
14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San José, Costa Rica.

Refining Light-Weight Formal Specifications

Validations using Black Box Testing and Code

Coverage Analysis: An Electrocardiograph

Application
Elizabeth Vidal Duarte, Magister1 Univiersidad La Salle, Perú, evidal@ulasalle.edu.pe

Abstract–Light-weight formal specifications are used to

achieve a better understanding of the desired behavior of a system.

The specification must correctly reflect the requirements that were

expressed informally to the system being modeled. To validate

specifications black-box testing technique had been widely used.

Selecting test cases to validate the specification based only on the

black-box testing technique makes it possible that we won’t be able

to validate the whole formal specification. A complementary

technique is code coverage analysis. Combining black-box testing

and code coverage analysis will let us evaluate which part of the

specification was not validated and thereby to create new test cases.

This is reflected in a refined specification, more accurate and

correct. As an example we present the light-weight formal

specification in VDM++ of a digital electrocardiograph. The

specification is based on the informal description of the

performance characteristics of the electrocardiograph.

Keywords—Software Engineering Design, Formal Methods,

Testing, Software Process.

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2016.1.1.022

ISBN: 978-0-9822896-9-3

ISSN: 2414-6390

http://dx.doi.org/10.18687/LACCEI2016.1.1.022

14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 1

Refining Light-Weight Formal Specifications

Validations using Black Box Testing and Code

Coverage Analysis: An Electrocardiograph

Application

Elizabeth Vidal Duarte, Magister
1

1
Univiersidad La Salle, Perú, evidal@ulasalle.edu.pe

Abstract–Light-weight formal specifications are used to achieve a

better understanding of the desired behavior of a system. The

specification must correctly reflect the requirements that were

expressed informally to the system being modeled. To validate

specifications black-box testing technique had been widely used.

Selecting test cases to validate the specification based only on the

black-box testing technique makes it possible that we won’t be able

to validate the whole formal specification. A complementary

technique is code coverage analysis. Combining black-box testing

and code coverage analysis will let us evaluate which part of the

specification was not validated and thereby to create new test cases.

This is reflected in a refined specification, more accurate and

correct. As an example we present the light-weight formal

specification in VDM++ of a digital electrocardiograph. The

specification is based on the informal description of the

performance characteristics of the electrocardiograph.

Keywords—Software Engineering Design, Formal Methods,

Testing, Software Process.

I. INTRODUCTION

Formal development methods are mathematical methods for

producing software. The term formal means the use of

methods of reasoning that are sound by virtue of their form

and independent of their content [1]. Formal specifications of

requirements and formal verification of software are the

corner-stone of a formal method. Light-weight approaches to

formal methods have gained popularity. Light-weight formal

methods focus rather on specification than on formal proofs

[2]. This work makes use of light-weight formal specification.

To increase confidence that the formal specification correctly

reflects the requirements that were expressed, it is necessary to

validate the specification using black box testing techniques.

Selecting test cases to validate the specification based only on

the black box technique [3] makes it possible that we won’t

validate the whole specification. A complementary technique

is code coverage analysis. Code coverage analysis is the

process of finding areas of a program not exercised by a set of

test cases. It helps us create additional test cases to increase

coverage and determining a quantitative measure of code

coverage [4].

One of the contributions of this paper is to show that the

application of light-weight formal specification helps to

increase reliability in the correctness to the requirements

specification. Also it shows how we can refine the

specification using black-box testing and coverage analysis.

As a case study we present the application of our proposal to a

digital electrocardiograph.

The rest of the paper is organized as follows: section 2

presents the main definitions on formal methods, light-weight

formal specifications, validation, black-box testing and code

coverage analysis. Section 3 briefly describes the main sintax

of VDM++, the formal specification language chose for our

work. Section 4 presents the methodology. Section 5 presents

a case study: a Digital Electrocardiograph. First we present the

requirement’s informal description, then a formal

specification, initial test cases for validation and coverage

analysis and subsequent refinement for validation. In Section 6

we show our conclusions.

