
14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San José, Costa Rica.

FlowUmi, a Programming Language that Mitigates the

Usage of Hard-Coding

Edwin Puertas, M.Eng, Iván Baños, Ing, and Juan Carlos Martinez-Santos, Ph.D

Universidad Tecnológica de Bolívar, Colombia, epuerta@unitecnologica.edu.co, ivanalejandrobanos@gmail.com,

jcmartinezs@unitecnologica.edu.co

Abstract– This paper presents FlowUmi, an activity diagram-

based programming language that mitigates the use of hard coding.

The main problem that motivates this project is the difficulty of

learning best coding techniques. Comprehend and design

algorithms are not trivial tasks to everyone. That is because it

involves a set of skills that are not well developed in every person.

These skills can be classified in two groups: the cognitive ones,

which focus on the attitudes of the students, and the procedural

ones, which focus on the way of doing. In this work, we focus on

the last group by abstracting the code into activity diagrams. By

doing activity diagrams instead of hard-coding (writing code),

students focus on the design. It also makes the understanding of

examples and patterns easier than in the hard-coding way.

Traditional programming languages, used in teaching, separate the

design and the coding in two different stages. It forces the student

to take two courses, one to develop design skills and other to testing

the algorithms by writing, compiling, and running code. On the

other hand, our approach allows the student to test their designs

directly from the graphical design of an activity diagram. There are

two main contributions of this project. One is to design the flow

chart language and all its components, and the second is to design

its compiler. The language provides the basic control structures

needed for procedural programming, which is the kind of

programming that is commonly taught in freshman's courses. A

prototype of FlowUmi, developed in Java, was tested with simple

algorithms that were written without a single line of code.

Currently, we are working on making FlowUmi available to

everyone. The main idea is to put it under test and get feedback

about usability, future features, and suggestion to making it better.

Digital Object Identifier

(DOI):http://dx.doi.org/10.18687/LACCEI2016.1.1.215

ISBN: 978-0-9822896-9-3

ISSN: 2414-6390

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica.

1

FlowUmi, a Programming Language that Mitigates
the Usage of Hard-Coding

Edwin Puertas, M.Eng, Iván Baños, Ing, and Juan Carlos Martinez-Santos, Ph.D
Universidad Tecnológica de Bolívar, Colombia, epuerta@unitecnologica.edu.co, ivanalejandrobanos@gmail.com,

jcmartinezs@unitecnologica.edu.co

Abstract– This paper presents FlowUmi, an activity diagram-
based programming language that mitigates the use of hard coding.
The main problem that motivates this project is the difficulty of
learning best coding techniques. Comprehend and design algorithms
are not trivial tasks to everyone. That is because it involves a set of
skills that are not well developed in every person. These skills can be
classified in two groups: the cognitive ones, which focus on the
attitudes of the students, and the procedural ones, which focus on the
way of doing. In this work, we focus on the last group by abstracting
the code into activity diagrams. By doing activity diagrams instead of
hard-coding (writing code), students focus on the design. It also
makes the understanding of examples and patterns easier than in the
hard-coding way. Traditional programming languages, used in
teaching, separate the design and the coding in two different stages.
It forces the student to take two courses, one to develop design skills
and other to testing the algorithms by writing, compiling, and
running code. On the other hand, our approach allows the student to
test their designs directly from the graphical design of an activity
diagram. There are two main contributions of this project. One is to
design the flow chart language and all its components, and the
second is to design its compiler. The language provides the basic
control structures needed for procedural programming, which is the
kind of programming that is commonly taught in freshman's courses.
A prototype of FlowUmi, developed in Java, was tested with simple
algorithms that were written without a single line of code. Currently,
we are working on making FlowUmi available to everyone. The main
idea is to put it under test and get feedback about usability, future
features, and suggestion to making it better.

