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I.  INTRODUCTION 

Although the fundamentals of the topic of the finite 

element analysis date back to the last century, the modern and 

practical aspects of it are relatively new and traced back to the 

1960s.This coincided with the development of several 

commercial finite element software [1], [2], and [3] to name a 

few. During the 70s and 80s, significant research activities on 

the solid mechanics side was undertaken and by the early 90s 

the use of FEA was prevalent in industry and the graduate 

programs in universities. In general, graduate courses 

(intermediate and advanced) were made available for interested 

students which provided them with a good understanding of the 

subject beyond the use of a software. Due to the consolidation 

of FEA software packages, and the widespread availability of 

powerful and inexpensive personal computers, the finite 

element topic has gradually crept into the undergraduate 

engineering curriculum. Just about every engineering 

undergraduate engineering program has a course on FEA at the 

third or fourth year level. In fact, in some schools, it is 

introduced in the freshman year. 

The inclusion of finite elements in the undergraduate 

curriculum has resulted in many positive contributions but at 

the same time created unique challenges in properly teaching it. 

At the undergraduate level, the appropriate prerequisites for 

taking, understanding, and utilizing FEA are listed below. 

These courses are, engineering mechanics (both statics and 

dynamics), strength of materials, engineering materials, 

introductory stress analysis, and ideally, a basic course in 

mechanical vibrations. Essentially, these prerequisites are 

completed by the end of the third year. Therefore, the optimal 

point for introducing FEA to the undergraduates is in the final 

term of the third year. 

The major factors that complicate the issue are twofold. 

The FEA software have become so “user friendly” that a typical 

undergraduate student assumes that the results are correct and 

makes no attempt to question the validity of the output. In 

particular, to some students, if the contour plot is generated and 

the “colors look good”, the results must be correct. 

Furthermore, there has been a major push by the software 

companies to suppress (or downplay) the availability of the 

“theoretical manuals” to the extent that the users 

(undergraduates) have no recourse in knowing how the results 

have been arrived at. Needless to say that the “devil is in the 

details”. It may be true that a typical undergraduate may not 

consult the theoretical manual but this information may not be 

even available to the course instructors and even researchers. In 

the remaining part of this paper, the author’s experience with a 

variety of problems on which the students may have conceptual 

difficulties are discussed. Although the FEA presentation in this 

paper is using the CATIA v5 program [4], it could have been 

done with any other commercial software. 

II. THE RESTRAINTS AND LOADS

Students often do not realize that that the restraints and 

loads applied as boundary conditions are mathematical 

idealization of real situation and simply try to approximate the 

physical condition. This conceptual difficulty in FEA, stems 

from earlier courses such as engineering mechanics and 

strength of materials. At that stage, the instructors are so 

involved in teaching the students the mechanisms of how to 

arrive at the final solution that often ignore such issues.  

Fig. 1 to be emphasized that neither the clamped face, nor 
concentrated loads can physically be achieved 

The students should be reminded that the physical restraints and 

loads are the results of multi-part interaction. Furthermore, that 

a concentrated force is the result of a pressure acting over an 

extremely small area. It is worth referring to a simple situation 

such as depicted in Fig. 1 and to emphasize that neither the 

clamped face, nor the concentrated force are physically 

realizable. 

Clamped Face

Concentrated Force
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III. THE MESH SIZE DILLEMA 

 

In order to make the current FEA packages “look” user 

friendly, the number of warning messages is kept at minimum. 

This is partly the reason that the students usually look for the 

“deflection” plot without paying much attention to the actual 

numbers. Clearly, ignoring the element size, can dramatically 

affect the stress values and to a lesser extent, the deflection 

values. In order to convince the students of the significance of 

the mesh size, a simple cantilever beam problem can be used. 

To be more specific, a 1x1x10 inch steel beam whose end face 

is clamped, and the top face is subjected to a pressure of 50 psi. 

is considered. This simple geometry is used to avoid 

confounding the issue. 

