
16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 1

A Web Application for Automatically Generating the

Network Infrastructure for Software Defined

Networks on a Cloud

Álvaro Jarrín, Eng.1, Iván Bernal, Ph.D.1, and David Mejía, M.Sc.1
1 Escuela Politécnica Nacional, Ecuador, {alvaro.jarrin, ivan.bernal, david.mejia}@epn.edu.ec

Abstract– This paper presents the implementation of a cloud

that is used for instantiating virtual machines with a set of tools

typically used for configuring and simulating networks based on

Software Defined Networking (SDN). In terms of infrastructure, a

web application is developed and included in each instantiated

virtual machine so that even a user with minimal knowledge about

SDN can create simple networks to start experimenting with this

new network architecture. Users interact with the web application

through a web interface that allows to select a topology, numbers

of hosts and switches and choose from a given set of SDN

controllers (POX, RYU and Pyretic). Some results obtained with

the cloud, web application and the created SDN are presented.

Keywords-- cloud computing; OpenStack; Software Defined

Networking; web application.

I. INTRODUCTION

Nowadays, computer networks have become a basic need

to establish and facilitate communication, this requires

constant development in this field to meet and improve the

offered services and thus meet the needs of users. In this

process two concepts, cloud computing and SDN (Software

Defined Networking), have become disruptive forces in the

way that networks are implemented.

Cloud computing [1] proposes to centralize computing

resources and offer them as a service through Internet; this

concept according to NIST (National Institute of Standards

and Technology) must have five essential characteristics [2]:

1) Self-service on demand which allows users to increase or

decrease the contracted services but minimizing interactions

with providers; 2) High bandwidth for taking advantage of

offered services; 3) Adequate computational resources so the

cloud service provider ensures a good performance of the

offered services; 4) Quick scalability requires enough

infrastructure to allow rapid increase in the offered resources

to clients; 5) Measurement of services so that there exists

mechanisms for pricing of services considering that they are

used on demand

SDN [3] is a network architecture that separates the

control plane from the forwarding plane, allowing the control

plane to become fully programmable and can be run in a

computer (controller). This idea allows to create an

architecture where a controller specifies how different traffic

flows are handled and networking devices (switches) perform

switching fulfilling policies specified by the controller.

Controllers and switches communicate by means of a protocol

such as Openflow.

For introducing SDN concepts to students, a hands-on

approach becomes remarkable useful so that they can

experiment with these new concepts. A ready to use SDN

environment which can be provided to students would be very

welcome and even better if the resources can be provided for

each student on an individual basis. We propose to fulfill these

objectives by combining the ideas that both controllers and

switches for SDN can be virtualized and that a cloud can

provide infrastructure as a service (IaaS). A virtual machine

(VM) with a set of tools for structuring totally virtualized SDN

is provided as an image for creating as many instances as

required only limited by the available cloud resources. Once

the VM is up and running, a user can interact with a web

application that we developed and is included within the VM,

the application generates a Python script that is run and creates

an SDN given the topology and controller platform chosen by

the user through a web interface.

The remaining of the paper is organized as follows:

Section II outlines some useful details about cloud computing.

Section III presents some aspects regarding OpenStack,

including its main services. Section IV and V outline some

aspects related to the design and implementation of the cloud

and the web application, respectively. Section VI presents

some results obtained from running tests with the cloud and

web application. Finally, conclusions are outlined in Section

VII.

II. CLOUD COMPUTING

A. Cloud Computing Service Models

1) SaaS (Software as a Service service) model: seeks to

eliminate the need to install and run a particular software on

personal computers and proposes to guarantee access to the

software through a connection to the network.

2) PaaS (Platform as a Service) model: is a group of

services that abstracts operating systems, middleware and

configuration details, and gives developers the ability to

provision, develop, design, test and implement applications.

3) IaaS (Infrastructure as a Service) model: provides

access to computing resources remotely through a connection

to the network which is usually the Internet. In the case of

IaaS, the offered computing resources consist of virtualized

hardware. This model enables customers to create cost-

effective and easy-to-extend computing solutions in which all Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2018.1.1.235
ISBN: 978-0-9993443-1-6
ISSN: 2414-6390

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 2

the complexity and cost associated with hardware management

are left to the service provider. If the scale or volume of

business activity of the customer fluctuates, or if the company

plans to grow, it can use the computing resources delivered

through the network without having to acquire, install and

integrate hardware on its own.