I. INTRODUCTION

Nowadays, there is a certain apathy from the students to
courses related to computer science. The biggest companies in
the technology business are worried, and we see that the owners
are making big donation and racing campaigns in pro of
studding something related to computer science. Students also
have problems in understanding concepts like the design an
algorithm, subdividing into smaller and simpler pieces of code,
hypothetical error situations and so on. Even with concepts like
variables, data type and memory addressing, because there is no
representation of these topics in the real world [1]. Studies that
focus on finding the roots of these problems are divided into two
groups: the cognitive problem and the procedural problem. Both
are trying to find how to solve the problems in the learning of
programming. The cognitive problem focuses on the attitudes
of the students, their motivation, beliefs, and ways of studying.
The procedural one tries to categorize the topics and focuses on
find the way of learning the harder programming topic.

One of the problems shows up while a person is choosing
whether to study or not programming related careers is the bad
reputation that programming courses have earned. People think
these courses are hard or boring, because of the though that
everyone who studies programming is a nerd who does not go
out of their homes or because is needed a big knowledge in math
or logical reasoning [1]. Besides, the fact that a person spends
10 years becoming an expert in programming can influence a
person to not studying programming because it is too much time
to spend before having a good position or salary [2].

The purpose of the present study is to design and implement
a programming language as show figure 1. Our approach is
based on a graphic technique to make easier the comprehension
of algorithm concepts eliminating the hard-core and facilitating
the process of learning to program. Based on the best practices
of software engineering, we develop a graphical interface in a
web environment, so that students design their algorithm using
activity diagrams. In addition, they are able to validate the
solution proposed by the simulation algorithm using test cases.
The purpose of this document is located to provide a better way
to learn how to program without using code-hard. This
programming language has three main elements: interface
design and simulation, design language, and compiler design.

This paper is organized as follows. Section II contains the
motivation and the problems faced students first year of
computer science and engineering. Section III describes details
of FlowUmi, and Section IV shows our preliminary results.
Section V discusses related work about the problems learning
programming language and tools for development application.
Finally, Section V presents the conclusions and future work.

II. MOTIVATION

Students of computer science and end careers have trouble
with abstract concepts such as design a solution to a problem,
subdivide a code into smaller pieces and simpler code, think of
error scenarios and test for purposes and find errors.

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2016.1.1.215
ISBN: 978-0-9822896-9-3
ISSN: 2414-6390

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica.
 2

Understanding even the most basic concepts like variables,

data types, or memory addressing is hard because they do not
have a representation in the real world. Several authors have
tried to find the reason why this phenomenon occurs. They also
have tried to find the way to attack the problems. There are
studies using tools, proposing sample courses for study, or
mixtures between them to solve the problem, yielding results.
Based on these investigations [1] [3] [4] [7] and [5], we will
build a useful application for learning to program in a good way
and taking into account best practices.

One of the problems that arise when enrolling to a computer

science degree is the bad reputation that has earned
programming courses. Students believe that these courses are
difficult and boring. They think that all who study computer
science is a ”nerd” who does not leave his homes. Moreover,
students believe they need extensive knowledge in math and
logical reasoning [1]. Another problem is the fact that person
becomes an expert programming in 10 years of study [2]. This
definitively can influence anyone not to take this career. This
will determinate the time needed to earn a well paid or have a
good job.

Students starting programming courses, usually try to solve
problems without a plan, with limited usage of flow charts or
pseudo-code. Because of this, they become frustrated. They do
not know what to do when an error occurs. They do not know if
the logic implemented in the program is or not appropriate, and
they do not know how to identify these problems. They merely
have superficial knowledge of the program language used, and
they usually create their programs line by line. Sometimes, they
are more interested on solving syntactic problems, why the
compiler complies, instead of solving the problem itself.
Therefore, students do not progress much in an introductory
programming course.

III. APPROACH

Our system consists in web application of courses when
instructors can post assignments for the students with pre-
established case of study and a set of input and output data to
test and give feedback. Every assignment consists in solve a
problem with an algorithm. And it also has a free window to
program anything desired. In this section, we explain the whole
system. First, it is explained the language design, and then the
compiler. The last part explains the case study activity
requirement.