.

II. DEFINITIONS

In this section we present the main definitions that had been

applying in our work.

A. Formal Methods and Light-Weight Formal Specifications

The UK Military of Defense on the procurement of safety-

critical software defines a formal method as: “A software

specification and production method, based on a mathematical

system, that comprises: a collection of mathematical notations

addressing the specification, design and development phases

of software production; a well-founded logical system in

which formal verification and proofs of other properties can be

formulated; and methodological framework within which

software may be verified from the specification in a formally

verifiable manner.” [5].

From the definition above it can be seen that formal

specifications of requirements and formal verification of

software are the corner-stone of a formal method. However,

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2016.1.1.022
ISBN: 978-0-9822896-9-3
ISSN: 2414-6390

14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 2

light-weight approaches to formal methods have gained

popularity for transferring these techniques into industry [6, 7].

In this context, light means that the method focuses more on

the specification. The light-weight approach of formal

methods has the advantage of a specification language:

increase the quality of the specification of the system without

focusing on the evidence [8, 9].

Although formal proofs are beyond the scope of light-weight

formal methods, formal verification is possible if it were

necessary or required. The advantages of a light-weight formal

method are summarized as follows: easy to learn, easy to

apply, unambiguous description: the formal language provides

a tool to specify without ambiguity introduced by the informal

description techniques [10].

B. Validation, Black-Box Testing and Code Coverage

Analysis

Formal specifications are usually performed to achieve a

better understanding of the desired behavior of a system, or to

verify that a design has certain properties. Whatever the

purpose, the specification is syntactically correct and having

the correct types is not enough. The specification must also

express a credible performance of the system being modeled

[11]. Validation is the process that increases confidence in the

formal specification that correctly reflects the requirements

that were expressed informally to the system being modeled.

To validate a specification is necessary to use testing

techniques. The technique used in our proposal is the so-called

Black-Box testing, a technique based on the description of

requirements [3, 12].

Selecting test cases to validate the specification based only on

the black box technique makes it possible that not all the

formal specification could be validated. A complementary

technique is code coverage analysis. Code coverage analysis

is a technique to analyze and evaluate which parts of the code

were tested. Program allows you to find fragments that are

executed by test cases. It helps to create additional test cases

to increase coverage. Determine a quantitative value of the

coverage (which is an indirect measure of program quality).

Additionally, coverage analysis can also identify redundant

test cases that do not increase the coverage [4].

For our proposal we will use the Coverage Analysis to analyze

and evaluate which parts of the formal specification were not

tested and thereby to create new test cases. This is reflected in

a formal specification refined, more accurate and correct.

III. VIENNA DEVELOPMENT METHOD

VDM++ is a formal specification language used to specify

object-oriented systems [11]. The language is based on VDM-

SL [8] which is a formal specification language standardized

under the International Organization for Standardization

(ISO). This section presents the syntax of VDM++ relevant to

our work [11, 13].

A. Class Definition

Models in VDM++ are a set of classes. A class represents a

collection of objects that share common elements such as

attributes or operations. The structure of the description of a

class is shown in Figure 1.

Figure 1: Class Specification

The class is represented by the keyword class, followed by

the name of the class. The description consists of several

blocks, preceded by the keyword indicating the type of item

described in the block. In Figure 1 we see that a class in

VDM++ has the following blocks:

a) Instance variables: which model the internal state of

the object.

b) Types: provide the definition of data types. VDM++ has

basic types and composite types. Among the basic types it has:

boolean (bool), natural (nat, nat1), real (real) and

character (char). In the compound types presents: sets (set
of) sequences (seq of), mapping (map to), among others.

Each of these types have pre-defined operations.

c) Values: allow the definition of constants.

d) Operations: define operations that can modify the

instance variables. Operations can be defined explicitly (using

an explicit algorithm) or implicitly (by using pre-conditions

and post-conditions). In order to run our operations in the

interpreter of the tool, the operations must be explicitly

defined. VDM++ can also add pre-conditions (pre) and post-

conditions (post) on explicit operations.