B. Implementation Models

These models differ basically in the location of the

services, since these can be of public access through the

Internet or private access which means that services can be

accessed only from a private network. Other aspects to

consider when selecting the cloud deployment model are the

cost of investment, information confidentiality, and services to

be deployed. Fig. 1 presents the different implementation

models and a short explanation of each one follows

1) Public Cloud: A cloud is called public [4] when the

infrastructure and logical resources are owned and managed by

the service provider and are part of the environment that is

available to the general public; users only hire the services that

they need which can be accessed via the Internet. The model is

usually "pay per use", this means that only consumed services

are paid.

2) Private Cloud: in this model the infrastructure is

managed only by an organization. Private clouds [5] are

usually implemented by large companies because of the high

degree of knowledge and commitment required to virtualize

the entire business environment. This model has advantages

like the simplification of the administration of the applications,

access control to the applications and reduction of the costs of

the required licenses.

3) Community Cloud: this model is aimed at organizations

that employ similar computing resources, which can be shared

for reducing costs in infrastructure implementation or for

sharing and accessing information that belongs to each of the

organizations and decide to work together [6].

4) Hybrid Cloud: this model is formed by the combination

of public and private clouds; the hybrid cloud [7] has the

advantage of keeping the two models available to the

organization, so they can be used according to the needs and

resources. With this model, organizations can handle different

architectures for the area of information technology, can rely

on servers in the private cloud and use applications in the

public cloud or can hire physical servers in data centers and

use services in public and private clouds.

III. OPENSTACK

OpenStack [8], [9] is software that controls large pools of

computation, storage and networking resources via a set of

APIs (Application Programming Interface) or web portals. The

services that OpenStack handles are mentioned below. It is

important to note that the services and components used to

create a cloud depend on the requirements and services the

cloud will provide. For this paper, the Juno version was used.

Fig. 1. Cloud deployment models [10]

A. Basic Services

The basic services consist of: compute (Nova), dashboard

(Horizon) and networking (Neutron). Nova manages the life

cycle and hosts the created instances in the OpenStack

environment; this service is responsible for loading and

allocating resources to each instance in the cloud. Horizon, is a

web portal that allows to interact and to manage the

OpenStack services through a graphical interface. Neutron

allows the creation and administration of the network that

interconnects the instances and the networking virtual devices.

B. Storage Services

There are two elements that conforms the storage services;

object storage (Swift) and block storage (Cinder). Swift stores

and retrieves unstructured objects through an HTTP API based

on RESTful, while Cinder provides block storage for instances

that are running and has a driver to facilitate handling and

creation of block storage.

C. Shared Services

The shared services are conformed by: image service

(Glance), identity service (Keystone) and telemetry

(Ceilometer). Glance stores and manages the images of the

disks of the virtual machines (VM). OpenStack Compute uses

Glance when instantiating VMs. Keystone provides the

authentication and authorization services for the other

OpenStack services; besides, it has a catalogue of endpoints

for all OpenStack services. This service manages the profiles

of the services to guarantee that they have the required

resources for correct functioning. Finally, Ceilometer monitors

and manages OpenStack metrics for billing, scalability and

service statistics.

D. Services at higher levels

At higher levels, we can find the following services:

orchestration (Heat) and database service (Trove).

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 3

Orchestration mission is to create a human and machine-

accessible service for managing the entire lifecycle of

infrastructure and applications within clouds. Heat implements

an orchestration engine to launch multiple composite cloud

applications based on templates in the form of text files that

can be treated like code, this service allows to use different

cloud applications using HOT (Heat Orchestration Template)

format or the AWS (Amazon Web Services) CloudFormation

template formats. Heat provides both an OpenStack-native

REST API and a CloudFormation-compatible Query API.

Trove provides a database as a service, which is scalable and

secure. It is designed for relational and non-relational database

engines.

IV. IMPLEMENTATION OF THE CLOUD

A. Multi-node cloud

OpenStack has a set of alternatives for its implementation,

depending on users’ needs. We selected to use a multi-node

model which includes the controller, compute and network

nodes. Each of the nodes fulfils a specific function and has a

set of services and components that must interact with each

other to obtain the desired result.

