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Abstract—Compressive Sensing-based technologies have shown
a great potential to improve the efficiency of acquisition, manipu-
lation, analysis and storage processes on signals and imagery with
little discernible loss in data performance. The CS framework is
based on the assumption that signals are sparse in some domain
and can be reconstructed from a significantly reduced amount
of samples. As a result, a solution to the underdetermined linear
system resulting from this paradigm makes it possible to estimate
the original signal with high accuracy using linear programming
techniques. This paper presents a study on the use of compressive
sensing on satellite Hyperspectral Images, which provide a variety
of fields and applications with data with a high information
density for analysis. Hyperspectral imaging of large areas at
high resolutions required for some applications can turn the
image capturing, processing and storage processes into a time
consuming procedure, presenting a limitation for use in resource-
limited or time-sensitive settings.
We present an analysis on the algorithm parametrization that
may allow for a simpler capturing approach tailored specifically
for a given application’s needs using the well-studied l1-magic
algorithm. We provide a comparative study in compressive
sensing and estimate its effectiveness in terms of compression
ratio vs. image reconstruction accuracy. Preliminary results show
that by using as little as 25% of the original number of samples,
large structures may be reconstructed with high accuracy.

I. INTRODUCTION

Hyperspectral imaging devices provide the ability to observe
radiance or reflectance intensity across hundreds of spectral
bands. Hyperspectral images are widely used in a variety
of environmental, agricultural, military, geological, biological
and surveillance applications due to the large information
volume they contain. Hyperspectral images are dimensioned as
a series of two-dimensional images in the spatial domain, with
an additional spectral dimensional component. Useful as they
are, hyperspectral images have the important cost of a larger
data size, which has consequences in storage requirements,
aquisition time, system complexity and bandwidth require-
ments for transmission of acquired images. These reasons
justify why a variety of applications operate on a use it or
lose it philosophy, where recently acquired hyperspectral data
is processed for relevant information, and then discarded due
to the unfeasibility of long-term storage of large amounts of
hyperspectral data.
Compressive Sensing (from here on, referred to only as
CS) is a signal processing framework for efficiently sensing

and reconstructing signals at a sub-Nyquist rate. Unlike the
conventional methodology in signal processing, where the
entirety of the information available to a detector is collected
and then compressed following the Shannon-Nyquist sampling
theorem, CS reconstructs the original signal through solving
an optimization problem from a relatively small amount of
measurements. CS is based on the knowledge that a small
collection of linear projections of a sparse signal in some
domain contains enough information for its recovery. By
following this alternate approach, there is a potentially large
reduction in the sampling and computation requirements of a
signal detection or estimation system using CS, which trans-
lates into a proportional large reduction of energy, bandwidth,
and processing time requirements for a given application [1]
[2]. CS is based on the work of Candès, Romberg and Tao
[3] and Donoho [4], who showed that a signal having a
sparse representation in some domain can be reconstructed
from a small set of non-adaptive, linear measurements if they
meet some specific criteria. CS can be used, not only for
signal reconstruction or approximation, but also in making
a detection or classification decision or estimation, which
makes the CS technique a very powerful approach to many
applications and to a wide range of statistical inference tasks
[5].

Previous work on the use of CS technology in hyperspectral
imaging applications has made advancements using a variety
of approaches such as coded apertures [6][7] and spectral
unmixing [8]. In this paper, we perform a preliminary com-
parative study of the various acquisition parameters available
to us on real hyperspectral imagery data, and their impact
on the quality of the resulting reconstructed images. We aim
to demonstrate that CS is a viable solution to reducing the
temporal and computational resource requirements of hyper-
spectral image acquisition, and provide a referential guideline
for determining the individual best CS parametrization for a
given application. A CS approach considerably reduces the
required sensor usage time by reducing the amount of required
samples and, consequently, the ability to capture a significantly
larger amount of samples in a given amount of time.
The rest of this document is organized as follows: Section
III describes the data used for evaluation and the various
processing procedures performed on our data. Section IV
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presents the results from the procedures performed on Section
III. Finally, the results of the aforementioned procedures are
discussed, and main conclusions of our analysis and future
work are presented in Section V.