B. Expressions

Expressions are used to describe calculations that do not

produce side effects; this means that they can never affect the

value of an instance variable (unless it contains a call to

operation). VDM++ has 25 different categories of expressions.

14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 3

One of the main categories used to define preconditions, post

conditions and invariants are quantifiers expressions.

Quantifying expressions are a type of logical expression. They

are used on a frequent basis when it is necessary an assertion

about a collection of values. There are two types of expression

quantifiers: universal quantifier (forall) and existential

quantifier (exists).

C. Invariants

If instance variables specified in a class contain values that

should not be allowed, then it is possible to restrict these

values through invariants. The result is that the type is

restricted to a subset of the original values. An invariant is

represented with the keyword inv following the definition of

all the instance variables declared in the class.

D. The Tool: VDM++ ToolBox

In order to facilitate the use of formal specifications tool

support is crucial. Our work is based on the features currently

offered by VDM++ ToolBox [14]. It supports the ability to

validate specifications using conventional testing techniques.

Hence, the interpreter of the VDM++ Toolbox is able to

execute specifications symbolically before they are

implemented. During execution it automatically checks

invariants and pre- and post-conditions. If some condition

does not hold the user is notified with specific information

about the violated condition and where the violation occurred.

Test coverage analysis.

Test coverage information can be automatically recorded

during the evaluation of a test-suite. The specifier can at any

point check which parts of the specification are most

frequently evaluated and which parts have not been covered at

all.

IV. METHODOLOGY

The methodology for the development of our work consists in

six steps. They are described below:

1. Capture functional requirements in natural language.

2. Initial formal specification according to the functional

requirements.

3. Verifying the correctness of syntax and types according to

the rules of VDM++.

4. Formal Specification Validation through the execution of

test cases.

5. Coverage Analysis of Formal Specification.

6. Refinement of the validation specification by generating

new test cases.

We can mention that in steps 2 and 3 it is possible to specify

the requirements clearly and unambiguously. However there

are in steps 4 to 6 where not only validate the specification,

but to ensure that we have so many test cases as necessary to

ensure that all the specification has been validated. Steps 5 and

6 are performed as often as necessary until we had validated

the whole specification.

V. APPLICATION: ELECTROCARDIOGRAPH

Our body is composed of millions of cells that need oxygen

and other substances for their operation. They are found in the

blood. The circulatory system is responsible for making blood

distribution throughout the body. The heart is the key organ of

this system. It is responsible for providing the necessary

torque boost blood to do its course. The heart is a muscle that

never rests, on its continued functioning depend our lives. The

main clinical tool that allows us to determine the functional

state of heart is the electrocardiogram. The Electrocardiograph

(ECG) generates an electrocardiogram that provides important

information about the heart's electrical activity to determine its

functional status [15].

A. Functional Requirements

The ECG signal is a sign of high diagnostic value for various

types of diseases and conditions directly or indirectly related

to the functioning of the heart. The correct operation of an

electrocardiograph can mean the difference between life and

death (a misreading of the electrocardiograph can lead to

misdiagnosis). The correct reading and capture of the signal

thus become a critical component of its operation.

To record an ECG trace, it is necessary to place electrodes into

specific parts of the patient's body surface. The specific

provision which keep the electrodes is called "derivation"

[15]. Depending on the placement of the electrodes, we obtain

different derivations or pairs of points. The most commonly

used lead to electrocardiographic diagnosis can be classified

as: bipolar, augmented and unipolar [15, 16].

Bipolar Derivations: The standard bipolar derivations (called

D1, D2 and D3) are obtained with the so-called Einthoven

Triangle(shown in Figure 2) for record the electrical potentials

in the frontal plane. The electrodes are placed in the left arm

(LA), right arm (RA), left leg (LL) and right leg (RL), which

acts as ground.