The controller node is the brain of this model considering

that it hosts services such as: the message system server, the

database, the identity service and the storage for images. These

services have a direct and continuous relationship with the

services of all the other nodes. The network node is

responsible for managing the network services and that all

OpenStack services and their respective components are

connected to the network. The compute node hosts and

manages the instances; it is necessary to install several

components that allow the interaction between this node and

the services of authentication, images, the image server, the

graphic interface and the database. Table I lists the OpenStack

services that are hosted by each of the nodes.

B. Environment

An HP ProLiant DL360e Gen8 server was used which

includes an E5-2403v2 Intel Xeon processor (4 cores, 1.8

GHz, 10MB cache), 8GB of RAM and a 1TB hard disk. ESXi

was installed directly on the hardware of the server as the

hypervisor. On the virtualized environment three virtual

machines are created for hosting the roles of the OpenStack

nodes described above.

The available hardware resources were allocated as

described in Table II. The controller node needs a good

amount of RAM since it hosts several critic services so 3GB of

the available 8GB are allocated; in terms of storage, the

controller requires considerable disk space since it hosts the

image service. Since the compute node hosts and manages the

instances, 3GB of the remaining 5GB of RAM were allocated

to this node. Finally, for the network node, the remaining 2GB

are allocated to this node.

TABLE I

COMPONENTS INSTALLED ON EACH NODE

Node Components

Controller

Identity Service

Network Time Protocol (NTP)

Image Service

SQL database service

Message Queue

Dashboard

Network Administration

Computing Administration

ML2 network plug-in

Compute

KVM Hypervisor

Open vSwitch

Computing Service

Open vSwitch networking agent

ML2 network plug-in

Network

Open vSwith

DHCP Agent

Networking metadata agent

ML2 network plug-in

Open vSwitch networking agent

L3 networking agent

TABLE II

CHARACTERISTICS ON EACH NODE

Node Type Value

Controller

Operative System Ubuntu 14.04 LTS

RAM 3GB

Hard disk 150GB

Network interfaces 1 x 10/100 Mbps

Compute

Operative System Ubuntu 14.04 LTS

RAM 3GB

Hard disk 150GB

Network interfaces 2 x 10/100 Mbps

Network

Operative System Ubuntu 14.04 LTS

RAM 2GB

Hard disk 150GB

Network interfaces 3 x 10/100 Mbps

The number of network interfaces in each node is defined

by the OpenStack multi-node architecture being used. In the

controller node, a network interface is required to be

connected to the management network; in the compute node

two network interfaces are needed, one connected to the

management network and the other to the network for tunnels;

the network node has three network interfaces to have

connection to the management network, tunnel network and

external network. Every node employs Ubuntu 14.04 LTS as

the operating system.

At first, the configuration of the network environment

must be addressed since it will be used for installing

OpenStack. The management network is created for the

communication and interaction of the OpenStack services that

are housed in the different nodes; the tunnel network is needed

for the connection between the network and compute nodes so

that the traffic that is generated by instances in the compute

node can get to the outside world through the network node;

the external network is connected to the network node so that

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 4

the OpenStack environment has an Internet connection. Fig. 2

shows the network diagram used.

Configuring and installing OpenStack services require

keeping certain order since several services are required by

others to work properly. The first service that must be installed

is the Keystone since it handles permissions for users and

keeps record of installed services and their location; then

Glance is installed followed by Nova, since Nova depends on

Glance; Neutron is installed next and finally Horizon is

installed.

In every service, several common configurations must be

performed such as setting the connection string to the

database, specify the location of the services to be used and

register the service itself and its location with Keystone.

Additionally, each service has specific configurations for its

correct operation.

V. WEB APPLICATION

A. Functionality of the web application

The web application is designed so that a beginner on

SDN concepts can start working without a broad knowledge

on this subject since dealing with SDN, in many cases, may

require to interact with terminals and handle commands to

generate the desired topology.

The graphical interface aims to allow the user to generate

the python script for creating an SDN topology without having

to manipulate commands and it also presents the result in a

graphical representation.

The virtual machine that is hosting the web application

employs Xubuntu as the operating system given that it offers

good performance and low hardware requirements, it is based

on Ubuntu.