II. HYPERSPECTRAL IMAGING VIA COMPRESSIVE
SENSING

To illustrate the concept of CS, suppose that we have an N-
dimensional vector signal x ∈ RN , which can be sparsely
represented as s in an alternate domain by the transform
matrix ψ. In this alternate representation, x and s are both
valid representations of the same signal, with x existing in the
spatial domain, and s existing in the ψ domain. If this signal
takes a relatively small amount of K nonzero values in any
domain ψ, we can conclude that the signal is K-sparse in this
domain.
CS theory proposes that if x is sparse, it could be accurately
recovered to a high degree of accuracy by taking m random
measurements of x, where m is much smaller than N [3]. In
order to take the measurements, steps must be taken to produce
a random sampling matrix A of size N ×m, where m� N .
Thus, the compressively sampled signal, y, is given by the
following equation:

y = Ax (1)

The compressively sampled signal ŷ can be reconstructed
from the incompletely sampled information at any moment
by solving the following optimization problem:

ŷ = argmin
∥∥ψTx

∥∥
k

s.t. y = Ax (2)

There are a wide variety of available algorithms suited to
solving this optimization problem, in the context of recon-
structing compressively sensed signals. A comparative anal-
ysis of commonly used algorithms for this task has been
performed by Nunez et al [9]. According to the results in
[9], we chose the min-TV algorithm available in the L1-
Magic package [10] for the reconstruction from compressive
samples of our imagery, which minimizes the total-variation
norm of an object. It is common for reconstruction algorithms
used for signal reconstruction in CS applications to return
an approximate reconstruction by minimizing the l1 norm
using a variety of methods. However, approaches using the
TV norm have provided us with faster and more accurate
reconstructions, making it ideal for a reconstruction algorithm
for hyperspectral imaging applications. Total-variation norm
minimization seeks, through a convex optimization problem,
to solve the problem of returning an approximation ŷ of
the original signal x through an optimization problem that
minimizes the TV norm:

‖ŷ‖TV =
∑
t1,t2

√
|D1ŷ(t1, t2)|2 + |D2ŷ(t1, t2)|2 (3)

where D1 is the difference given by D1ŷ = ŷ(t1, t2)− ŷ(t1−
1, t2) and, similarly, D2ŷ = ŷ(t1, t2)− ŷ(t1, t2−1). This pro-
cedure is further illustrated in [3]. Further, we have developed
an algorithm which separates this optimization problem into a

large set of smaller, faster, independent routines to provide rea-
sonable reconstruction times for large images. This procedure
is outlined in Section II-A. By reducing aquisition time and
complexity in a Hyperspectral imaging system, it is possible
to acquire considerably more hyperspectral data in a given
amount of time, while maximizing the efficiency of bandwidth
and storage resources. Futhermore, it opens the possibility
of long-term storage of compressively sampled hyperspectral
images in applications where storage of conventionally sample
data is unfeasible or unjustifiable.

A. Block-Compressive Sensing Algorithm
In order to increase computational efficiency and attain rea-

sonable reconstruction times for large resolution images (either
spatially or spectrally), a block-based Compressive Sensing
reconstruction approach was devised. The proposed approach
divides hyperspectral data cubes from a hyperspectral imaging
device into a set of individual two-dimensional spectral bands.
Following this, each individual spectral band image is divided
into smaller blocks, which are independently reconstructed
from compressive samples and assembled into a complete 3-
D data cube with a high degree of precision. This procedure
is visually outlined in Fig. 1. In the event of having a single
band as the input, such as the case of the datasets evaluated
in this work, the first splitting step is skipped, and the spectral
band in question divided into blocks immediately.
In order to meet the variety of accuracy and/or reconstruction
time constraints present in a variety of hyperspectral imag-
ing applications (as well as other fields that share similar
limitations in handling and processing data with a similar
mathematical structure), both the block size and the sampling
factor, which indicates the percentage of compressively sam-
pled points in a given block, may be freely modified to achieve
an acceptable tradeoff between reconstruction accuracy and
total reconstruction times and determine the influence of each
of these parameters on the reconstructed imagery.

