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I.  INTRODUCTION 

Formal development methods are mathematical methods for 

producing software. The term formal means the use of 

methods of reasoning that are sound by virtue of their form 

and independent of their content [1]. Formal specifications of 

requirements and formal verification of software are the 

corner-stone of a formal method. Light-weight approaches to 

formal methods have gained popularity. Light-weight formal 

methods focus rather on specification than on formal proofs 

[2]. This work makes use of light-weight formal specification. 

To increase confidence that the formal specification correctly 

reflects the requirements that were expressed, it is necessary to 

validate the specification using black box testing techniques. 

Selecting test cases to validate the specification based only on 

the black box technique [3] makes it possible that we won’t 

validate the whole specification. A complementary technique 

is code coverage analysis. Code coverage analysis is the 

process of finding areas of a program not exercised by a set of 

test cases. It helps us create additional test cases to increase  

coverage and determining a quantitative measure of code 

coverage [4]. 

One of the contributions of this paper is to show that the 

application of light-weight formal specification helps to 

increase reliability in the correctness to the requirements 

specification. Also it shows how we can refine the 

specification using black-box testing and coverage analysis. 

As a case study we present the application of our proposal to a 

digital electrocardiograph. 

The rest of the paper is organized as follows: section 2 

presents the main definitions on formal methods, light-weight 

formal specifications, validation, black-box testing and code 

coverage analysis. Section 3 briefly describes the main sintax 

of VDM++, the formal specification language chose for our 

work.  Section 4 presents the methodology. Section 5 presents 

a case study: a Digital Electrocardiograph. First we present the 

requirement’s informal description, then a formal 

specification, initial test cases for validation and coverage 

analysis and subsequent refinement for validation. In Section 6 

we show our conclusions. 

. 

II. DEFINITIONS

In this section we present the main definitions that had been 

applying in our work. 

A. Formal Methods and Light-Weight Formal Specifications 

The UK Military of Defense on the procurement of safety-

critical software defines a formal method as: “A software 

specification and production method, based on a mathematical 

system, that comprises: a collection of mathematical notations 

addressing the specification, design and development phases 

of software production; a well-founded logical system in 

which formal verification and proofs of other properties can be 

formulated; and methodological framework within which 

software may be verified from the specification in a formally 

verifiable manner.” [5]. 

From the definition above it can be seen that formal 

specifications of requirements and formal verification of 

software are the corner-stone of a formal method. However, 
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light-weight approaches to formal methods have gained 

popularity for transferring these techniques into industry [6, 7]. 

In this context, light means that the method focuses more on 

the specification. The light-weight approach of formal 

methods has the advantage of a specification language: 

increase the quality of the specification of the system without 

focusing on the evidence [8, 9].  

Although formal proofs are beyond the scope of light-weight 

formal methods, formal verification is possible if it were 

necessary or required. The advantages of a light-weight formal 

method are summarized as follows: easy to learn, easy to 

apply, unambiguous description: the formal language provides 

a tool to specify without ambiguity introduced by the informal 

description techniques [10]. 

B. Validation, Black-Box Testing and Code Coverage 

Analysis 

Formal specifications are usually performed to achieve a 

better understanding of the desired behavior of a system, or to 

verify that a design has certain properties. Whatever the 

purpose, the specification is syntactically correct and having 

the correct types is not enough. The specification must also 

express a credible performance of the system being modeled 

[11]. Validation is the process that increases confidence in the 

formal specification that correctly reflects the requirements 

that were expressed informally to the system being modeled. 

To validate a specification is necessary to use testing 

techniques. The technique used in our proposal is the so-called 

Black-Box testing, a technique based on the description of 

requirements [3, 12]. 

Selecting test cases to validate the specification based only on 

the black box technique makes it possible that not all the 

formal specification could be validated. A complementary 

technique is code coverage analysis.  Code coverage analysis 

is a technique to analyze and evaluate which parts of the code 

were tested. Program allows you to find fragments that are 

executed by test cases. It helps to create additional test cases 

to increase coverage. Determine a quantitative value of the 

coverage (which is an indirect measure of program quality). 

