicates with the switches by means of a

protocol (e.g. Openflow); in the switch side, this protocol

allows manipulating the flow table of the switch.

Fig. 1 SDN architecture

Network Coding [9] is defined as the technique for

performing "encoding on a node of a network", where the term

"encoding" is left open for any type of input and output data

handling on the node. That is, intermediate nodes in the

network not only forward the data, but also process it for

specific tasks [10].

Network Coding has been used with Software Defined

Networks. For example in [11] authors propose an optimized

routing algorithm to improve network performance by

optimizing the network topology using network coding. In [12]

a cache management framework based on SDN where a

controller is responsible for determining the optimal caching

strategy and content routing via linear network coding is

described. In [13] it is show how network coding improves

latency and reduces packet re-transmission. In addition [14]

presents a SDN architecture exploiting Network Coding as a

Service.

One of the problems that frequently occur in IP networks

is the loss of packets due to errors in the links that interconnect

a set of nodes. In this case, the traditional approach to solve

this problem is based on the use of protocols with resending

mechanisms from the terminals that generated the information

[15].

The use of Network Coding as a tool to design and

implement a data recovery mechanism within a butterfly

network implemented using Software Defined Networks is

proposed as an alternative to the traditional solution of lost

packets.

The remaining of the paper is organized as follows:

Section II explains the use of network coding as a recovery

mechanism, Section III presents the implemented system

consisting of the butterfly network implemented with software

defined network and the network coding application developed

to recover packets, Section IV describes the results obtained,

and finally, conclusions and future work are presented in

Section V.
Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2018.1.1.242
ISBN: 978-0-9993443-1-6
ISSN: 2414-6390

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 2

II. RECOVERY OF LOST PACKETS USING NETWORK CODING

Network Coding is thus intended to give a level of data

processing to network nodes in order to improve the operation

of the net. For understanding the operation of Network Coding

for recovery of packages the scenario described below is

proposed, which is shown in Fig. 2: a) a butterfly network that

has two sources and two destinations: Server1 communicates

with Client1 and Server2 communicates with Client2. Six

switches named as s1, s2, s3, s4, s5 and s6 are used to send

data; b) the links between s1 and s3, and, s2 and s4 have

losses, which means that they may lose packets with a rate

greater than zero (error rate > 0); c) the rest of the links have

no losses, i.e. their error rate is equal to zero (error rate = 0);

and, d) the link between s5 and s6 is slower than the other

links, i.e. it has greater delays in packet transmission than the

other links (delay (1) <delay (2)).

The encoding process should be performed in s5, which

takes the incoming packets from nodes s1 and s2, and

generates a new packet p3 (coded packet) through the binary

sum (XOR, exclusive or) of p1 and p2. The packet p3 is

forwarded to node s6. Switches s3 and s4 receive packets from

nodes s1 and s2, respectively, and forward them to Client1 and

Client2 respectively, as well as to s6. Switch s6 receives a

copy of the packets that arrive to s3 and s4 originated in s1 or

s2, as well as the packet p3 sent by s5. This process of data

exchange in the network is shown in Fig. 3.

Due to the speed difference of the links, p3 will arrive at

s6 after p1 and p2 have arrived (2 * delay (1) < delay (2)).

Therefore, switch s6 can take one of the following actions:

a) If packet p3 has been received, and both p1 and p2

have been received, then p3 is discarded, since packet

recovery is not necessary, this is shown in Fig. 4.

s1

s2

s5

s3

s4

s6

Server
1

Server
2

Client
1

Client
2

delay (1), error rate > 0

delay (1), error rate > 0

delay (2), error rate = 0

delay (1)
error rate = 0

delay (1)
error rate = 0

delay (1)
error rate = 0

delay (1)
error rate = 0

Fig. 2. Basic scenario for analysis

s1

s2

s5

s3

s4

s6

p1

p2

p1

p2

Server
1

Server
2

Client
1

Client
2

p1

p2

p3 = p1 + p2

Fig. 3. Packet Flow

b) If packet p3 is received, but only one of the packets is

received, either p1 or p2, then the missing packet is

reconstructed using p3 and forwarded to the

corresponding node to be delivered to its destination,

the recovery of p1 is shown in Fig. 5.

c) If packet p3 is received, and no other packet is

received, p3 is discarded and no other action is taken.