Fig. 1: Operation description for the block-CS algorithm. With
a 3-D hyperspectral cube as the input, the algorithm separates
the image into bands, and individual bands into blocks. The
individual blocks (highlighted in green) are for illustrative
purposes and not shown to any specific scale.

III. EXPERIMENT DESIGN
A. Data and Platform

In order to adequately and objectively evaluate the resolu-
tion performance of the reconstructed data sets in comparison



to the original when processed using the block-CS algorithm,
we chose to perform testing on band 35 of a copy of the Indian
Pines Hyperspectral Image data set [11], commonly used in
hyperspectral image processing quality assessment, and band
140 of the Enrique Reef Hyperspectral Image data set [12],
shown in Fig. 2. The specific bands used for this study were
selected for their visual contrast between the main elements
of the image. The Indian Pines Hyperspectral Image data

(a) Indian Pines Hyperspectral Image data set, band 35.

(b) Enrique Reef Hyperspectral Image data set, band 140.

Fig. 2: Selected bands from the Indian Pines and Enrique Reef
Hyperspectral Image data sets.

set was captured using the Airborne/Visible Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indian Pines test site
in northwestern Indiana, Illinois. The dataset consists of 224
spectral reflectance bands of 145×145px each, in the wave-
length range 0.4 to 2.5µm. We reduced the number of bands
to 200 by removing bands covering regions of high water
absorption: 104−108, 150−163, and 220 [13]. This corrected
dataset is the one that will be used for the proposed study. The
Enrique Reef Hyperspectral Image data set, generated at the
University of Puerto Rico, has been extensively studied and
characterized for hyperspectral image processing algorithms
[14] [15] [16].

For reference, the block-CS reconstruction algorithm pro-
cedure was executed in MATLAB on a personal computer
equipped with an AMD-FX 8350 4.02GHz eight-core proces-
sor and 16GB of RAM.

B. Procedure

To study the impact of compressive sampling parameters
on reconstruction quality, we perform reconstructions at four
different block sizes (8 × 8px, 10 × 10px, 16 × 16px and
32 × 32px) and four different sampling factors (10%, 25%,
50% and 75%), for a total of 16 individual reconstructions
for each of the considered data sets. In order to provide an
objective metric of image reconstruction quality compared to
the original images, the Structural Similarity (SSIM) index is
calculated and presented for all reconstructed images [17]. The
SSIM index is defined as

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σx + σy + C2)
, (4)

where (µx, µy) are the image means, (σx, σy) are the image
variances, σxy is the covariance of the two images, and C1, C2

are small constants that provide stability when the denominator
of Equation 4 is close to zero. Here, a value close to 1
indicates a high degree of structural similarity between the
two images. Conversely, a value closer to 0 indicates the
images have a low structural similarity. Additional to this,
we present intensity profiles of linear areas of interest with
both high and low-frequency intensity variations, so as to
highlight any potential degradation in image resolution due to
the reconstruction process from sub-Nyquist sampling across
all considered block size and sampling factor combinations.
The areas of interest in both datasets are shown in Figs. 3 and
4.

Fig. 3: Area of interest for the selected spectral band on the
Indian Pines dataset, where intensity profiles will be compared
across all performed reconstructions. The area of interest is
highlighted in red.

IV. RESULTS

A. Indian Pines Dataset

Fig. 5 shows a visual comparison of the reconstruction
results for the Indian Pines Dataset at four different sampling
factors. These results clearly show that for this image, even at a
sampling factor of 10% of the original samples, the significant
edge degradation and pixelation effects introduced by the
subsampling process still preserve the main features of the



Fig. 4: Area of interest for the selected spectral band on
the Enrique Reef dataset, where intensity profiles will be
compared across all performed reconstructions. The area of
interest is highlighted in red.

image, although fine details elude a successful recovery. Tables
II and I show the reconstruction times and SSIM indexes,
respectively, for all considered block size and sampling factor
combinations in the Indian Pines dataset. Finally, Fig. 7 shows
the intensity profiles indicated in Fig. 3. These intensity
profiles show the detail with which edges are preserved under
different sampling parameters when reconstructing the image
from a smaller amount of samples.