Additionally, coverage analysis can also identify redundant 

test cases that do not increase the coverage [4].  

For our proposal we will use the Coverage Analysis to analyze 

and evaluate which parts of the formal specification were not 

tested and thereby to create new test cases. This is reflected in 

a formal specification refined, more accurate and correct.  

III. VIENNA DEVELOPMENT METHOD

VDM++ is a formal specification language used to specify 

object-oriented systems [11]. The language is based on VDM-

SL [8] which is a formal specification language standardized 

under the International Organization for Standardization 

(ISO).  This section presents the syntax of VDM++ relevant to 

our work [11, 13]. 

A. Class Definition 

Models in VDM++ are a set of classes. A class represents a 

collection of objects that share common elements such as 

attributes or operations. The structure of the description of a 

class is shown in Figure 1. 

Figure 1: Class Specification 

The class is represented by the keyword class, followed by 

the name of the class. The description consists of several 

blocks, preceded by the keyword indicating the type of item 

described in the block. In Figure 1 we see that a class in 

VDM++ has the following blocks:  

a) Instance variables: which model the internal state of

the object. 

b) Types: provide the definition of data types. VDM++ has

basic types and composite types. Among the basic types it has: 

boolean (bool), natural (nat, nat1), real (real) and 

character (char). In the compound types presents: sets (set 
of) sequences (seq of), mapping (map to), among others. 

Each of these types have pre-defined operations.  

c) Values: allow the definition of constants.

d) Operations: define operations that can modify the

instance variables. Operations can be defined explicitly (using 

an explicit algorithm) or implicitly (by using pre-conditions 

and post-conditions). In order to run our operations in the 

interpreter of the tool, the operations must be explicitly 

defined. VDM++ can also add pre-conditions (pre) and post-

conditions (post) on explicit operations.  

B. Expressions 

Expressions are used to describe calculations that do not 

produce side effects; this means that they can never affect the 

value of an instance variable (unless it contains a call to 

operation). VDM++ has 25 different categories of expressions. 
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One of the main categories used to define preconditions, post 

conditions and invariants are quantifiers expressions. 

Quantifying expressions are a type of logical expression. They 

are used on a frequent basis when it is necessary an assertion 

about a collection of values. There are two types of expression 

quantifiers: universal quantifier (forall) and existential 

quantifier (exists). 

C. Invariants 

If instance variables specified in a class contain values that 

should not be allowed, then it is possible to restrict these 

values through invariants. The result is that the type is 

restricted to a subset of the original values. An invariant is 

represented with the keyword inv following the definition of 

all the instance variables declared in the class.  

D. The Tool: VDM++ ToolBox 

In order to facilitate the use of formal specifications tool 

support is crucial. Our work is based on the features currently 

offered by VDM++ ToolBox [14]. It supports the ability to 

validate specifications using conventional testing techniques. 

Hence, the interpreter of the VDM++ Toolbox is able to 

execute specifications symbolically before they are 

implemented. During execution it automatically checks 

invariants and pre- and post-conditions. If some condition 

does not hold the user is notified with specific information 

about the violated condition and where the violation occurred. 

Test coverage analysis.  

Test coverage information can be automatically recorded 

during the evaluation of a test-suite. The specifier can at any 

point check which parts of the specification are most 

frequently evaluated and which parts have not been covered at 

all. 

IV. METHODOLOGY

The methodology for the development of our work consists in 

six steps. They are described below:  

1. Capture functional requirements in natural language.

2. Initial formal specification according to the functional

requirements.

3. Verifying the correctness of syntax and types according to

the rules of VDM++.

4. Formal Specification Validation through the execution of

test cases.

5. Coverage Analysis of Formal Specification.

6. Refinement of the validation specification by generating

new test cases. 