A. Language Design

The FlowUmi language is structured and support functions.

It is based on activity diagrams. However, it has its own
extension for different types of sentences. Moreover, because
we are eliminating the hard-coding, the way how the sentences
are structured in the language has to be as simple as they can be.

The variables are declared outside the flowchart to make it
easy to identify. FlowUmi has three different types of variable:
normal variables, arrays, and matrices. It also has five primitive
data types: float, integer, strings, chart, and logic type. The
language is strong typed, so the variables never change its type
while running the algorithm. It will help to avoid errors that
involve type-checking. It also makes variable declaration easy
because they are concentrated in only one spot.

The types of data references in FlowUmi can generate

references to variables, in other words it allows the user to refer
to imperceptible way references to memory locations. So if the
value of that variable value in memory changes also will be
affected. During the implementation of language, we had to
specify what type of variable could appear when declaring a
data type and how they are declared according to their type of

Figure 1. Example of an algorithm using FlowUmi

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica.
 3

variable that these belong an example of this is the result
obtained in Figure. 2.

Figure 2. Tipos de datos - FlowUmi grammar

The following illustrates how the rules defined for types in
FloUmi.

Grammatical production:
 Y = {No terminals, terminals, Productions, Initial}

No terminals:
[Variable type, tvalor, simple, comprehensive, float, decimal,
number, boolean, enum, block]

Terminals
[Int, unit, short, ushort, long, ulong, byte, sbyte, float double,
long double, decimal, bool, enum, const, class, interface,
delegate, dynamic, object, string]

Productions

Initial

[variable]

Every control structure has a shape and an identification
number. There are two especial shapes “begin” and “end”. Both
are represented as circles, one is entire black and the other one
has a black circle inside a bigger one. All algorithms start with
a ”begin” shape and end pointing to a ”end” structure.

The “assignment” structure is a squared box where we put

an assignment sentence. It has to have an existing variable to be
assign and an expression. Because the language is strong typed,
the expression is compiler-time evaluated to corroborate that
both the expression and the variable match.

The “if” structure is the classic rhombus used in activity

diagrams to make a decision. It takes only one exit transition for
true. It has to follow the paths through the “if-end”. The “if”
structure always starts with a rhombus shape that includes the
condition, and ends with another rhombus shape (it is the “if-
end”). They both have the same identification number. The “if-
else” structure is the identical rhombus for the “if” structure.
The difference between the two of then is while the “if”
structure has only one exit for true the ”if-else” structure has
two exit transition, for both true and false options.

The ”switch” structure is also a rhombus which contains an

expression like the last two structures. However, it has no limit
for exit transitions. Each of these transitions goes to a square
which has each case value.

The ”while” structure has two squares. One is the finish

condition, and other one limits the sentences inside the ”while”
structure. The last square has a transition that goes to the first
square. This is to emphasize that at the end of the ”while”
structure returns to the beginning of it.

The ”for-each” structure has a similar structure of

the ”while” structure. The main difference is that the ”for”
receive as an expression a group of elements in an array. You
also have to give a label which every value gains in each
iteration.

The language has the sentences “break” and “continue”.

Each one is a square box which has those words. The “break”
sentence will finish the most-internal loop, while the “continue”
sentence will go to the next iteration of the most internal loop.
You also can give them a number, and it will break the loop with
that identification.

The ”in” and ”out” instructions are instructions that will be

used to receive and print data respectively. Both are also square
boxes. The ”in” box will receive the name of a variable, and
the ”out” box will receive a message. If a user wants to print the
value of a variable, he or she will have to specify the variable’s
name in the message with a ($) sign.

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica.
 4

The language supports functions. If a user wants to call a

function in an expression, he or she will put the variable’s name
followed by its parameters enclosed with parentheses.
Moreover, if the function returns no value, the user can use a
function square box. In it, he or she has put the name of the
function and its parameters enclosed in parentheses.
Expressions allow us to declare function calls, make
assignments to values to variables, classes generation among
other things. in Figure 3 and 4 you can see two examples of
these actions.