The VM has as preinstalled tools those necessary for the

implementation of the infrastructure for an SDN, such as:

Mininet (network simulator), Open vSwitch (virtual switches

with Openflow support) and SDN controllers (POX, RYU and

Pyretic).

Fig. 2 Network diagram

The web application allows to define tree different

parameters of the SDN: topology, number of hosts and SDN

controller; the switch used on any case is Open vSwitch.

1) Supported topologies: The network topology is the

physical and logical distribution of the devices in a network,

the web application presents two alternatives: tree and simple.

Tree topology has a "root" switch from which "branches"

come out, each branch continues to expand generating new

branches until reaching the hosts. Two parameters must be

specified: depth, defines how many levels there should be from

the main switch to the hosts; and fanout, defines how many

devices are connected to each of the branches. The total

number of hosts is defined by the depth and fanout parameters.

Fig. 3a shows the representation of the tree topology with

depth=2 and fanout=3 generated by the web application.

Simple topology has only one level, the hosts are connected

directly to the switch and the switch to the controller, so only

the number of hosts must be specified. Fig. 3b shows a

topology with 4 hosts.

2) Number of Hosts: this parameter specifies the number

of hosts that will be connected to the switch in the simple

topology but it is disabled when the tree topology is selected.

3) SDN Controller: It has a global view of the overall

network and it establishes the policies to handle the traffic that

enters and leaves every switch. Three frameworks (POX, Ryu

and Pyretic) are presented as options in the web application

and should be selected according to requirements such as

programming language and compatibility with specific

devices. POX offers functionalities and services to easy up the

development of new modules for implementing controllers

using Python. Ryu is a component-based framework with well-

defined APIs that simplify the process of creating SDN

controllers, it is also based on Python and supports several

versions of Openflow. Pyretic is a member of the Frenetic

family of SDN programming languages, and allows

programmers to develop modular applications providing

powerful high level abstractions.

B. Implementation of the web application

For the implementation of the web application, the Django

framework is used. Django offers tools that facilitate the

development of the web application. The development is

defined in two stages; the first one corresponds to the frontend

that is what the user sees and allows users to interact with the

web application; the second one is the backend that is where

all the logic of the web application is located.

Fig. 3 a) Tree topology with fanout=3 and depth=2 b) Simple topology

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 5

1) Frontend: It is developed using three languages:

HTML (HyperText Markup Language), which allows defining

the content of the web application; CSS (Cascading Style

Sheets), which allows styling the content; and, JavaScript

defines the functionality of the web application. For example,

when the user selects an option from an element of the

graphical interface, the JavaScript code determines which

value the user has selected using an if statement and picks the

image to be displayed to represent the corresponding topology

(See Fig. 4).

2) Backend: It is developed using Python for specifying

the processes necessary for automating the creation of the

SDN infrastructure. Fig. 5 and Fig. 6 show two sections of the

generated script. Fig. 5 shows the Python code that performs

the automatic initialization of the selected controller, while

Fig. 6 shows the code that creates the SDN infrastructure in

Mininet, performs a connectivity test on all the hosts and

destroys the topology.

VI. RESULTS

Functional tests verify that the entire created environment

is operating properly. The tests were divided into three stages.

A. Testing the operation of the cloud

Before verifying the operation of the cloud, it must be

confirmed that OpenStack services are all enabled and

working and then it is checked which images are available and

which instances have been created in the cloud.

Finally, the state of resources of the cloud is checked. An

instance of the VM running in the cloud is shown in Fig.7

which sums up that all the aforementioned tests passed and the

instance is working.

Fig. 4 Segment of JavaScript code

Fig. 5 POX controller initialization

Fig. 6 Code in Mininet

Fig. 7 Instance of the VM running in the cloud

B. Testing the creation of the SDN infrastructure

In the VM instance, it must be verified that every tool

required for setting up the SDN infrastructure is working

properly. This is accomplished by creating different topologies

with every available controller. The result of one of the tests is

presented in Fig.8, a simple topology with 4 switches and a

remote POX controller is created in Mininet.

