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Abstract– A multivariate sensor based on mid-infrared 
spectral signals have be used for detection of highly hazardous 
materials (HHMs) employing chemometrics tools. The HHMs used 
were the nitroaromatic compounds 2,4,6-trinitrotoluene, the 
aliphatic nitrate ester pentaerythritol tetranitrate and the aliphatic 
nitramine hexahydrotrinitrotriazine. HHMs were deposited on real-
world substrates such as aluminum, cardboard, travel bags and 
wood. Multivariate analysis by Partial least squares (PLS) 
regression analysis combined with discriminant analysis (PLS-DA) 
was used to discriminate, classify, and identity similarities in the 
spectral datasets. The results show that the Multivariate vibrational 
detection investigated herein for multivariate sensor development is 
useful for the detection of HHMs on the types of real-world surface 
studied. 

Keywords—multivariate sensors, Chemometrics HHMs, 
Spectroscopy IR. 

I.  INTRODUCTION 

Modern society faces an ever increasing need for rapid 
methods and instrumentation for detection and identification of 
chemical and biological threat agents. From security anti-
terrorist personnel, to first responders and law enforcement 
employees, such as forensic science, police officers, airport 
screeners, and border patrol personnel, to the Navy, Army, Air 
Force, and National Guard workforces, the threat of coming in 
contact with explosive agents is highly pervasive. 

Defense and security agencies are in constant demand of 
new ways of detecting chemical and biological threats used by 
terrorist organizations. Fundamental and applied research in 
areas of interest to national defense and security focus in 
detection of highly energetic materials (HEM) or highly 
Hazardous materials (HHM) and homemade explosives 
(HME) that could be used as weapons of mass destruction [1-
3]. Current detection methods of HHM are based on a wide 
variety of technologies that focus on either bulk amounts or 
traces of HHM. Bulk explosives can be detected indirectly by 
imaging characteristic shapes of the explosive charge, 
detonators, and wires or directly by detecting the chemical 
composition or dielectric properties of the explosive material. 
Trace detection methods rely on detection of vapors emitted 
from the explosives or on explosive particles that are deposited 
on nearby surfaces [4]. Although there are hundreds of 
publications about methods of detection of HHM in water, 
soil, air, clothing, surfaces, etc. and these offer the advantage 

of providing very low limits of detection (at ppb levels) [5-9], 
they require, in the majority of the cases, sampling at the scene 
followed by a sample preparation step, to be later analyzed by 
a particular technique. Thus, sampling and sample preparation 
are the main disadvantages in HHM detection, in many cases 
threatening the health and life of the analyst and first 
responders. Vibrational spectroscopy, in its various modalities, 
has shown to be useful for detection of dangerous chemicals, 
among them HHM and HME. 

IR vibrational spectra can to be used for identify and 
quantify samples in complex matrices because each substance 
has its own fingerprint spectrum in the mid IR (MIR). This 
means that IR spectroscopy can be used for discriminant 
analysis even when the target analyte is in very small 
quantities [10-12]. 

Important contributions to the development application 
doing use of mid infrared vibrational infrared are briefly 
discussed. Suter et al. studied the spectral and angular 
dependence of scattered MIR light from surfaces coated with 
explosives residues (TNT, RDX, and Tetryl) at a 2 m distance 
[13]. An external cavity quantum cascade laser provided 
tunable illumination between 1250 and 1428 cm-1 was used. 
Kumar and collaborators measured the diffuse reflection 
spectrum of solid samples such as explosives (TNT, RDX, 
PETN), fertilizers (ammonium nitrate, urea), and paints 
(automotive and military grade) at a distance of 5 m using a 
mid-infrared supercontinuum light source with 3.9 W average 
output power [14]. Kim et al. [15] recently reported that 
nanomechanical IR spectroscopy provides high selectivity for 
the detection of TNT, RDX, and PETN without the use of 
chemoselective interfaces by measuring the photothermal 
effect of the adsorbed molecules on a thermally sensitive 
microcantilever. 

This contribution aimed at using a ruggedized Mid-
infrared spectroscopy based explosive detection system that 
allowed the detection and identification of HHM traces 
deposited on three types of substrates: travel baggage (TB), 
cardboard (CB), and wood. Multivariate models were 
developed from spectroscopy data to get multivariate sensors 
that allow to detect y classification de HEM on real surfaces. 
One chemometrics routines was applied to analyze the 
characteristics of the recorded MIRS spectra: partial least 
squares (PLS) regression analysis coupled with discriminant 
analysis (PLS-DA), which was used to discriminate, classify, 
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and identity similarities among the spectral data. Several 
preprocessing steps were applied prior to the multivariate 
analysis protocols employed. The results indicate that the 
MIRS-based methodology described in this study can be used 
for rapid screening analysis of HEMs. 