  
Fig. 2 Element size effect on deflection and stress 

 

The two different discretization of the cantilever problem are 

shown in Fig. 2, where the coarse mesh is 2 in. whereas the fine 

mesh is 0.5 in. The results of using linear tetrahedral elements 

with the coarse and fine mesh are described in Table I. The 

quantities compared are the maximum deflection and the 

maximum von Mises stress.  

 
TABLE I 

EFFECT OF ELEMENT SIZE 

Element 

size 

(inches) 

Maximum 

Deflection 

(inches) 

Maximum von 

Mises 

Stress (psi) 

2.0 0.0056 3410 

0.5 0.0155 8200 

 

A typical student, having seen such a comparison, arrives at the 

conclusion that a smaller element size results in a more reliable 

solution. Therefore, they select an extremely small size which 

can bring the computer to stall trying to complete the job.  

 

The students should be convinced through a good example 

that although small elements are preferred, their effectiveness 

depends on where they are deployed. These elements are to be 

used in locations where the stress contours are tightly packed 

together. A good demonstration problem is a 0.5x4x8 

rectangular plate made of steel with a central hole of radius 0.25 

(all dimensions are in inches). The plate is under tension with a 

load of 1000 psi. The plate thickness is assumed to be 0.5 in. 

The setup is shown in Fig 3, where the nominal mesh for both 

parts is the same size, however, one of the parts has a modest 

local mesh refinement in the critical area. 

 
Fig. 3 The effect of local mesh refinement 

 

Hopefully, the results described in Table II convinces the 

students that not all elements need to be made small, but only 

those in critical areas. Furthermore, it warns the students that 

the deflections are not as sensitive to the mesh size as the 

stresses are. This is a point that is often neglected by the 

beginners. 

 
TABLE II 

EFFECT OF LOCAL MESH REFINEMENT 

 Max Deflection 

(inches) 

Max von 

Mises 

Stress (psi) 

No local refinement 2.94E-4 1820 

With local 

refinement 

2.97E-4 2780 

 

IV. STATIC VS DYNAMIC 

It is the author’s opinion that the confusion of the 

distinction between static and dynamic by an average student, 

has nothing to do with the subject of finite elements. It has to 

do with the impression that static analysis does not involve time 

whereas dynamic analysis involves time variation. The best 

approach to rectify this misunderstanding is to explain the 

phenomenon in terms of the mass-spring system under a 

ramped load as shown in Fig. 4. 

    

 

 

 

 

 

 

 
Fig. 4 The mass-spring system under a damped load 
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For the sake of concreteness, let us select the following 

numerical values. Assume that , m = 10 kg, k = 10000 N/m, and 

F0 = 100 N. The point of this example is to explain the 

significance of the parameter T0 which explains the difference 

between a static and dynamic response. Keep in mind that T0 

represents how fast the ramp load rises to the final constant 

value of  F0 = 100 N. The students already know that the natural 

frequency of free vibration of the system is given by    𝜔 =

√𝑘/𝑚 = 31.623 𝑟𝑎𝑑/𝑠  . This frequency corresponds to a 

period𝑇 =
2𝜋

𝜔
= 0.2 𝑠. Two values of  T0 are now examined. In 

the first case 𝑇0 = 6𝑇 whereas in the second case   𝑇0 = 0.5𝑇 . 

The graphs of the mass displacement as function of time are 

displayed in Fig. 5. 

 

The graphs convince the students that the same physical 

problem can behave in two different ways depending how fast 

the load is applied. It is worth pointing out to the students that 

in the case of 𝑇0 = 6𝑇, one can use the specified time, find the 

magnitude of the load at that time, and solve the static equation 

𝐾𝑥 = 𝐹 . This approach is not valid when dealing with the case 

𝑇0 = 0.5𝑇.  The example just presented also emphasizes the 

importance of knowing the natural frequencies of the structure 

in order to decide on the solution strategy.   

 

Fig. 5, mass displacement as a function of time 

 

V. NATURAL FREQUENCIES 

The previous section emphasized the role of the natural 

frequency in the behavior of the system response. The concept 

of natural frequencies is not well understood by some 

mechanical engineering students. The topic of FEA is the 

natural point in the curriculum to clarify this issue.  Finite 

elements is a versatile tool to demonstrate the different 

scenarios involving natural frequencies. Perhaps an example 

involving resonance clarifies the idea. Figure 6, displays a 

simply supported beam with a motor placed at the mid-span. 