In this case, packet retrieval must be done using

recovery mechanisms of superior layers at the client.

This scenario has the following advantages: a) a certain

level of capacity is provided to the network to recover lost

packets without the need for terminals or sources to be aware

of this loss; b) automatic packet recovery at this level allows to

decide if it is more convenient that hosts use protocols that do

not employ resending, such as UDP; c) in the case of TCP, the

number of resends decreases significantly, due to a reduction

in the probability of loss.

However, there are also some possible disadvantages: a)

the processing level at nodes s5 and s6 is increased, which

could increase the total network delay; b) This packet recovery

mechanism does not help when both packets are lost, and the

coded packet generated does not have any purpose.

III. IMPLEMENTED PROTOTYPE

The system was implemented using seven virtual

machines that were configured inside a physical machine, six

VM are hosts and one is used for instantiating six virtual

switches for the overall structuring of a virtual network

environment using Mininet [16]. The virtual machines were

configured using VMWare Workstation 12 and Ubuntu Linux

as the operating system.

s1

s2

s5

s3

s4

s6

p1

p2

p1

p2

Server
1

Server
2

Client
1

Client
2

p1

p2

p3 = p1 + p2 Drop p3

Fig. 4. Packets p1 and p2 arrive to s6 without any losses

s1

s2

s5

s3

s4

s6

p2

//

p2

Server
1

Server
2

Client
1

Client
2

p1

p2

p3 = p1 + p2

p1

p1 = p3 + p2

Fig. 5. Packet recovery of p1 at s6

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 3

VMs were assigned names according to each of the

functions performed within the implemented scenario, as

follows: NC Master, NC Host1, NC Host2, NC Host3, NC

Host4, NC Switch5 and NC Switch6, whose functions are

detailed below (see Fig. 6 and Fig. 7). NC Master is the central

virtual machine of the network environment; it executes both

the virtual network in Mininet and the Ryu [17] controller.

To generate the virtual network, a script made in Python

was used. This script allows stablishing loss rate and delays on

each link via a configuration file; also, it defines six virtual

switches called s1, s2, s3, s4, s5 and s6 and interconnects them

according to a butterfly topology. On s1, in port one is

connected NC Host1, port 2 is used to interconnect the port 1

of s2, and port 3 is used to interconnect the port1 of s5. On s2,

in port one is connected NC Host2, port 2 is used to

interconnect the port 2 of s4, and port 3 is used to interconnect

the port 2 of s5. Same configuration is used on s3 and s4.

While port 3 of s5 is connected with port 3 of s6, and port 4 of

s5 is used to connect NC Swith5, and port 4 of s6 is used to

connect NC Swtich6.

Each of the virtual switches on the network is connected

to a Ryu controller, housed within the NC master, via the local

network interface. Two modules described next will generate

rules and send them to Ryu controller, and the Ryu Controller

will send those rules to the switches using the protocol

OpenFlow [18], the rules specify how the traffic will flow on

the network.

Two scenarios also were stablished: the first one without

using network coding, while the second one uses network

coding. In order to stablish each scenario, two modules for

Ryu were developed. These modules generate rules that

control network devices.

The first module generates rules that allows traffic from

NC Host1 to be sent to NC Host3 using the link between s1

and s3, and from NC Host2 to NC Host4 using the link

between s2 and s4. In this case, all the links associated to s5

and s6 are not used; neither NC Switch5 nor NC Switch6 are

used. Therefore, on this first scenario, network coding will not

be used (Fig. 6). The information of the rules are outlined on

Table I, where mac_NC_H1, mac_NC_H2, mac_NC_H3 and

mac_NC_H4 corresponds to MAC address of NC Host1, NC

Host2, NC Host3 and NC Host4 respectively.