Augmented Derivations: These represent the potential

difference between one end and an electrode corresponding to

the central terminal Goldberg. These referrals are known as

aVR, aVL and aVF. It has a different orientation to the

bipolar. It can be seen in Figure 3.

14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 4

Figure 2: Bipolar Derivations

Figure 3: Augmented Derivations

Unipolar Precordial: These represent the potential difference

between electrodes placed on specific parts of the patient's

chest and an indifferent electrode called Wilson's central

terminal. These leads are called V1, V2, V3, V4, V5 and V6.

It is shown in Figure 4.

Figure 4: Precordials Derivations

As shown, an electrocardiogram for diagnostic purposes must

allow the recording of 12 derivations

The result of this work does not provide a complete formal

specification of the electrocardiogram, but provides a

reasonable description of the specification of one of the

features considered critical: proper storage of the ECG signal.

B. Formal Specification

The formal specification is shown in Figure 5. We defined the

class TestECG. Relevant information is modeled as
instante variables: idTest, idPatient,
dateTest, authorized (lines from 8 to 11). Also we

show the three derivations bipolar (line 14), augmented

(line 18) and precordial (line 22).

We have identified some important considerations to ensure

the correctness of storage of the ECG signals: (a) when

making the bipolar derivation it must be ensured that 3

readings were performed (b) when making the augmented

derivation it must be ensured that 3 readings were performed,

(c) when performing precordial derivation it must be ensured

that 6 readings were performed, (d) it is necessary to conduct

the three types of derivations in order to consider the ECG test

satisfactory.

Consideration (a) is referred to the constraints of the bipolar

variable. The bipolar variable consists of three real values

that represent the derivations. Each value should be different

from 0 (which represent the absence of signal). These

restrictions are presented in the form of invariant, as shown in

lines 15 and 16.

Consideration (b) is related to the restrictions on the

augmented variable. They are shown as invariant in lines 19

and 20.

Consideration (c) is referred to the restrictions of

precordial variable. They are presented as invariant in lines

23 and 24.

Consideration (d) is related to ensure that a satisfactory

examination was performed on a patient. This is only

achieved when there were 12 derivations. We have created a

new instance variable called completeSignal (lines 26 and

27). This variable will contain the concatenation of the

bipolar, augmented and precordial variables. The

concatenation is done in the operation CompleteTest (lines

40 to 44).

Additionally we have specified two operations: the constructor

TestECG (lines 32 to 38) and Fun_Authorized (lines 46 to

52).

14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 5

Figure 5: ECG Formal Specification

C. Validation and Specification Coverage Analysis

Validation is the process that builds confidence for which test

cases are needed to run the interpreter validating the results

obtained are consistent with the specification. The first test

case was referred to validate the correct creation of the object

test. The object was created satisfactory calling the constructor

TestECG with the values shown in line 2 of Figure 6 (The

command create is used to create objects). The second test

case called the operation Fun_Authorized as it is shown in

line 3 of Figure 6.

 Figure 6: Formal Specification Execution and Coverage Analysis 1

Having executed the initial test cases, it is important to note

that we must ensure that reliably express the behavior

specification of functional requirements and a way to achieve

this is by validating the whole specification. To measure what

percentage of the specification was validated we applied

coverage analysis to the formal specification. Figure 6, lines

8, 9 and 10 shows the percentage of coverage for each

operation. We can see that the constructor TestECG was

100% validated, Fun_Authorized was 64% validated and

CompleteTest was not validated at all. Line 12 shows the

total percentage of coverage in the class.

As it is shown, 66% coverage is not enough. Hence it is

required to seek other test cases to validate the missing parts

of the specification. In addition to the percentages obtained,

the tool shows a new version of the specification that

highlights in red parts of the specification were not validated.

Figure 7 shows that CompleteTest has not been validated

(lines 40 to 42), and that Fun_Authorized was partially

validated (lines 47 to 48).

It is true that our case study does not have a lot of complexity

(and it would be able to validate the total of the specification

without a problem), this gives us an idea of what might

happen in more complex and extensive specifications, where

to finding test cases not been implemented would not be an

easy task.