The beam is made of steel with approximate dimensions 2.5 x 

3.2 x 25.5 inches. 

 The first ten natural frequencies of the beam are calculated 

with CATIA and are displayed in Fig. 7. The associated first 

four modes are also displayed in Fig. 8. A substantial amount 

of time must be devoted to the interpretation of the frequency 

values and the corresponding mode shapes by the instructors. 

The students should be warned that although tens of thousands 

of natural frequencies can be calculated in FEA, this involves 

substantial CPU time and are of no practical use. Depending on 

the problem, at most handful of frequencies can ever be 

employed and are sufficiently accurate to have any significance. 

They should also be warned that the magnitude of the 

displacements and stresses are meaningless. It is the relative 

displacement that is of importance.  

 

 
 

Fig. 6, simply supported beam 

 
Fig. 7, the first ten natural frequencies of the beam 

Fig. 8, the lowest four modes 

 

 

 

T0 = 6 T T0 = 0.5 T 
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V. SYMMETRY CONSIDERATIONS 

The concept of reducing an FEA domain due to symmetry 

considerations is rather difficult to comprehend by the majority 

of the undergraduate students. Part of the difficulty may be that 

they view the part geometry in isolation and if they recognize 

planes of symmetry (geometric symmetry), they immediately 

conclude that there is also finite element symmetry. Through 

simple models, they have to be convinced that the “loads” and 

“restraints” also play a role in this matter. Three scenarios such 

as the ones displayed in Fig. 9 can serve the purpose. 

 
Fig. 9, the role of geometry, load, and restraint in determining the 

number of planes of symmetry 

 

Due to the importance of the application of symmetry in 

finite elements, it is worth mentioning other fields of 

mechanical engineering where this issue arises. At this point in 

their education, the students should be familiar with the 

fundamentals of heat transfer. The geometry in Fig. 10 can be 

viewed as a concrete slab with longitudinal cavities carrying a 

heated fluid (say air) of a constant temperature. The external 

boundaries of the slab are subject to free convection.  

As long as the cavities are reasonably away from the two side 

ends, one can investigate a single cell (level 1 symmetry), or 

even further reduction (level 2 symmetry), both shown in the 

same figure. This reduction is traditionally referred to as “cyclic 

symmetry”. 

 
Fig. 10, cyclic symmetry in heat transfer applications 

 

Irrespective of these explanations, a typical student is 

generally not easily convinced about the advantages of 

employing the symmetry conditions. The most common 

argument by the student is, “why do have to complicate life, if 

the entire problem can be modelled, ignoring any symmetry 

considerations?”. Needless to say, on the surface, this sounds as 

a valid question. 

The students should be reminded that in principle, smaller 

elements lead to more reliable results. By using symmetry, one 

can substantially reduce the size of the part under consideration 

as shown in Fig 10, and therefore a large number of elements 

can cover a smaller domain. The students should also be warned 

that the reducing the model by symmetry considerations, in 

certain cases such as natural frequency or buckling load 

calculations can suppress certain deformation modes that may 

be critical to the interpretation of the results. Figure 11, is a 

reminder that in the natural frequency calculations of a simply 

supported beam, if symmetry is used, all the anti-symmetric 

modes of vibration are suppressed. 

Fig. 11, mode suppression effect 

VI. ELEMENT TYPES 

In all likelihood, the students are initially exposed to solid 

elements and therefore they have the tendency of discretizing  

every part with such elements. In fact, it is the case that solid 

elements produce the most reliable (and complete) results but 

only if they are sufficiently small in size. The three types of 

structural elements (in the simplest form), namely, “Solid”, 

“Shell” and “Beam” are displayed in Fig. 12. The associated 

degrees of freedom are also displayed in the figure.  

