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Abstract— A multivariate sensor based on mid-infirared spectral
signals have be used for detection of highly hazardous materials
(HHMs) employing chemometrics tools. The HHMs used were the
nitroaromatic compounds 2,4,6-trinitrotoluene, the aliphatic nitrate
ester pentaerythritol tetranitrate and the aliphatic nitramine
hexahydrotrinitrotriazine. HHMSs were deposited on real-world
substrates such as aluminum, cardboard, travel bags and wood.
Multivariate analysis by Partial least squares (PLS) regression
analysis combined with discriminant analysis (PLS-DA) was used
to discriminate, classify, and identity similarities in the spectral
datasets. The results show that the Multivariate vibrational
detection investigated herein for multivariate sensor development is
useful for the detection of HHMs on the types of real-world surface
studied.
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Abstract- A multivariate sensor based on mid-infrared of providing very low limits of detection (at ppb levels) [5-9],
spectral signals have be used for detection of highly hazardousthey require, in the majority of the cases, sampling at the scene
materials (HHMs) emplc_Jylng chemometrics toolg. _The HHMs used f4(10wed by a sample preparation step, to be later analyzed by
were the nitroaromatic compounds 2,4,6-trinitrotoluene, the a particular technique. Thus, sampling and sample preparation

aliphatic nitrate ester pentaerythritol tetranitrate and the aliphatic th in disadvant in HHM detecti ;
nitramine hexahydrotrinitrotriazine. HHMs were deposited on real- are the main disadvantages in etection, in many cases

world substrates such as aluminum, cardboard, travel bags andthreatening the health and life of the analyst and first
wood. Multivariate analysis by Partial least squares (PLS) responders. Vibrational spectroscopy, in its various modalities,
regression analysis combined with discriminant analysis (PLS-DA) has shown to be useful for detection of dangerous chemicals,
was used to discriminate, classify, and identity similarities in the among them HHM and HME.
spectral datasets. The results show that the Multivariate vibrational IR vibrational spectra can to be used for identify and
detection investigatgd herein for multivariate sensor development isquantify samples in complex matrices because each substance
gtsuedf:ielcjor the detection of HHMs on the types of real-world surface has its own fingerprint spectrum in the mid IR (MIR). This

' means that IR spectroscopy can be used for discriminant

Keywords—multivariate  sensors, Chemometrics HHMs, @nalysis even when the target analyte is in very small
Spectroscopy IR. guantities [10-12].

Important contributions to the development application
doing use of mid infrared vibrational infrared are briefly
discussed. Suter et al. studied the spectral and angular

Modern society faces an ever increasing need for rapidependence of scattered MIR light from surfaces coated with
methods and instrumentation for detection and identification ofxplosives residues (TNT, RDX, and Tetryl) at a 2 m distance
chemical and biological threat agents. From security antfl3]. An external cavity quantum cascade laser provided
terrorist personnel, to first responders and law enforcemetignable illumination between 1250 and 1428*cwas used.
employees, such as forensic science, police officers, airpdfumar and collaborators measured the diffuse reflection
screeners, and border patrol personnel, to the Navy, Army, Agpectrum of solid samples such as explosives (TNT, RDX,
Force, and National Guard workforces, the threat of coming iRETN), fertilizers (ammonium nitrate, urea), and paints
contact with explosive agents is highly pervasive. (automotive and military grade) at a distance of 5 m using a

Defense and security agencies are in constant demand fd-infrared supercontinuum light source with 3.9 W average
new ways of detecting chemical and biological threats used b3utput power [14]. Kim et al. [15] recently reported that
terrorist organizations. Fundamental and applied research franomechanical IR spectroscopy provides high selectivity for
areas of interest to national defense and security focus the detection of TNT, RDX, and PETN without the use of
detection of highly energetic materials (HEM) or highly chemoselective interfaces by measuring the photothermal
Hazardous materials (HHM) and homemade explosivesffect of the adsorbed molecules on a thermally sensitive
(HME) that could be used as weapons of mass destruction [microcantilever.