Fig. 6. Network environment implemented without network coding

TABLE I.

 RULES FOR FIRST SCENARIO

switch
Input

port
src. MAC dst. MAC

Output

port

s1

1 mac_NC_H1 mac_NC_H3 2

2 mac_NC_H3 mac_NC_H1 1

s2

1 mac_NC_H2 mac_NC_H4 2

2 mac_NC_H4 mac_NC_H2 1

s3

1 mac_NC_H3 mac_NC_H1 2

2 mac_NC_H1 mac_NC_H3 1

s4

1 mac_NC_H4 mac_NC_H2 2

2 mac_NC_H2 mac_NC_H4 1

The second module allows generating rules that allow

traffic to flow from NC Host1 to NC Host3 using two routes:

s1 - s3 and s1 - s5; and from NC Host2 to NC Host4 using two

routes: s2 - s4 and s2 - s5. In this case, all the links are used,

and the module generates rules to send the generated coded

packet from s5 to s6, structuring a SDN that uses network

coding (Fig. 7).

The rules required on the second scenario are show in

Table II. It can be seen that if a packet is received from NC

Host1, this packet has to be forward to s3 and to s5, using the

correct ports in the switch; the same applies to packets

received from NC Host2, but they are forwarded to s2 and s4

instead. Also, this module, for those packets that arrive to s5 or

s6 and that need to be send to NC Switch5 or NC Switch6, the

rule establish to change the destination MAC address

(represented as mac_NC_S5 or mac_NCS6) in order to avoid

been rejected by NC Switch5 or NC Switch6.

The remaining virtual machines (NC Host1, NC Host2,

NC Host3, NC Host4, NC Switch5 and NC Switch6) are

connected to the NC Master. The information about IP

Address and MAC Address of each virtual machine is

presented in Fig. 8.

Fig. 7. Network environment implemented with network coding

Fig. 8. Network configuration

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 4

TABLE II.

RULES FOR SECOND SCENARIO

Switch Input

port

src MAC dst MAC new dst

MAC

Output

port

s1

1 mac_NC_H1 mac_NC_H3 - 3

2 mac_NC_H3 mac_NC_H1 - 3

3 mac_NC_H1 mac_NC_H3 - 2

3 mac_NC_H3 mac_NC_H1 - 1

s2

1 mac_NC_H2 mac_NC_H4 - 3

2 mac_NC_H4 mac_NC_H2 - 3

3 mac_NC_H2 mac_NC_H4 - 2

3 mac_NC_H4 mac_NC_H2 - 1

s3

1 mac_NC_H3 mac_NC_H1 - 3

2 mac_NC_H1 mac_NC_H3 - 3

3 mac_NC_H3 mac_NC_H1 - 2

3 mac_NC_H1 mac_NC_H3 - 1

s4

1 mac_NC_H4 mac_NC_H2 - 3

2 mac_NC_H2 mac_NC_H4 - 3

3 mac_NC_H4 mac_NC_H2 - 2

3 mac_NC_H2 mac_NC_H4 - 1

s5

1 mac_NC_H1 mac_NC_H3 mac_NC_S5 4

2 mac_NC_H2 mac_NC_H4 mac_NC_S5 4

1 mac_NC_H3 mac_NC_H1 mac_NC_S5 4

2 mac_NC_H4 mac_NC_H2 mac_NC_S5 4

4 mac_NC_H1 mac_NC_H3 N/A 1

4 mac_NC_H2 mac_NC_H4 N/A 2

4 mac_NC_H3 mac_NC_H1 N/A 1

4 mac_NC_H4 mac_NC_H2 N/A 2

s6

1 mac_NC_H1 mac_NC_H3 mac_NC_S6 4

2 mac_NC_H2 mac_NC_H4 mac_NC_S6 4

1 mac_NC_H3 mac_NC_H1 mac_NC_S6 4

2 mac_NC_H4 mac_NC_H2 mac_NC_S6 4

4 mac_NC_H1 mac_NC_H3 N/A 1

4 mac_NC_H2 mac_NC_H4 N/A 2

4 mac_NC_H3 mac_NC_H1 N/A 1

4 mac_NC_H4 mac_NC_H2 N/A 2

Additionally, two applications for performing network

coding tasks were developed and were written using Python.