Fig. 12, Solid, Shell, Beam elements and their degrees of freedom 

 

 

 

clamped

clamped

no planes of symmetry

clamped

one plane of symmetry

clamped

no planes of symmetry

concentrated
load

 

Actual Part

Level 1 symmetry

Level 2 symmetry

convection

convection

in
su

la
ti

o
n

in
su

la
ti

o
n

convection

in
su

la
ti

o
ninsulation

insulation

 

SUPPRESSED MODES

 
UX

UY

UZ

UX

UY

UZ

ΘY

ΘX

ΘZ

UX

UY

UZ

ΘY

ΘX

ΘZ

Solid Shell Beam



14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for 

Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 5 

It takes a great deal of effort and a large number of 

examples to convince a student of the suitability of using a 

specific type of element for given part. Some suggestions are 

provided in Fig. 13. The general explanation can rely on the 

relative dimensions in different directions. For example, if the 

dimensions of the part in two directions are much smaller than 

the third direction, the “beam” element may be appropriate. In 

situations where one particular direction is substantially smaller 

than the other two, “shell” elements are perhaps appropriate. 

The above two statements are not strictly correct, but are more 

reassuring to an undergraduate student. 

 

They students should also be cautioned that in real 

engineering problems requiring FEA, all three type of elements 

may be needed to generate realistic results. When dealing with 

such cases, one should be very careful in interpreting the stress 

distribution at the junction of two different type of elements. 

 

 
Fig. 13, Solid, Shell, Beam elements and their degrees of freedom 
 

It is worth spending some time on discussing these elements 

individually and highlighting their features. For example, there 

are different beam formulations such as “Bernoulli” and 

“Kirchhoff” types. If the beam is slender, the shear deformation 

may be negligible and therefore the Bernoulli beams are 

appropriate. On the other hand, for “short-fat” beams, Kirchhoff 

formulation is more appropriate. Furthermore, not all beam 

elements are capable of simulating a cable behavior as they 

cables do not resist compression whereas beams do. Ordinarily, 

there are certain features in the software that can be activated to 

turn a beam into a cable element. 

 

 Similarly, there are different types of shell elements. In the 

case of very thin shells, the shear deformation can be safely 

ignored, whereas shear can have a major effect in the case of 

thick shells. The junction between shells of different 

thicknesses can display erroneous stress distribution. This 

comment also applies to the junction of beams with different 

cross sections. To get detailed information at the junction, one 

will have to use solid elements in that location. 

 

   The symmetry considerations discussed in section V are 

also applicable to the beam and shell elements. Since these 

elements have rotational degrees of freedom, they cause a 

confusion among the students. 

 To alleviate this issue, table III shown below can be used 

to enforce the appropriate restraints. For example, if the edge of 

a shell element lies in the YZ symmetry plane, one needs to 

apply the restraints  𝑈𝑋 = 0, Θ𝑌 = 0, Θ𝑍 = 0 .  
 

TABLE III 

TABLE FOR RESTRAINTS UNDER DIFFERENT SYMMETRY PLANES  

PLANE UX UY UZ ΘX ΘY ΘZ 

YZ zero free free free zero zero 

XZ free zero free zero free zero 

XY free free zero zero zero free 

 

The reader may be familiar with SAE Mini-Baja 

competition [5], [6] in which engineering schools from across 

the world have the opportunity to participate (see Fig 14). One 

of the aspect of this competition is to design a frame which has 

the structural integrity based on the SAE specifications. 

Ordinarily, because of the complexity of the geometry, the 

participating teams use a commercial FEA software to 

investigate their design. It is very common that they use solid 

elements to model components (such as tubes) in order to 

predict the stresses. This will frequently lead to poor results as 

it cannot be discretized with sufficiently small solid elements. 

The students’ reasoning for this decision is based on 

convenience and the lack of familiarity with the beam and shell 

elements. 

 

Fig. 14, Mini-Baja frame modeled with solid, shell, and beam elements 
 

VII. RIGID BODY MOTION AND SMALL PIVOTS 

One of the issues facing the undergraduate students using 

the finite element tool is to be able to identify and resolve error 

messages generated by the software caused by rigid body 

motion. The actual message generated, varies among the FEA 

software but they all point to a matrix singularity or small 

pivots. Generally speaking, the students resort to the most 

convenient solution which could be “randomly” clamping (or 

enforcing zero displacements) until the software runs. 