3]. Current detection methods of HHM are based on a wide This contribution aimed at using a ruggedized Mid-
variety of technologies that focus on either bulk amounts onfrared spectroscopy based explosive detection system that
traces of HHM. Bulk explosives can be detected indirectly byllowed the detection and identification of HHM traces
imaging characteristic shapes of the explosive charggleposited on three types of substrates: travel baggage (TB),
detonators, and wires or directly by detecting the chemicalardboard (CB), and wood. Multivariate models were
composition or dielectric properties of the explosive materialdeveloped from spectroscopy data to get multivariate sensors
Trace detection methods rely on detection of vapors emitteiitat allow to detect y classification de HEM on real surfaces.
from the explosives or on explosive particles that are depositéane chemometrics routines was applied to analyze the
on nearby surfaces [4]. Although there are hundreds dfharacteristics of the recorded MIRS spectra: partial least
publications about methods of detection of HHM in watersquares (PLS) regression analysis coupled with discriminant
soil, air, clothing, surfaces, etc. and these offer the advantagealysis (PLS-DA), which was used to discriminate, classify,
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and identity similarites among the spectral daBsveral
preprocessing steps were applied prior to the waultte
analysis protocols employed. The results indicdtat tthe
MIRS-based methodology described in this studylmamsed
for rapid screening analysis of HEMs.

II. MATERIALS AND METHODS

A. Reagents.

Reagents used in this investigation included hidtdygardous
materials and solvents. 2,4,6-trinitrotoluene (TNWas
acquired from ChemService, Inc. (West Chester, RAS)
crystalline solids (99%, min. 30% water content)3,3-
trinitroperhydro-1,3,5-triazine  or hexahydrotrioitiazine
(RDX) and pentaerythritol tetranitrate (PETN) were
synthesized at micro scale in the lab. Methanol9®9 HPLC
grade), dichloromethane (GEl2, HPLC grade) and acetone
(99.5%, GC grade) were purchased from Aldrich-Sigmd
Chemical Co. (Milwaukee, WI) and were used to dépthe
HHM samples with different surface concentrationsooT B,
CB, and wood used as substrates.

B. Instrumentation.
Detection of PETN, RDX and TNT deposited on real
substrates was carried out using a LaserScan™ radgfiom
Block Engineering, LLC (Marlborough, MA). This imement
uses a MIR widely tunable QCL. The sensitivitieattban be
achieved using this spectroscopic system are migttehthan
those achieved with ordinary dispersive IR systewopsipped
with thermal excitation sources. MIR spectra wereorded in
the spectral range of 1000-1600 tat a distance of 6 in. All
spectra were taken at 2 co-adds and 4 cesolution. Fig. 1
shows the experimental setup used in this resdarctarried
out sensing and development multivariate sensor.

C. Sample preparation

Detection of solid samples present as traces omstrsibs
(surfaces) required a sample preparation methogotbgt
would be able to deposit solid samples on a sallistsate,
with high coverage uniformity and reproducibilifue to the
size of the substrates, sample smearing and partiaérsion
technique was used to deposit the solid analytetraae
amounts on the metallic and no-metallic substre@ebstrates
were aluminium (AL), cardboard (CB), travel bag8jTand
wood. Metallic and no-metallic substrates of arBascm x
5.0 cm were used as material support for solid $snp
Methanol was used to clean the surfaces testedsti@tds
were allowed to air-dry before of depositing theided HHM
surface loading. A small amount of dichloromethare used
to dissolve target sample to be deposited. The malrsurface
concentrations obtained by the deposition technicpesl were
between: 1-20 pg/lcnf. A total of 460 independent
measurements (spectrum) were taken for three tyil lnd
three different substrates.

14™ L ACCEI International M ulti-Conference for Engineering,
Global Sustainability”, 20-22 July 2016, San Jd3@sta Rica.

dl
J1319wWwoudads

weag Y|

/

Surface Target
+ CB
A RDX
® TNT
O TNT Test
=== Thresold

Py

k4
HHM Spectrum s .