TABLE I: Reconstruction error, quantified using the Structural
Similarity Index (as given by Equation 4), for the Indian Pines
dataset, showing all considered block size and sampling factor
combinations.

Indian Pines
Sampling Factor

10% 25% 50% 75%

Block Size

8 0.476 0.742 0.843 0.945
10 0.496 0.724 0.911 0.962
16 0.568 0.754 0.885 0.957
32 0.561 0.785 0.908 0.974

TABLE II: Reconstruction time, in seconds, for the Indian
Pines dataset, showing all considered block size and sampling
factor combinations.

Indian Pine
Sampling Factor

10% 25% 50% 75%

Block Size

8 34.119 43.302 67.634 80.566
10 37.691 56.718 79.168 95.001
16 79.680 101.197 155.917 230.602
32 413.042 530.756 726.092 1040.499

B. Enrique Reef Dataset

Similarly, Fig. 6 shows a visual comparison of the recon-
struction results for a spectral band at three different sampling
factors. Similar to the Indian Pines case, the results show that,
even at a sampling factor of 10% of the original samples,
the significant edge degradation introduced by the process

still preserves our ability to identify the overall geographical
structure in the image, although some finer details elude a suc-
cessful recovery. Fig. 8 presents the profile of the area shown
in Fig. 4 for all combinations of block sizes and sampling
factors. Further, Tables III and IV show the SSIM indexes and
reconstruction times, respectively, for all considered block size
and sampling factor combinations.

Fig. 7: Intensity profiles for the sections specified in Fig. 4
across all reconstructions of the Indian Pines dataset.



Fig. 5: Subset of reconstructed image results for the Indian Pines dataset. From left to right: Reconstruction using a 10%
sampling factor, 25% sampling factor, 50% sampling factor and 75% sampling factor. All reconstructions shown were executed
using a block size of 10× 10 pixels. Notice the improvement in pixel degradation proportional to the sampling factor.

TABLE III: Reconstruction error, quantified using the Struc-
tural Similarity Index (as given by Equation 4), for the Enrique
Reef dataset, showing all considered block size and sampling
factor combinations.

Enrique Reef
Sampling Factor

10% 25% 50% 75%

Block Size

8 0.778 0.875 0.955 0.983
10 0.789 0.897 0.956 0.986
16 0.801 0.892 0.956 0.986
32 0.816 0.905 0.958 0.986

V. RESULTS DISCUSSION AND CONCLUSION

The results presented in Tables I and III indicate a clear,
albeit not dramatic, positive correlation between block size
and reconstruction quality, quantified using the Structural
Similarity Index. This is a stark contrast to visual analysis of
the reconstructions, which show significant edge degradation

TABLE IV: Reconstruction time, in seconds, for the Enrique
Reef dataset, showing all considered block size and sampling
factor combinations.

Enrique Reef
Sampling Factor

10% 25% 50% 75%

Block Size

8 88.231 109.492 150.307 184.588
10 97.106 155.401 202.135 278.207
16 212.439 287.782 468.710 526.957
32 1161.051 1468.104 2153.506 2788.331

and pixelation at lower block sizes, as can be observed in Figs.
7 and 8. Futher, a strong negative correlation is observable
between block size and reconstruction time. As is to be ex-
pected, reconstruction quality improves with higher sampling
factors. On the other hand, the required reconstruction time
shows a slight increase with higher sampling factors, due to
the additional data points that need to be considered in the
optimization problem, although this difference is not nearly as



Fig. 6: Subset of reconstructed image results for a the Enrique Reef datset. From left to right: Reconstruction using a 10%
sampling factor, reconstruction using a 25% sampling factor, reconstruction using a 50% sampling factor and reconstruction
using a 75% sampling factor. All reconstructions shown here were performed using a block size of 10× 10 pixels. Notice the
improvement in pixel degradation proportional to the sampling factor.