We can mention that in steps 2 and 3 it is possible to specify 

the requirements clearly and unambiguously. However there 

are in steps 4 to 6 where not only validate the specification, 

but to ensure that we have so many test cases as necessary to 

ensure that all the specification has been validated. Steps 5 and 

6 are performed as often as necessary until we had validated 

the whole specification.  

V. APPLICATION: ELECTROCARDIOGRAPH 

Our body is composed of millions of cells that need oxygen 

and other substances for their operation. They are found in the 

blood. The circulatory system is responsible for making blood 

distribution throughout the body. The heart is the key organ of 

this system. It is responsible for providing the necessary 

torque boost blood to do its course. The heart is a muscle that 

never rests, on its continued functioning depend our lives. The 

main clinical tool that allows us to determine the functional 

state of heart is the electrocardiogram. The Electrocardiograph 

(ECG) generates an electrocardiogram that provides important 

information about the heart's electrical activity to determine its 

functional status [15]. 

A. Functional Requirements 

The ECG signal is a sign of high diagnostic value for various 

types of diseases and conditions directly or indirectly related 

to the functioning of the heart. The correct operation of an 

electrocardiograph can mean the difference between life and 

death (a misreading of the electrocardiograph can lead to 

misdiagnosis). The correct reading and capture of the signal 

thus become a critical component of its operation.  

To record an ECG trace, it is necessary to place electrodes into 

specific parts of the patient's body surface. The specific 

provision which keep the electrodes is called "derivation" 

[15]. Depending on the placement of the electrodes, we obtain 

different derivations or pairs of points. The most commonly 

used lead to electrocardiographic diagnosis can be classified 

as: bipolar, augmented and unipolar [15, 16]. 

Bipolar Derivations: The standard bipolar derivations (called 

D1, D2 and D3) are obtained with the so-called Einthoven 

Triangle(shown in Figure 2) for record the electrical potentials 

in the frontal plane. The electrodes are placed in the left arm 

(LA), right arm (RA), left leg (LL) and right leg (RL), which 

acts as ground.  

Augmented Derivations: These represent the potential 

difference between one end and an electrode corresponding to 

the central terminal Goldberg. These referrals are known as 

aVR, aVL and aVF. It has a different orientation to the 

bipolar. It can be seen in Figure 3. 
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Figure 2: Bipolar Derivations 

 
 

 

 

 
Figure 3: Augmented Derivations 

 

 

Unipolar Precordial: These represent the potential difference 

between electrodes placed on specific parts of the patient's 

chest and an indifferent electrode called Wilson's central 

terminal. These leads are called V1, V2, V3, V4, V5 and V6. 

It is shown in Figure 4. 

 

 
Figure 4: Precordials Derivations 

 

 

As shown, an electrocardiogram for diagnostic purposes must 

allow the recording of 12 derivations 

The result of this work does not provide a complete formal 

specification of the electrocardiogram, but provides a 

reasonable description of the specification of one of the 

features considered critical: proper storage of the ECG signal. 

 

B. Formal Specification   

 

The formal specification is shown in Figure 5. We defined the 

class TestECG. Relevant information is modeled as 
instante variables: idTest, idPatient, 
dateTest, authorized (lines from 8 to 11).  Also we 

show the three derivations bipolar (line 14), augmented 

(line 18) and precordial (line 22).  

 

We have identified some important considerations to ensure 

the correctness of storage of the ECG signals: (a) when 

making the bipolar derivation it must be ensured that 3 

readings were performed (b) when making the augmented 

derivation it must be ensured that 3 readings were performed, 

(c) when performing precordial derivation it must be ensured 

that 6 readings were performed, (d) it is necessary to conduct 

the three types of derivations in order to consider the ECG test 

satisfactory. 

 

Consideration (a) is referred to the constraints of the bipolar 

variable. The bipolar variable consists of three real values 

that represent the derivations. Each value should be different 

from 0 (which represent the absence of signal). These 

restrictions are presented in the form of invariant, as shown in 

lines 15 and 16.  

 

Consideration (b) is related to the restrictions on the 

augmented variable. They are shown as invariant in lines 19 

and 20.  