D. Refinement of the Specification

The test cases previously performed allowed us to observe the

operation CompleteTest was not validated and

Fun_Authorized was partially validated. We executed new

test cases in order to validate the parts of the specification that

were missing the first time. Figure 8 shows the new test cases

(line 2 creates a new test object and line 3 calls

Fun_Authorized). Both test cases were satisfactory

validated. We applied coverage analysis to the formal

14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 6

specification. We can see that CompleteTest operation was

100% (line 9). The total percentage of coverage was 91% (line

12). As we can see, there has been a significant improvement

over the validation specification coverage obtained in early

tests.

Figure 7: Formal Specification non Validated

 Figure 8: Formal Specification Execution and Coverage Analysis 2

VI. CONCLUSION

This article has presented a way of refining light-weight

formal specifications validations using black box testing and

code coverage analysis techniques. The use of light-weight

formal specifications increase reliability in the correctness of

the specification requirements. We have validated the

specification through the execution of test cases and refine this

validation using code coverage analysis technique. Invariants

have been applied and preconditions and post conditions using

VDM++. Although VDM++ has many more features than

those described in this article, we considered a subset of them

to show how to specify constraints in a formal way to store

derivations of an electrocardiograph digital achieves the goal

of increasing the use of formal specifications in development

process. We believe that the use of preconditions, post

conditions and invariants in the early stages of development

allows us to increase the correctness of the software we are

developing. The integration above therefore allows us to

effectively validate the reliability of the specification of the

case study.

References

[1] D. Bjørner and C.B. Jones. Formal Specification and Software

Development. Prentice-Hall International, 1982.

[2] D. Jackson and J. Wing. Formal Methdos Light: Lightweight formal

methdos. IEEE Computer, 29 21-22, April 1996

 [3] B. Beizer. Black-Box Testing: Techniques for Functional Testing of

Software and Systems. John Wiley & Sons, Inc., 1995

[4] J. R. Horgan, S. London and M.R. Lyu, “Achieving Software Quality
with Testing Coverage Measure” IEEE Computer, vol 27, no 9, 1994, pp

60-69
[5] The UK Ministry of Defence. Defence standard for military safety-

critical software 00-59. draft, 1989

[6] P. Gorm Larsen, J. Fitzgerald, and T. Brookes. Applying Formal
Specification in Industry. IEEE Software, 13(3):48–56, May 1996

[7] S. M. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D.

Hamilton. Experiences using lightweight formal methods for re-
quirements modeling. IEEE Transactions on Software Engineering,

24(1), January 1998..

[8] J. Fitzgerald and P.Gorm Larsen. Modelling Systems Practical Tools and
Techniques in Software Development. Cambridge University Press, The

Edinburgh Building, Cambridge CB2 2RU, UK, 1998.

 [9] C. B. Jones. Formal methods light: A rigorous approach to formal
methods. IEEE Computer, 29(4):20–21, April 1996.

[10] B. K. Aicherning. Systematic Black-Box Testing of Computed-Based

Systems through Formal Absraction Techniques. PhD Thesis.
Technischen Universita Graz, 2001.

[11] J. Fitzgerald, P. Gorm Larsen, P. Mukherjee, N. Plat, and M. Verhoef.

Validated Designs for Object{oriented Systems. Springer, New York,
2005.

[12] CSK SYSTEMS CORPORATIONS. VDM++ Method Guidelines.

Technical Report, 2009.
[13] CSK SYSTEMS CORPORATIONS. The VDM++ Language. Technical

Report, 2009.

[14] CSK SYSTEMS CORPORATIONS. VDM Tools User Manual.
Technical Report 2009

[15] J. Wartak . Interpretación de Electrocardiogramas. 2 Ed., Nueva

Editorial Interamericana, 1985
[16] D. Dubin. Electrocardiografía Práctica: Lesión Trazado e Interpretación,

3ra Ed; McGraw hill Interamericana, 1986