dramatic as with higher block sizes. It is important to highlight
that in hyperspectral images, time of access to a sensor is
a highly coveted resource, moreso than computer time. For
this reason, even in situations where the total reconstruction
time is larger than the acquisition time in a non-CS approach,
there is a benefit present in being able to occupy the sensor in
different, less time-consuming tasks. Analysis of the linear
profile results indicate that larger block sizes produce, on
average, reconstructions with a higher similarity to the original
images, and considerably more accurate edge profiles than
those produced by reconstructions using smaller block sizes. In
some detection applications, this difference might appear small
enough to be considered an advantage, given the extremely
high reconstruction times from larger block sizes.
It is important to note that, in a significant number of the sce-
narios considered, sampling factors as small as 10% produce
images with sufficient information to appreciate important
edges and structures in the image. Further, reconstruction times
for larger block sizes appear to be prohibitive in our current
approach, requiring more time to solve the optimization prob-
lem than to capture the entirety of the image multiple times
over using a conventional approach, while not providing a
significant advantage in reconstruction quality. Visual analysis
of the results clearly shows that, whenever a lower degree
of precision is acceptable (such as those needed for detection
cases), sampling factors as low as 10% provide a fast, adequate
representation of the image structure so as to be useful for
determining the need to perform further analysis on a given tar-
get. This has the potential of considerably reducing the amount

of time required to acquire specific image data of interest.
Due to reduced sampling times, this approach provides the
ability to capture multiple images in the same amount of time
it would take to capture one under a conventional approach
by reducing the required usage of a hyperspectral imaging
device. Future work on this subject includes evaluating the
performance of the block-CS algorithm on a wider variety of
hyperspectral data, evaluating classification performance of the
reconstructed imagery, as well as taking advantage of parallel
computing techniques to accelerate reconstruction times.

ACKNOWLEDGMENTS

F.A. is supported by a scholarship grant from the In-
stituto para la Formacion y Aprovechamiento de Recursos
Humanos (IFARHU) office of the government of the Republic
of Panama. F.A. and E.A. thank the Laboratory for Applied
Remote Sensing and Image Processing at the University of
Puerto Rico, Mayaguez Campus for allowing use of their
facilities for the development of this project.

REFERENCES

[1] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun,
K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, p. 83,
2008.

[2] M. Zambrano-Nunez, E. A. Marengo, and J. M. Fisher, “Coherent single-
detector imaging system,” in Signal Processing Systems (SIPS), 2010
IEEE Workshop on. IEEE, 2010, pp. 111–115.

[3] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” Information Theory, IEEE Transactions on, vol. 52, no. 2, pp.
489–509, 2006.



Fig. 8: Intensity profiles for the sections specified in Fig. 3
across all reconstructions of the Enrique Reef dataset.

[4] D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Trans-
actions on, vol. 52, no. 4, pp. 1289–1306, 2006.

[5] M. A. Davenport, M. B. Wakin, and R. G. Baraniuk, “Detection
and estimation with compressive measurements,” Dept. of ECE, Rice
University, Tech. Rep, 2006.

[6] G. Martin, J. M. Bioucas-Dias, and A. Plaza, “HYCA: A new tech-
nique for hyperspectral compressive sensing,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 53, no. 5, pp. 2819–2831, 2015.

[7] A. Rajwade, D. Kittle, T.-H. Tsai, D. Brady, and L. Carin, “Coded
Hyperspectral Imaging and Blind Compressive Sensing,” SIAM Journal
on Imaging Sciences, vol. 6, no. 2, pp. 782–812, 2013. [Online].
Available: http://epubs.siam.org/doi/abs/10.1137/120875302

[8] G. Martin, J. M. Bioucas Dias, and A. J. Plaza, “A new technique

for hyperspectral compressive sensing using spectral unmixing,” SPIE
Optical Engineering Applications, vol. 8514, pp. 85 140N—-85 140N,
2012.
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