These applications are required given that neither OpenFlow

nor the switches can perform the network coding tasks for

themselves.

NC Host1, NC Host2, NC Host3 and NC Host4 just

function as terminal equipment, as either a client or a server,

and only send and receive data frames. NC Switch5 and NC

Switch6 are hosts that execute one of the applications that

perform the network coding process through a binary sum of

the frames sent by the terminals. Besides, these applications

are responsible for receiving frames from each terminal (NC

Host1, NC Host2, NC Host3 and NC Host4), and perform the

binary addition for the network coding tasks, both generate

new frames or coded packets as a result of the network coding

process, and recover lost frames if needed.

IV. RESULTS

The tests consist of sending ICMP packets on the network.

In order to synchronize some tasks and send data at the same

time from both terminals (NC Host1 and NC Host2) the Linux

at command was used. Using Wireshark the frames sent and

received at each terminal are captured, and with this

information, the number of frames that are lost considering

several percentages of losses in the links between s1 and s3,

and between s2 and s4 are calculated. The percentage of losses

are calculated for both scenarios, the one without using

network coding, and the one using network coding. Based on

the difference between the percentages of losses obtained for

both cases, the recovery percentage is also estimated.

It is not the intend at this stage of the paper to analyse the

time difference or the delays introduced by the use of network

coding, nor to analyse the level of redundancy, nor to calculate

the number of additional frames generated as result of the

binary sum of frames sent by each terminal.

By using network coding, a clear decrease in the

percentage of losses is observed from the results. Table III

presents a summary of the average results obtained without

and with network coding under different percentages of pre-

established losses.

In Fig. 9, it is noticed that when applying network coding

to the system, the percentage of losses decreases considerably,

especially in values below 80%. This is because, without

network coding, each link has an independent probability of

losing frames, which is pre-set in the configuration file

However, when applying network coding the probability

of loss is reduced, since there is the possibility of retrieving the

information through the new coded frames that travel through

the network. There is only loss of information if both links lose

their frames at the same time, i.e. the probability that a frame

does not reach its destination is no longer the probability of

loss of each link, and it becomes the probability that both links

lose packets concurrently. This probability is calculated as the

probability of simultaneous occurrence of two independent

events, since the link between s1 and s3 and the link between

s2 and s4 do not depend on each other for their operation they

are considered independent.

Therefore, the probability of loss in the butterfly network

with network coding is calculated as the product of the

probability of loss between the s1 - s3 link and the s2 - s4 link.

The results obtained in the tests prove that the percentages

of obtained losses are close to the percentages of expected

theoretical losses for a network with network coding where the

probability of loss of the network is equal to the probability of

simultaneous losses in the two links of the butterfly network.

It is verified that the percentage of losses using network

coding is kept less than 50% provided that the percentages of

losses in each of the links does not exceed 70%, once this

value is exceeded the losses of the network approach to those

values obtained without network coding.

It can be seen how the values obtained in the performed

tests follow the trend of theoretical curves as shown in Fig. 9

for tests without network coding and for tests with network

coding.

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 5

Fig. 9 Losses with and without Network Coding

V. CONCLUSIONS

The applications developed to implement the mechanisms of

network coding and the modules for Ryu are indispensable for

this prototype.

The modules generate rules that the controller has to install

on the switches in order to command the forwarding of every

frame to the applications that generate coded packets and

recover lost packets. In addition, due to the limitations of

OpenFlow and the incapability of switches that are not able to

edit the content of a data frame beyond the headers of layer 2,

3 or 4 protocols.