Class Predicted (TNT)
o o o o [N
o RN ® & ® r N &

40 60 0 120 140

‘2

[
N

Samples

Fig 1 Experimental setup for HHM detection on neaHd substrates

Ill. RESULTS

A. Vibrational detection.

Mid infrared vibrational spectra of RDX, TNT and P&,
deposited on TB, CB and wood substrates were aajuising
QCL spectrometer. Four spectra were obtained farh ea
substrate sample. The spectra were acquired usig
background the substrate without HHM deposited famt
Spectra were record in the MIR spectral region 00Qt
1600cnt where the characteristic vibrations of the HHM
occur. Fig. 2-3 shows some IR vibrational spectrddiblM
deposited on different substrate tested.

The most import vibrational bands that can be oleskin
Fig. 2 are to TNT were 1024 &y1.086 cn, 1350 crif, and
1551 cmt [16]. For PETN, some of the important signatures
appeared at 1003 ¢n1038 cnt, 1272 cnt, 1285 cnit, and
1306 cnt [17]. Finally, important bands for RDX were
detected at 997 ¢ 1220 crif, 1270 crif, 1310 cnif, 1420
and 1445 cm, and 1570 cm[18].

In contrast, when the HHM spectra were acquireanfro
non-metallic substrates (see Fig. 3), the refleciomponent
of the transflection spectra stands out more premily,
producing reflection spectra with profiles simildrose with
anomalous dispersions [19]. These spectral feaareasually
observed when the sample refractive index decremsdise
high-wavenumber side of the absorption band maximum
returning to the normal value at the absorptiondbaenter and
then increasing to the lower wavenumber side bektaning
again to the normal values [20]. However this gfbct
distortions observed are not anomalies but, ratepectral
profiles dominated by the reflection of the HHM sdes [21].

a
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Fig. 2 Vibrational spectra of HHM, (a) TNT, (b) PH&Nnd (c) RDX on
Aluminium.
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B. Development of Multivariate Sensor
For analyze the IR vibrational data recorded, Ploslox™
version 6.5 (Eigenvector Research Inc., Wenatchwé,
USA) for MATLAB™ (The MathWorks, Inc. Natick, MA,
USA) was used. All the data recorded was divided imwo

groups: a calibration set and a prediction set. dddération
set contained approximately 70% of the data and the
prediction set contained approximately 30% of taeadPLS-
DA was applied to the spectral data in order tefg or
group all spectra by HHM type and to discriminatgween
clean substrate contributions in the MIR and sabssr with
explosives. PLS-DA is one of the most widely used
chemometrics tools, particularly when the goal B t
discriminate, classify and identity spectral simflas in a
multivariate data set. PLS-DA is a supervised patte
recognition method. A detailed explanation of holaSFHDA
works and its numerous applications is not includedhis
paper. Excellent in-depth mathematical support aadous
applications in natural sciences and engineeriegaaailable
in the literature [22-24]. PLS-DA is a linear cldisation
method that combines the properties of PLS regresaith
the discrimination power of a classification techud. PLS-
DA is based on the PLS regression algorithm, wisiearches
for latent variables with a maximum covariance lestw a
descriptor matrixX and a response matrik (containing the
membership of samples to the G classes expressid awi
binary code: 1 or 0). The primary advantage of BLSis that
the relevant sources of data variability are madidde the so-
called latent variables (LVs), which are linear cmations of
the original variables, and consequently, allowgrgphical
visualization and understanding of the differentadpatterns
and relations by LV scores and loadings. The scapesent
the coordinates of the samples in the LV projeclipperspace
[23, 24].Several preprocessing steps were applied to the dat
with the objective of generating multivariate madeapable of
clustering spectra by chemical similarities i.e. TRE RDX,
TNT and clean substrates (TB, CB and wood).