Naturally, they are pleased that some results are generated and 

 

Solid Element

Shell Element

Beam Element
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therefore, having the false sense of security that the output can 

be interpreted. In the case of the CATIA v5 commercial 

software, the dialogue box for such errors is displayed in Fig. 

15. Note that the message contains key words such as 

“Singularity detected”, “Pivot too small”, and a possible reason 

for such a deficiency. In most software, some displacement 

values are available for which are all extremely large and 

meaningless. The students are encouraged to plot the 

deformation (which are rigid body motion) in order to possibly 

arrive at the root cause of the software failure.  

 

Fig. 15, CATIA v5 error message for “rigid body” mode 
 

Perhaps the best way to illustrate these issues is in terms of 

a lumped two degree of freedom system as shown in Fig. 16. 

On the top of the figure, the time varying variables along with 

the masses are displayed. The equation of motion describing 

this system is given in (1). 

 

[
𝑚 0
0 𝑚

] [
𝑈1̈(𝑡)

𝑈2̈(𝑡)
] + [

𝑘 −𝑘
−𝑘 𝑘

] [
𝑈1(𝑡)
𝑈2(𝑡)

] = [
𝐹1(𝑡)
𝐹2(𝑡)

]  (1) 

 

Once the initial conditions of the two masses are prescribed, the 

system can be integrated in time and the solution𝑈1(𝑡), 𝑈2(𝑡)  

is obtained. Now consider the static situation shown in the 

bottom of Fig. 16. There, the forces are constant and therefore, 

the system is under equilibrium. This implies that 𝑈1, 𝑈2  are 

independent of time and (1) above simplifies to (2), described 

below. 

 

[
𝑘 −𝑘

−𝑘 𝑘
] [

𝑈1

𝑈2
] = [

𝐹
 −𝐹

]        (2) 

 

Note that the stiffness matrix is singular (zero pivot) and system 

cannot be solved uniquely for the displacements. Physically 

speaking, the location of the system can be anywhere along the 

horizontal line and it still remains in equilibrium. 

 

Notice that this is consistent with the “Error” message 

content, namely “missing restraint”. If one of the masses is 

fixed (ie zero displacement), position of the other mass is 

uniquely determined from (2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16, rigid body motion dynamic vs static case 

 

 
Fig. 17, the 1-2-3 rule to eliminate rigid body motion 
 

The situation is naturally more complicated in the case of 

distributed system such as a part to be analyzed, but the 

underlying principle is the same. As a concrete example, 

consider a block which is under static equilibrium as shown in 

Fig 17(a). In order to analyze this structure, one should apply 

certain restraints with the provision that the rigid body motion 

is eliminated but they contribute to no artificial stresses in the 

block.  The minimal restraints at three locations are shown in 

Fig. 17 (b), also known as the 1-2-3 rule which does not lead to 

any fictitious stresses but eliminates the rigid body motion. The 

common question by the students is, “how does one decide on 

which points to fix and which degrees of freedom?”. This is a 

perfectly legitimate question but unfortunately it requires 

experience, thinking, and sometimes trial and error. In the event 

that the students are using CATIA v5, there is a restraint icon 

named “Isostatic” which in principle applies the above rule 

automatically. Unfortunately it is frequently misused by the 

students leading to erroneous results. This type of restraint is 

needed to simulate the spring-back in metal forming 

simulations. 

 

 

 

 

 

 

m
k

F2(t)

m

F1(t)

U2(t)U1(t)

k

FF
U2

U1

 
Y

Z

FF
(a)

(b)

UX = 0

UY = 0

UZ = 0

X
UY = 0

UZ = 0

UY = 0



14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for 

Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 7 

VIII. NONLINEAR GEOMETRY 

The type of the FEA problems that an undergraduate 

mechanical engineering student is ordinarily is facing with is of 

linear type. This means, infinitesimal deformations and strains. 

Furthermore, it is assumed that that the Hooke’s law prevails. 

Because of the superposition principle, the student can impose 

any load (force and/or pressure), and the software will generate 

the corresponding output (displacement and stress). 