Figure 4. Expression: called - Flowmi grammar

The following illustrates how the rules defined for
expression in FloUmi.

Grammatical production:
 Y = {No terminals, terminals, Productions, Initial}
No terminals:
[expresion, expresioncondicional, expresionAditiva,
expresionInvocacion, expresionLogica, expresionBooleana,
expresionIgualdad, expresionRelacional, expresionAditiva,
expressionMultiplicativa, expresionPotencia,
expresionCerrada, primaria]

Terminals
[Int, unit, short, ushort, long, ulong, byte, sbyte, float double,
long double, decimal, bool, enum, const, class, interface,
delegate, dynamic, object, string]

Productions

[
expresion-> expresioncondicional
 | expresionAditiva
 | expresionInvocacion
expresioncondicional-> expresionLogica
expresionLogica-> expresionBooleana (OR

 expresionBooleana)*
expresionBooleana-> expresionIgualdad
((EQUALS|NOTEQUALS)expresionIgualdad)*

expresionIgualdad-> expresionRelacional (AND

expresionRelacional)*
expresionRelacional-> expresionAditiva
((LT|LTEQ|GT|GTEQ) expresionAditiva)*

expresionAditiva->
 expressionMultiplicativa((PLUS|MINUS)

expressionMultiplicativa)*
expressionMultiplicativa->

expresionPotencia ((MULT|DIV|MOD)
expresionPotencia)*

expresionPotencia-> expresionCerrada (POW
expresionCerrada)*

expresionCerrada-> primaria
 | NOT primaria
 | MINUS expresionCerrada
 expresionAditiva->

expressionMultiplicativa((PLUS|MINUS)
expressionMultiplicativa)*

expressionMultiplicativa->
expresionPotencia ((MULT|DIV|MOD)
expresionPotencia)*

expresionPotencia->
 expresionCerrada (POW expresionCerrada)*

Figure 3. FlowUmi compilation process

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica.
 5

expresionCerrada->
 primaria
 | NOT primaria
 | MINUS expresionCerrada
expresionInvocacion->

NOMBRE PI (tipo (NOMBRE|valor))* PD
PUNTOYCOMA

 primaria->valor
 valor->INTEGER |FLOAT |NOMBRE
]

Initial

[expresion]

B. Compiler design

The compiler for FlowUmi is developed in Java with

ANTLR [18] and it follows the steps represented in Figure.3.
Before the algorithm is compiled, it is transformed into a

line by line code that represents the same algorithm. This
language is the one that the compiler understands, and it does
not alter the initial diagram.

The implementation of the compiler is made using

ANTLR. ANTLR is a compiler of compilers. It has a structure
to create lexers, parsers, and tree walkers. Those tools would be
used to check for compilation time errors. The lexer verify the
lexemes, and it classifies them and passes them to the parser.
The parser checks if they are grammatically correct and create
an abstract syntax tree (AST). Afterwards, the system walks
through the AST doing the type-checking and generating a
simpler code that will look like a machine code.

The lexer uses regular expression that are responsible for

lexems recognition. A lexem is a word that belong to the
language. The way is used in ANTLR is giving first an
expression name, which starts with a capital letter followed by
letters or digits, then an ’=’ symbol and then a regular
expression. An example would be like this:

This lexeme represents the integer values:

 INT : '(-)'?('0'..'9'+);

This lexeme represents the identifiers:

ID:('a'..'z'|'A'..'Z'|'_')('a'..'z'|'A'..'Z'|'
0'..'9'|'_')*;

This lexeme represents the keyword

 MIENTRAS: MIENTRAS:'MIENTRAS';