The fig. 4 and 5 show the score plots resultingnfrine
PLS-DA runs. The score plots allow visualization tbie
clustering of the spectral data and demonstrate ttiea best
results were obtained for the models generatedr afte
preprocessing was applied. The class prediction®EBfN,
RDX, and TNT on Wood from the cross-validation set¢
shown in Fig. 4a—4c. Five Latent Variables (LVS)reve
required to obtain the best multivariate classtf@amodel.

For the multivariate analysis of the mid-IR viboats of
the HHMs deposited on wood, it was necessary tprpoess
the data by taking the first derivative (15 poings)d using
SNV transformation and Mean Centering (MC) to abttie
best chemometrics results.

For the multivariate analysis of the mid-IR viboats of
the HHMs deposited on TB and CB, we obtained thst be
chemometrics models by taking the first derivatitd points)
and applying MC.
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IV. CONCLUSION

Mid infrared spectroscopy system was used for ttedion
of HHMs deposited at low surface concentrationstlomee
types of non-ideal substrates: polyester travelfahgc (TB),
cardboard (CB), and wood. The spectral profile$ibiMs in
transflection experiments depend on the reflegtiaf the
substrate. For highly reflective substrates, sushA§ the
transflection spectra are similar to transmissipectra; for
low-reflectivity substrates, such as TB, CB, andodiothe
transflection spectra are similar to reflection e where
nitro group bands prevail. For the multivariate lgsia on TB

Development of a portable fluorescent detectdialanta vol. 81, pp.

543-548, 2010.

Hilmi and J. Luong, “Micromachined Electrophoreships with

Electrochemical Detectors for Analysis of Explosi®empounds in Soil

and Groundwater,Environ. Sci. Technolyol. 34, pp.3046—-3050, 2000

[71 3. Yinon, “Trace analysis of explosives in water bgas

chromatography—mass spectrometry with a tempenatogeammed

injector,” J. Chrom. Avol. 742, pp. 205-209, 1996.

C. Szakal and T. M. Brewer, “Analysis and Mechargsnof

Cyclotrimethylenetrinitramine lon Formation in Destion Electrospray

lonization,” Anal. Chem.vol. 81, pp. 5257-5266, 2009

C. J. Miller and T. S. Yoder, “Explosive Contamiiat from Substrate

Surfaces: Differences and Similarities in Contartiora Techniques

Using RDX and C-4,'Sens. Imaging: An International Journafol .11,

pp. 77-87. 2010.

[10] H. Gunzler and H.-U. Gremlich|R Spectroscopy: An Introductidn,
Wiley-VCH, Weinheim, Germany, 2002.

[11] S. Bangalore, G. W. Small, R. J. Combs, R. B. Kn#&hpT. Kroutil, C.
A. Traynor, and J. D. Ko, “Automated Detection afchloroethylene by
Fourier Transform Infrared Remote Sensing MeasunéstieAnal. Chem.
vol. 69, pp. 118-129, 1997.

[12] Smith, “Fundamentals of Fourier Transform InfrarBgectroscopy,”
CRC Press, Boca Raton, FL, USA, 2000.

[13] J. D. Suter, B. Bernacki and M.C. PhillipsSpectral and angular
dependence of mid-infrared diffuse scattering frerplosives residues
for standoff detection using external cavity quamteascade lasers,”
Applied Physics Pvol. 108, no. 4, pp. 965-974, 2012.

[14] M. Kumar, M. N. Islam, F.L. Terry, M.J. Freeman, &han, M.
Neelakandan and T. Manzur, “Stand-off detectiorsafd targets with
diffuse reflection spectroscopy using a high-powerid-infrared
supercontinuum source,” Applied optics, vol. 5b, 45, pp. 2794-2807,
2012.

[15] S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon and Thundat,
“Molecular Recognition Using Receptor-Free Nanonaeital Infrared
Spectroscopy Based on a Quantum Cascade La&Seihtific reports
vol. 3, Article number 1111, 2013.