Notwithstanding the magnitude of the displacement and stress, 

the deformed shape and the contours of stress may look 

reasonable but the values may be totally meaningless. For 

example, a part that is roughly 1 m in size, can have 

displacements of 1 Km. The software does not check for 

material nonlinearities (such as yielding) and therefore some 

students do not question the validity of the results. Quite 

frequently, they ask the instructor whether their answer is 

correct or not. 

It is helpful to remind the students about the implications 

of the superposition principle. This can be done in the context 

of a simple linear spring of stiffness k, with a fixed end, while 

loaded with a concentrated force F at the other end. The 

displacement of the loaded end is given by linear expression 

𝐾𝑈 = 𝐹. increasing the value of F by a factor of “c” leads to 

increasing the value of U by the same factor, without violating 

the “linear physics” behind the model. The moral of the story is 

to warn the students not apply “irresponsible” loads as the 

software will not complain. 

 

IX. MATERIAL PROPERTIES AND FAILURE 

 

As it was pointed out earlier, at the undergraduate level, the 

students are not heavily exposed to the intricate issues in 

material modelling. In all likelihood, the bulk of the topics that 

they are exposed to deal with linear, homogenous, and isotropic 

martials. It is tempting to ignore the isotropy condition and try 

to model parts made out of wood which is orthotropic. 

Naturally, the FEA results cannot be trusted and must be 

handled with care. It is important to point out to the students 

that orthotropic material can behave elastically, so modeling 

such parts with FEA is not necessarily difficult. However, they 

should consult the software documentation to know what 

material information is needed and whether it is readily 

available. 

In the case linear isotropic material, the three parameters, 

Young’s modulus, Poisson’s ratio, and mass density are what is 

needed. For wood however, both the Young’s modulus and 

Poisson’s ratio are direction dependent. The author’s 

experience is that at least few lectures must be devoted to the 

review of engineering materials topic. The students should 

particularly review the properties of metals, wood, polymers, 

concrete, and soil. 

A universal question by the undergraduates (and others) is 

“Does my part break?”. This is a complicated and non-trivial 

question and they should be asked in return, “What do you mean 

by break?”. To many students, the term “break” refers to a 

catastrophic event (failure) where part literally breaks into two 

pieces. Clearly, this is one particular mode of failure but there 

many other modes. Other modes of failure can be excessive 

deflection, yielding, failure due to fatigue, and rupture. 

Although such topics are ordinarily covered in a machine 

design course, typical third year students lack the maturity and 

in-depth understanding of the topic. Typically, they concentrate 

on yielding. At this level, it is probably best to emphasize the 

design based on preventing “yield”. This can readily be done as 

the default stress is the von Mises stress in most commercial 

FEA software. The students should be constantly reminded that 

the von Mises failure criterion is primarily intended for ductile 

failure and should not be applied to brittle materials such as 

glass, ceramics, composites, and concrete.  

 

X. ANALYSIS OF ASSEMBLY VS PARTS 

 

An undergraduate course in finite elements usually 

involves the analysis of a single part. However, to fully 

appreciate the importance of FEA, it is highly recommended to 

let the students experiment with the analysis of simple 

assemblies. To be more specific, let us take the assembly shown 

in Fig. 18 which is consisting of two parts. It is assumed that 

there is a tight fit, ie the diameter of the shaft and the hole are 

exactly the same. Furthermore, it is assumed that the shaft and 

the hole are perfectly bonded (or glued) together. 

Fig. 18, the Shaft-Bearing assembly 

 

Fig. 19, the mesh in the assembled and unassembled configurations 

 

Assembly of Two Parts
Interacting with one another Part 1 : Bearing

Part 2 : Shaft
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For the sake of illustration, the two meshes are shown both in 

the assembled and unassembled configurations, as shown in 

Fig. 19. 

The restraint and the load are described next. The bottom 

face of the bearing is completely clamped and the free end of 

the shaft is subjected to a distributed downward force. Without 

an exception, when the students model the assembly, they do 

not realize that the two parts as they stand, do not interact with 

each other. 