For the tests, ICMP was used because it is ease to monitor it

and to interpret the obtained results. ICMP does not perform

resend in case of no response, and this facilitates the

determination of the number of lost packets and the number of

recovered packets thanks to network coding. The individual

request and response mechanism of ICMP allows a step-by-

step tracking of the path of each packets through the network

with a butterfly topology, which facilitated obtaining the

results.

As the percentage of losses in each link increases, network

coding becomes less efficient in recovering lost packets,

because of the greater probability of two simultaneous losses

in the network.

TABLE III.

TESTS RESULTS

% of losses

(configured)

% of

losses

obtained

for link

s1 - s3

without

Network

Coding

% of

losses

obtained

for link

s2 - s4

without

Network

Coding

% of

losses

with

Network

Coding
(theoretical)

% of

losses

obtained

with

Network

Coding

0% 0.0% 0.0% 0% 0.0%

10% 7.6% 5.9% 1% 0.1%

20% 16.4% 16.0% 4% 1.3%

30% 25.5% 27.1% 9% 5.3%

40% 37.3% 36.7% 16% 13.7%

50% 46.7% 46.5% 25% 20.4%

60% 61.3% 53.9% 36% 33.4%

70% 67.5% 68.5% 49% 33.4%

80% 74.5% 81.5% 64% 63.3%

90% 87.8% 88.3% 81% 76.1%

100% 100.0% 100.0% 100% 100.0%

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 6

Fig. 10. Recovery percentage obtained

The network coding mechanism for lost packets recovery is

considered a very promising tool for link loss values of less

than 50%, as can be seen in Fig. 10. Once this value is

exceeded, the percentage of losses expected in the network

increases, approaching the value of losses without network

coding. Table IV resumes the recovery percentage obtained

considering certain percentage of loss packets.

Based on the obtained results, it is verified that the

prototype allows the use of network coding as an error

recovery tool, where lost packets in one of the links of the

butterfly network can be recovered base on a new coded

packet sent through the network.

TABLE IV.

RECOVERY PERCENTAGE OBTAINED

% of Losses with

Network Coding

% of recovery

obtained link s1-s3

% of recovery

obtained link s2-s4

0.0% 0.0% 0.0%

0.1% 7.5% 5.8%

1.3% 15.1% 14.7%

5.3% 20.2% 21.8%

13.7% 23.6% 23.0%

20.4% 26.3% 26.1%

33.4% 27.9% 20.5%

33.4% 34.1% 25.1%

63.3% 11.2% 18.2%

76.1% 11.7% 12.2%

100.0% 0.0% 0.0%

The implemented prototype using SDN generates delays due

to the need to control the order in which the frames arrive to

different nodes, as well as the processing done in the data

encoding and decoding equipment. Simulation of simultaneous

transmission of packets with at command allowed to send

packets with the least possible time difference.

These time differences between packets are due to the

internal clock of the processors of each terminal and cannot be

fully synchronized by an NTP server due to intrinsic delays, as

well as the rest of the applications that are running in each of

the terminals, which occupy time spaces in the processor that

cannot be controlled.

ACKNOWLEDGMENT

The authors wish to express their gratitude to Escuela
Politécnica Nacional, for the financial and logistical support,
particularly during the development of the activities of the
Internal Research Project PII-15-13.

REFERENCES

[1] W. Braun and M. Menth, “Software-Defined Networking Using

OpenFlow: Protocols, Applications and Architectural Design Choices,”

Future Internet, vol. 6, no. 2, pp. 302–336, May 2014, doi:

10.3390/fi6020302.

[2] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve

Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-Defined

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 7

Networking: A Comprehensive Survey,” Proceedings of the IEEE, vol.

103, no. 1, pp. 14–76, Jan. 2015, doi: 10.1109/JPROC.2014.2371999.