II.  MATERIALS AND METHODS 

A. Reagents. 
Reagents used in this investigation included highly hazardous 
materials and solvents. 2,4,6-trinitrotoluene (TNT) was 
acquired from ChemService, Inc. (West Chester, PA) as 
crystalline solids (99%, min. 30% water content). 1,3,5-
trinitroperhydro-1,3,5-triazine or hexahydrotrinitrotriazine 
(RDX) and pentaerythritol tetranitrate (PETN) were 
synthesized at micro scale in the lab. Methanol (99.9%, HPLC 
grade), dichloromethane (CH2Cl2, HPLC grade) and acetone 
(99.5%, GC grade) were purchased from Aldrich-Sigma 
Chemical Co. (Milwaukee, WI) and were used to deposit the 
HHM samples with different surface concentrations onto TB, 
CB, and wood used as substrates. 
 

B. Instrumentation. 
Detection of PETN, RDX and TNT deposited on real 
substrates was carried out using a LaserScan™ acquired from 
Block Engineering, LLC (Marlborough, MA). This instrument 
uses a MIR widely tunable QCL. The sensitivities that can be 
achieved using this spectroscopic system are much higher than 
those achieved with ordinary dispersive IR systems equipped 
with thermal excitation sources. MIR spectra were recorded in 
the spectral range of 1000-1600 cm-1 at a distance of 6 in. All 
spectra were taken at 2 co-adds and 4 cm-1 resolution. Fig. 1 
shows the experimental setup used in this research for carried 
out sensing and development multivariate sensor. 
 

C. Sample preparation 
Detection of solid samples present as traces on substrates 
(surfaces) required a sample preparation methodology that 
would be able to deposit solid samples on a solid substrate, 
with high coverage uniformity and reproducibility. Due to the 
size of the substrates, sample smearing and partial immersion 
technique was used to deposit the solid analytes at trace 
amounts on the metallic and no-metallic substrates. Substrates 
were aluminium (AL), cardboard (CB), travel bags (TB) and 
wood. Metallic and no-metallic substrates of areas 5.0 cm × 
5.0 cm were used as material support for solid samples. 
Methanol was used to clean the surfaces tested. Substrates 
were allowed to air-dry before of depositing the desired HHM 
surface loading. A small amount of dichloromethane was used 
to dissolve target sample to be deposited. The nominal surface 
concentrations obtained by the deposition technique used were 
between: 1-20 µg/cm2. A total of 460 independent 
measurements (spectrum) were taken for three type HHM and 
three different substrates. 
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Fig 1 Experimental setup for HHM detection on real-world substrates 

 
III.  RESULTS 

A. Vibrational detection. 
Mid infrared vibrational spectra of RDX, TNT and PETN, 
deposited on TB, CB and wood substrates were acquired using 
QCL spectrometer. Four spectra were obtained for each 
substrate sample. The spectra were acquired using as 
background the substrate without HHM deposited on them. 
Spectra were record in the MIR spectral region of 1000-
1600cm-1 where the characteristic vibrations of the HHM 
occur. Fig. 2-3 shows some IR vibrational spectra of HHM 
deposited on different substrate tested. 

The most import vibrational bands that can be observed in 
Fig. 2  are to TNT were 1024 cm-1, 1086 cm-1, 1350 cm-1, and 
1551 cm-1 [16]. For PETN, some of the important signatures 
appeared at 1003 cm-1, 1038 cm-1, 1272 cm-1, 1285 cm-1, and 
1306 cm-1 [17]. Finally, important bands for RDX were 
detected at 997 cm-1 , 1220 cm-1, 1270 cm-1, 1310 cm-1, 1420 
and 1445 cm-1, and 1570 cm-1 [18]. 

In contrast, when the HHM spectra were acquired from 
non-metallic substrates (see Fig. 3), the reflection component 
of the transflection spectra stands out more prominently, 
producing reflection spectra with profiles similar those with 
anomalous dispersions [19]. These spectral features are usually 
observed when the sample refractive index decreases to the 
high-wavenumber side of the absorption band maximum, 
returning to the normal value at the absorption band center and 
then increasing to the lower wavenumber side before returning 
again to the normal values [20]. However this spectral 
distortions observed are not anomalies but, rather, spectral 
profiles dominated by the reflection of the HHM samples [21]. 
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Fig. 2 Vibrational spectra of HHM, (a) TNT, (b) PETN and (c) RDX on 

Aluminium. 