[16] J. Clarkson, W.E. Smith, D.N. Batchelder, D.A. Sménd A.M. Coats,
“A Theoretical Study of the Structure and Vibrat® of 2,4,6-
Trinitrotolune,” J. Mol. Struct.vol.648, no.3, pp. 203-214, 2003.

6

—_

(8]

&

and CB preprocessing a8 derivative and mean center were [17] W.F. Perger, J. Zhao, J.M. Winey, and Y.M. Guptgirst-Principles

sufficient to develop multivariate sensor. In Wabstrate by
to be surface more complex a third preprocessitfNVjSvas
necessary. In general, we have demonstrated thRSMs$
useful for developing a rapid screening methodol@myythe
detection and discrimination of HEMs on nonideaiw-
reflectivity, highly interfering substrates usingultivariate
analysis.

REFERENCES

[1] M. Marshall, and J. C. Oxley“Aspects of Explosives Detectipn
Elsevier, Amsterdam, The Netherlands, 2009.

[2] J.Yinon, and S. Zitrin,Modern Methods and applications in analysis of
explosive§ John Wiley & Sons Ltd., Chichester, UK, 1996.

[3] H. Schubert, and A. Rimski-Korsakovstand-Off Detection of Suicide-

Bombers and Mobile SubjettsProceedings of the NATO Advanced

Research Workshop on Stand-Off Detection of Suids@enbers and

Mobile Subjects, NATO Security through Science &eB: Physics and

Biophysics, Pfinztal, Germany, Springer, Germard0=

Committee on the Review of Existing and Potenti@n8off Explosives

Detection Techniques, Existing and Potential Standoff Explosives

Detection TechniquésNational Research Council, National Academy of

Sciences Committee, Washington, D.C, 2004.

[5] T. Caron, M. Guillemot, P. Montméat, F. Veignal, Frerraut, P. Prené,
and F. Serein-Spirau, “Ultra trace detection of lespes in air:

[4

Study of Pentaerythritol Tetranitrate Single Crisstander High Pressure:
Vibrational Properties,”"Chem. Phys. Leftvol. 428, no. 4-6, pp. 394-
399. 2006.

[18] R.L. Prasad, R. Prasad, G.C. Bhar, and S.N. ThaiRlrotoacoustic
Spectra and Modes of Vibration of TNT and RDX at ZQaser
Wavelengths,” Spectrochim. Acta, Part Ajol. 58, no. 14, pp. 3093-
3102, 2002.

[19] D.M. Hembree, and H.R. Smyrl, “Anomalous Dispersi&ffects in
Diffuse Reflectance Infrared Fourier Transform Spescopy: A Study of
Optical Geometries Appl. Spectrosaepl. 43, no. 2, pp. 267-274989.

[20] J.M. Chalmers, “Mid-Infrared Spectroscopy: Anonesli Artifacts and
Common Errors” In Handbook of Vibrational Spectopy, J.M.
Chalmers, and P.R. Griffiths, Chichester, UK: Jaliiley and Sons, Vol.
Ill, p p. 2327-2347, 2006.

[21] P. Bassan, H.J. Byrne, J. Lee, F. Bonnier, C. €laPk Dumas, E. Gazi,
M.D. Brown, N.W. Clarke, and P. Gardner, “Refleati@ontributions to
the Dispersion Artefact in FTIR Spectra of Singl@lBgical Cells,”
Analyst vol. 134, no. 6, p p. 1171-1175, 2009.

[22] M. Barker, and W. Rayens, “Partial Least Squaresr
Discrimination,”J. Chemomyol. 17, no. 3, pp. 166-172003.

[23] R.G. Brereton, “Chemometrics for Pattern RecogniticChichester,
England. The Atrium, Southern Gate: John Wiley &$abtd. 2009.

[24] D. Ballabio, V. Consonni, “Classification Tools @hemistry. Part 1:
Linear Models. PLS-DA,” Anal. Methods., vol. 5, 6, pp. 3790-3798,
2013.

fo

14™ LACCEI International M ulti-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San J&3ésta Rica.

5