Fig. 20, the shaft moves as a rigid body cutting through the bearing 

Another way to phrase this is that, the two parts “do not 

talk to each other”. The consequence of this observation is that 

the shaft begins to move as a rigid body and cuts through the 

bearing as shown in Fig. 20. The core of the complexity in 

analyzing an assembly is modelling (defining) the interaction 

between various parts. In the present problem, it was indicated 

that the two parts are perfectly bonded (glued). In CATIA v5 

this can be achieved by first defining an “Analysis Connection” 

between the two parts, and then declaring it as a “Fastened 

Connection”. Once, the interaction is defined, upon running the 

software, the deformation is shown in Fig. 21 is displayed 

which is what one expects. 

 

 

 

 

 

 

 

 

 

 

Fig. 21, the deflected shape after defining the interaction 

The students should be cautioned that not all interactions 

are of ”Fastened Connection” type. For example, in reality there 

is a finite gap between the shaft and the hole (specified 

tolerance) and in that situation, a “Contact Connection” is 

appropriate. It is important for them to consult the software 

user’s manual to know exactly what is available and their 

limitations.  

 

 

XI. ISSUES WITH INFINITE STRESSES 

A problem that arises frequently is the issue of applying a 

load as a concentrated force vs pressure. In Fig. 22, a clamped 

bar (at its left face) is subjected to a tensile load as shown. The 

load is modeled in two different ways. The first approach is to 

divide the magnitude of the load by the number of nodes on that 

face, and apply this value to every single node. Clearly this is 

statically equivalent to the intended load.  

The deformations result is displayed in the same figure (the 

second one from the top). One can see that there are major 

problems with this plot. The students may not see the issue at 

the outset but a good explanation by the instructor brings it to 

their attention. Note the unusual deformation pattern at the 

corners of the end face. The consequence of this unacceptable 

deformation is huge fictitious stresses that are developed at the 

corners. Generally speaking the usage of concentrated forces in 

solid elements results in unrealistic large stresses under the load 

which can mask the entire picture. The students should think 

twice before using concentrated forces in solid elements. 

The proper way to model this tensile load is to apply it as 

pressure, as shown in the bottom of Fig.22. There are no 

unusual deformations at the corners, and the stress is uniform 

throughout the cross section as expected.  

 The students are surprised to know that the infinite stress 

scenario can also arise in other circumstances where there are 

no concentrated forces. A good example for demonstration is 

 

Fig. 22, fictitious deformation developed at the corners of the face 

the linear elastic analysis of a part with a reentrant corner (such 

as a sharp crack). The situation is displayed in Fig. 23. When 

the applied load results in the opening of the sharp crack, the 

exact stress value at the crack tip is infinite. This is the basis of 

“Linear Elastic Fracture Mechanics”. 

 

 

 

Tensile Load

Load applied as concentrated
forces (total force divided by
The number of nodes on the face)

Load applied as pressure
(total force divided by area)
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Fig. 23, infinite stress at a reentrant corner (crack tip) 

Presenting the above problem to the students is a good 

“teachable moment” to discuss the significance of using 

“fillets” in critical locations with the reentrant corner 

characteristics. Use of generous fillet radius should be 

encouraged as long as it does not interfere with the functionality 

of the part. Another point to emphasize is that although the 

theoretical stress distribution may be infinite, in practice, the 

material yields in such locations and the infinite value is never 

achieved. This statement assumes that one is not concerned 

about fatigue failure. The situations is considerably more 

difficult in fatigue failure.  

XII. APPLYING LOAD AND RESTRAINT AT 

ARBITRARY LOCATIONS WITH NO FEATURES 

The proliferation of CAE/CAD/FEA in the industrial and 

academic sectors has lead the development of user friendly 

software which are mostly parametric, feature based packages. 

To make this statement more explicit, suppose that a 

student/user wants to apply a pressure load on a circular region 

on the top face of the block shown in Fig. 24. 