 

Consideration (c) is referred to the restrictions of 

precordial variable. They are presented as invariant in lines 

23 and 24.  

 

Consideration (d) is related to ensure that a satisfactory 

examination was performed on a patient.  This is only 

achieved when there were 12 derivations.  We have created a 

new instance variable called completeSignal (lines 26 and 

27). This variable will contain the  concatenation of the 

bipolar, augmented and precordial variables. The 

concatenation is done in the operation CompleteTest (lines 

40 to 44). 

 

Additionally we have specified two operations: the constructor 

TestECG (lines 32 to 38) and Fun_Authorized (lines 46 to 

52).  
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Figure 5: ECG Formal Specification 

 

C. Validation and Specification Coverage Analysis  

 

Validation is the process that builds confidence for which test 

cases are needed to run the interpreter validating the results 

obtained are consistent with the specification.  The first test 

case was referred to validate the correct creation of the object 

test. The object was created satisfactory calling the constructor 

TestECG with the values shown in line 2 of Figure 6 (The 

command create is used to create objects). The second test 

case called the operation Fun_Authorized as it is shown in 

line 3 of Figure 6. 

 
 Figure 6: Formal Specification Execution and Coverage Analysis 1 

  

Having executed the initial test cases, it is important to note 

that we must ensure that reliably express the behavior 

specification of functional requirements and a way to achieve 

this is by validating the whole specification. To measure what 

percentage of the specification was validated we applied 

coverage analysis to the formal specification.   Figure 6, lines 

8, 9 and 10 shows the percentage of coverage for each 

operation. We can see that the constructor TestECG was 

100% validated, Fun_Authorized was 64% validated and 

CompleteTest was not validated at all.  Line 12 shows the 

total percentage of coverage in the class. 

 

As it is shown, 66% coverage is not enough. Hence it is 

required to seek other test cases to validate the missing parts 

of the specification. In addition to the percentages obtained, 

the tool shows a new version of the specification that 

highlights in red parts of the specification were not validated. 

Figure 7 shows  that CompleteTest has not been validated 

(lines 40 to 42), and that Fun_Authorized was partially 

validated (lines 47 to 48).  

 

It is true that our case study does not have a lot of complexity 

(and it would be able to validate the total of the specification 

without a problem), this gives us an idea of what might 

happen in more complex and extensive specifications, where 

to finding test cases not been implemented would not be an 

easy task.   

 

D. Refinement of the Specification    

 

The test cases previously performed allowed us to observe the 

operation CompleteTest was not validated and 

Fun_Authorized was partially validated. We executed new 

test cases in order to validate the parts of the specification that 

were missing the first time.  Figure 8 shows the new test cases 

(line 2 creates a new test object and line 3 calls 

Fun_Authorized). Both test cases were satisfactory 

validated. We applied coverage analysis to the formal 
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specification. We can see that CompleteTest operation was 

100% (line 9). The total percentage of coverage was 91% (line 

12). As we can see, there has been a significant improvement 

over the validation specification coverage obtained in early 

tests.  

 

 

 
Figure 7: Formal Specification non Validated 

 

 

 
 Figure 8: Formal Specification Execution and Coverage Analysis 2 

 
 

VI. CONCLUSION 

 

This article has presented a way of refining light-weight 

formal specifications validations using black box testing and 

code coverage analysis techniques. The use of light-weight 

formal specifications increase reliability in the correctness of 

the specification requirements. We have validated the  

specification through the execution of test cases and refine this 

validation using code coverage analysis technique. Invariants 

have been applied and preconditions and post conditions using 

VDM++. Although VDM++ has many more features than 

those described in this article, we considered a subset of them 

to show how to specify constraints in a formal way to store 

derivations of an electrocardiograph digital achieves the goal 

of increasing the use of formal specifications in development 

process. We believe that the use of preconditions, post 

conditions and invariants in the early stages of development 

allows us to increase the correctness of the software we are 

developing. The integration above therefore allows us to 

effectively validate the reliability of the specification of the 

case study.  
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