B. Development of Multivariate Sensor 
For analyze the IR vibrational data recorded, PLS Toolbox™ 
version 6.5 (Eigenvector Research Inc., Wenatchee, WA, 
USA) for MATLAB™ (The MathWorks, Inc. Natick, MA, 
USA) was used. All the data recorded was divided into two 

groups: a calibration set and a prediction set. The calibration 
set contained approximately 70% of the data and the 
prediction set contained approximately 30% of the data. PLS-
DA was applied to the spectral data in order to classify or 
group all spectra by HHM type and to discriminate between 
clean substrate contributions in the MIR and substrates with 
explosives. PLS-DA is one of the most widely used 
chemometrics tools, particularly when the goal is to 
discriminate, classify and identity spectral similarities in a 
multivariate data set. PLS-DA is a supervised pattern 
recognition method. A detailed explanation of how PLS-DA 
works and its numerous applications is not included in this 
paper. Excellent in-depth mathematical support and various 
applications in natural sciences and engineering are available 
in the literature [22-24]. PLS-DA is a linear classification 
method that combines the properties of PLS regression with 
the discrimination power of a classification technique. PLS-
DA is based on the PLS regression algorithm, which searches 
for latent variables with a maximum covariance between a 
descriptor matrix X and a response matrix Y (containing the 
membership of samples to the G classes expressed with a 
binary code: 1 or 0). The primary advantage of PLS-DA is that 
the relevant sources of data variability are modeled by the so-
called latent variables (LVs), which are linear combinations of 
the original variables, and consequently, allowing graphical 
visualization and understanding of the different data patterns 
and relations by LV scores and loadings. The scores represent 
the coordinates of the samples in the LV projection hyperspace 
[23, 24]. Several preprocessing steps were applied to the data 
with the objective of generating multivariate models capable of 
clustering spectra by chemical similarities i.e. PETN, RDX, 
TNT and clean substrates (TB, CB and wood). 

The fig. 4 and 5 show the score plots resulting from the 
PLS-DA runs. The score plots allow visualization of the 
clustering of the spectral data and demonstrate that the best 
results were obtained for the models generated after 
preprocessing was applied. The class predictions of PETN, 
RDX, and TNT on Wood from the cross-validation set are 
shown in Fig. 4a–4c. Five Latent Variables (LVs) were 
required to obtain the best multivariate classification model. 

For the multivariate analysis of the mid-IR vibrations of 
the HHMs deposited on wood, it was necessary to preprocess 
the data by taking the first derivative (15 points) and using 
SNV transformation and Mean Centering (MC) to obtain the 
best chemometrics results. 

For the multivariate analysis of the mid-IR vibrations of 
the HHMs deposited on TB and CB, we obtained the best 
chemometrics models by taking the first derivative (15 points) 
and applying MC. 
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Fig 3. Vibrational spectra of HHM, (a) TNT, (b) PETN and (c) RDX on 

Cardboard-CB 
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Fig. 4 The PLS-DA model for discriminating HHM on wood. (a) Class 

prediction for TNT. (b) Class prediction for PETN. (c) Class prediction for 
RDX. 
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IV.  CONCLUSION 

Mid infrared spectroscopy system was used for the detection 
of HHMs deposited at low surface concentrations on three 
types of non-ideal substrates: polyester travel-bag fabric (TB), 
cardboard (CB), and wood. The spectral profiles of HHMs in 
transflection experiments depend on the reflectivity of the 
substrate. For highly reflective substrates, such as Al, the 
transflection spectra are similar to transmission spectra; for 
low-reflectivity substrates, such as TB, CB, and wood, the 
transflection spectra are similar to reflection spectra, where 
nitro group bands prevail. For the multivariate analysis on TB 
and CB preprocessing as 1st derivative and mean center were 
sufficient to develop multivariate sensor. In Wood substrate by 
to be surface more complex a third preprocessing (SNV) was 
necessary. In general, we have demonstrated that MIRS is 
useful for developing a rapid screening methodology for the 
detection and discrimination of HEMs on nonideal, low-
reflectivity, highly interfering substrates using multivariate 
analysis. 
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