Fig. 24, pressure to be applied on a circle centered at A 

In majority of modern CAE software, if the surface on which 

the point “A” is located is selected, the pressure is applied on 

the entire surface. To a typical student, a way to get around is 

to create a feature around the point “A” such as the circular 

stand displayed in the figure, and then apply the pressure on the 

created circular surface. This strategy in referred to as an 

“embossment” in the CAD terminology. Although this may be 

reasonable in certain problems, it could be problematic in 

general. For example, stress concentration may be resulting due 

to the height of the padded/extruded embossment.  

 

 There are specific approaches to avoid this issue which are 

software dependent and the students should be made aware of 

them. In the CATIA v5 program (that our students are using), 

the process involves creating a circular surface on the top face 

which obviously has no height, and ‘sewing” the created 

surface to the top face of the block. This creates a feature on 

which the pressure load can be applied to. This process in 

CATIA v5 is described in Fig. 25. 

Fig. 25, sewing the surface to the top face 

When the part is meshed, the software recognizes that the 

presence of the “Sewed” surface as shown in Fig 26. 

Fig. 26, pressure can be applied on the feature 

 

XIII. STRUGGLING WITH THE VIRTUAL PARTS 

 

 In most commercial software, there are capabilities which 

are based on RBE2 and RBE3 from the NASTRAN program 

developed in the early 60s. The “virtual part” option in CATIA 

v5 is a variation of the above elements with certain 

modifications. The toolbar associated with “virtual parts” is 

shown in Fig. 27. 

 
 

Fig. 27, the virtual part tool bar in CATIA v5 

 Undoubtedly, in the analysis module, the virtual part 

capability is the “least understood and the most abused” feature 

by the students. This statement also applies to more seasoned 

finite element analysts. The core of the issue is the lack of 

proper documentation in the software and disregarding the 

limitations of the feature. The usage and description of virtual 

 

F

F

Crack tip

 

A

A pressure load To be applied on
a circular region catered at  point A.

 

 

Note the circular pattern created here
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element is usually in terms of the displacement degrees of 

freedom but the complications are in terms of specifying the 

load on the virtual part. To be more concrete, consider the line 

shown in Fig. 28 which is meshed with the ten beam elements 

[7]. A “smooth” virtual part is created with the support being 

the line and the handler point being at two different locations, 

namely point “A” directly above the centroid and point “B” 

above the right end of the line, as shown in Fig. 28.    

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 28, load transfer process for a “smooth virtual” part 

 

By glancing through the load distribution displayed in Fig. 28, 

it becomes evident that the non-trivial formulation is playing a  

significant role. The uniform distribution of the load as shown 

is normally what the students expect. This however applies only 

when the load goes through the support’s centroid. The figure 

is adopted from a training document for the RBE3 in the 

NASTRAN program [8]. The CATIA formulation for “smooth 

virtual” part seems to be an adaptation of such an element. 

 

XIV. BEAM ELEMENT OFFSET 

 

It was pointed out earlier that it takes some effort to 

convince the students of the need to use different types of 

elements in a single model (a hybrid model). Although the 

message may be relayed to the students and appreciated by 

them, implementing them in a meaningful way can be a 

challenge. This is frequently observed in using beam elements. 

 

The setting in Fig. 29 is the situation where beam-solid or 

beam-shell elements are needed. The students in general 

generate a surface (or a solid) and on the surface draw lines 

which are later meshed with beam elements. However, if the 

offset of the beam it not specified, the beams are acting as 

shown in the bottom of the Fig. 29. In this manner, they act as 

“stiffeners” instead of a foundation support. Clearly, the 

deflection results and therefore stresses are not accurately 

representing the design intent.  

 

Fig. 29, the effect of beam offset in a hybrid model [9] 

 

The offset feature in the majority of the commercial finite 

element packages are not well explained and appear in an 

obscure “check box” or “radio button” that needs to be 

activated. Needless to say that students do not enthusiastically 

look for the feature under discussion.  

 

XIV. CONCLUDING REMARKS 

 

 Undoubtedly, the finite element analysis plays a critical 

role in the modern mechanical engineering curriculum. The 

author has attempted to outline the common challenges by the 

students to learn and effectively use this valuable tool. The 

pedagogical points raised are not exhaustive but hopefully 

alerts and assists the instructor in such a course to maximize the 

learning opportunities by the students.   
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