C. Testing the web application

First it is verified that the web server hosted in the

instance of the VM is up and running and it allows to access

the web application. Fig. 9 shows that the server is running and

the first request is processed in the server side, while Fig. 10

presents the web page sent by the server to the initial request

made by a web client.

As part of the tests, a simple topology with three hosts and

Pyretic as the controller is created. Fig. 11 shows the graphical

representation of the topology that the user configured.

Fig. 8 Creating an SDN infrastructure with POX in Mininet

Fig. 9 Result of the initial request on the server

16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and

Inclusion”, 19-21 July 2018, Lima, Peru. 6

Fig 10. Initial view of the web application in the client side

Fig. 11 Results of a simple topology with Pyretic

Fig. 12 shows the result presented by the web application

after a user selected a tree topology with fannout=3 and

depth=3. Fig. 13 shows the displayed result in the command

line when the generated script is run; the switches, hosts and

the controller are created and then the connectivity test is

performed. The results of the connectivity tests will be

displayed on the client side on a pop-up window.

VII. CONCLUSIONS

A web application is available that allows the creation and

usage of SDN infrastructures in a VM instantiated on a cloud

that offers the IaaS Model. For accomplishing this, a cloud

was implemented using OpenStack with a multi-node model;

an image was created and uploaded to the cloud holding the

necessary tools for the creation of SDN infrastructure

including a set of popular controllers (POX, RYU and

Pyretic).

The hardware resources that were available for our

implementation were limited for the multi-node environment

so degradation in the performance of the VM instance was

evident. From the point of view of the end user, there is a

considerable waiting time when creating the controller, virtual

switches, and hosts, interconnecting the devices to comply

with the selected topology and finally simulating the network

in Mininet. Currently, several servers a higher number of

processors, RAM and storage are being bought and for sure

this will enhance the performance of our system allowing to

also have more instances.

It has been shown that it is feasible to implement whole

networks based on the principles of SDN with all their

elements virtualized (hosts, switches and controllers) on a

cloud.

Fig 12. Results of a tree topolgy

Fig. 13 Initialization of the controller and connectivity test on the server

REFERENCES

[1] S. Patidar, D. Rane, P. Jain, “A Survey Paper on Cloud Computing”,

Advanced Computing & Communication Technologies (ACCT), 2012

Second International Conference on, 2012.

[2] P. Mell, and T. Grance, “The NIST Definition of Cloud Computing”,

2011, [Online] Available: http://csrc.nist.gov/publications/nistpubs/800-

145/SP800-145.pdf.

[3] D. Kreutz, et al., “Software-Defined Networking: A Comprehensive

Survey”, Proceedings of the IEEE 103, 14-76, 2014.

[4] A. Li, M. Liang, L. O’Brien, H. Zhang, “The Cloud's Cloudy Moment: A

Systematic Survey of Public Cloud Service Outage”, International

Journal of Cloud Computing and Services Science, vol. 2, no. 5, 2013.

[5] I. Milošević and V. Šimović, “Comparison of private cloud infrastructure

implementation models”, Information Technology Interfaces (ITI),

Proceedings of the ITI 2012 34th International Conference on, 2012.

[6] A. Marinos, G. Briscoe, “Community Cloud Computing”. Cloud

Computing. CloudCom 2009. Lecture Notes in Computer Science, vol

5931. Springer, 2009.

[7] S. Yan, et al., “Infrastructure management of hybrid cloud for enterprise

users”, Systems and Virtualization Management (SVM), 2011 5th

International DMTF Academic Alliance Workshop on, 2011.

[8] M. T. Jones, “Cloud computing and storage with OpenStack: Discover

the benefits of using the open source OpenStack IaaS cloud platform”,

Developer Works, 2012.

[9] 451 Research, “OpenStack in Support of Public Cloud”, 2016.

[10] ONTSI, Cloud Computing Retos y Oportunidades, 2012. [Online]

Available:

http://www.ontsi.red.es/ontsi/sites/default/files/1_estudio_cloud_computi

ng_retos_y_oportunidades_vdef.pdf.

[11] C. Ghribi. M. Mechtri, D. Zeghlache, “OpenStack Installation Guide for

Ubuntu 14.04 Juno”, [Online] Available:

https://github.com/ChaimaGhribi/OpenStack-Juno-

Installation/blob/master/OpenStack-Juno-Installation.rst

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