[3] A. Gupta et al., “SDX: a software defined internet exchange,” in Proc.

ACM SIGCOMM, 2014, pp. 551-562, doi: 10.1145/2619239.2626300.

[4] A. Hirata, D. Miyamoto, M. Nakayama, and H. Esaki, “INTERCEPT+:

SDN Support for Live Migration-Based Honeypots,” in Proc.

BADGERS, 2015, pp. 16-24, doi: 10.1109/BADGERS.2015.013.

[5] M. E. Olaya, I. Bernal, and D. Mejia, “Application for load balancing in

SDN,” in Proc. EATIS, 2016, pp. 53-60, doi:

10.1109/EATIS.2016.7520102.

[6] N. Zope, S. Pawar, and Z. Saquib, “Firewall and load balancing as an

application of SDN,” in Proc. CASP, 2016, pp. 354-359, doi:

10.1109/CASP.2016.7746195.

[7] B. Heller, R. Sherwood, and N. McKeown, “The controller placement

problem”, SIGCOMM Comput. Commun. Rev., Vol 42, No 4, pp.473-

478, September 2012.

[8] S. A. Shah, J. Faiz, M. Farooq, A. Shafi, and S. A. Mehdi, “An

architectural evaluation of SDN controllers,” in Proc. ICC, 2013, pp.

3504–3508, doi: 10.1109/ICC.2013.6655093.

[9] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K.

Ramchandran, “Network Coding for Distributed Storage Systems,”

IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4539–

4551, Sep. 2010, doi: 10.1109/TIT.2010.2054295.

[10] R. Bassoli, H. Marques, J. Rodriguez, K. W. Shum, and R. Tafazolli,

“Network Coding Theory: A Survey,” IEEE Communications Surveys &

Tutorials, vol. 15, no. 4, pp. 1950–1978, 2013, doi:

10.1109/SURV.2013.013013.00104.

[11] J. Di and J. Dong, “A Network Coding architecture base on OpenFlow

network,” in Proc. MMME, 2016, doi: 10.2991/mmme-16.2016.50.

[12] J. Wang, J. Ren, K. Lu, J. Wang, S. Liu, and C. Westphal, “An optimal

Cache management framework for information-centric networks with

network coding,” in Proc. IFIP Networking, pp. 1–9. 2014, doi:

10.1109/IFIPNetworking.2014.6857127.

[13] D., Szabó, A. Gulyás, F. Fitzek, and D. Lucani, “Towards the Tactile

Internet: Decreasing Communication Latency with Network Coding and

Software Defined Networking,” in Proc. European Wireless Conference,

2015.

[14] D. Szabó, F. Németh, B. Sonkoly, A. Gulyás, and F. H. P. Fitzek,

“Towards the 5G Revolution: A Software Defined Network Architecture

Exploiting Network Coding as a Service,” in Proc. ACM Conference on

Special Interest Group on Data Communication, 2015, pp. 105-106, doi:

10.1145/2785956.2790025.

[15] C. Barakat, E. Altman, and W. Dabbous, “On TCP performance in a

heterogeneous network: a survey,” IEEE Communications Magazine,

vol. 38, no. 1, pp. 40–46, Jan. 2000, doi: 10.1109/35.815451.

[16] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda, and Ligia

Rodrigues Prete, “Using Mininet for emulation and prototyping

Software-Defined Networks,” in Proc. COLCOM, 2014, doi:

10.1109/ColComCon.2014.6860404.

[17] S. Wang, H, Chiu, C. Chou, “Comparisons of SDN OpenFlow

Controllers over EstiNet: Ryu vs. NOX”, in Proc. ICN the Fourteenth

International Conference on Network, 2015, pp 249-249.
[1] N. McKeown et al., “OpenFlow: enabling innovation in campus

networks,” ACM SIGCOMM Computer Communication Review, vol.
38, no. 2, pp. 69-74, Mar. 2008, doi: 10.1145/1355734.1355746.