The parser is a collection of rules that checks that the

algorithm follows the language grammar. The parser rules are

represented with free-context grammar rules in a extended
Backus-Naur form. As in the lexer rules, ANTLR demands a
name for every rule. In this case, the rule name starts with a
lowercase letter. Inside the rule, we can put other rules as non-
terminal symbols and lexemes as terminal symbols. Some
examples are listed next.

principal: variablesDec INICIO sentencias* FIN;

This rule called principal begins with another rule that has

the grammar for the variable declaration, followed by the
keyword BEGIN (INICIO). Then, there is a list of sentences,
and ends with the key word END (FIN). It has the basic
structure of how is the body of the functions.

sentencias : asignacion | si | mientras | para |
lectura |escritura | breaks | llamado;

This rule represents all the instructions that the language
has. We can see the rule for assignation, the control structures
and the others.

The type-checking and the code generation are done by
walking the resultant tree of the parsing step. The system walks
the tree a first time to do the type-checking, and then it walks
another time to generate the code.

We also design an interpreter to the resultant code, and it
will be used to interact with the user while they are running an
algorithm.

C. Application Design

The system as explained above consist in a course

environment where a teacher can post activities, and student can
solve them. There are three different roles with specific tasks,
as specified in Figure 5.

The administrator is in charge of create, update and delete

Figure 5. Use case diagram

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica.
 6

courses. Besides, he can sing teacher and students up into the
system and subscribe them into the courses. Other duty for the
administration is that he has to be aware that the application is
running fine by setting up the configuration parameters.

The role of the tteacher in the system is to post assignments.
The assignment is an activity to the students. In an assignment
the teacher post the title and the statement of the algorithm. The
teacher can also give them some part of the code. Finally, the
teacher can create some test cases where he puts the in and the
out for a specific set of data. To grade the assignments the
teacher create test cases and check if the student’s algorithm
give the same output with the same entries.

The student can only solve assignments leaved by teachers
in the courses that he is subscribed. However, they will have a
window to program whatever they want.

To sing in into the application the user should fill a form
with the credential and depending on the role it would be
redirect to a main page.

This framework was built with Java enterprise edition 6 for
the business logic and JPA to communicate with the database.
It uses a MySQL [19] database to persist the information and
ANTLR to the compiler. To the web environment was used
bootstrap and JQuery, using a Themeroller [20] theme.

Figure. 3 shows an example of an algorithm using

FlowUmi. The programming Graphical user interface (GUI) is
divided in 5 blocks. On the top is resembled the name of the
actual function that is currently working. On the button there are
an output console, when the results of an algorithm execution
are showed, it also shows an error if exist. On the left there is a
list of the different statements that can be used in algorithms.
On the right panel there is the list of variables and functions. In
the middle is the activity chart that represents an algorithm.

To add a sentence to the algorithm, the buttons on the left
panel are used by clicking on them. This action will add the
components of the selected sentence on the chart. A sentence
can be erase by clicking on the close mark on the box.

To add a variable, there is a plus button besides the word
variable on the top of the right panel. By clicking on it a dialog
with a form is displayed. The fields to add a variable are: name
of the variable, data type and the initial value, the variable will
be added to the current function scope.

To add a function, there is also a plus button besides the

word function, as in variables, it changes the fields of the form
that are: name of the function, the list of parameters and the
return data type.

If there is an error while compiling the algorithm it is
showed on the output console. If after compiling there were no
errors, a message would be posted on the output console saying
that everything went well.

IV. RESULTS

Flowmi allows students to design and simulate sequential
programs in a simpler way, using activity diagrams, thus
eliminating the use of hard code. This will cause the student to
focus more on learning the basics of programming. In addition,
you can simulate the behavior of its solution and export the
solution in hard code in a high level language, a space also have
to save your projects, to download, compile, execute.
The implementation of this programming language was
developed by the following phases:

Phase I: a graphical user interface implementation will
allow the user to draw his mental abstraction as solving
computational problems using flowcharts.

Phase II: compiler implementation will take a graph a
flowchart and transform every element in a structure that allows
events simulation algorithm under test.

Phase III: implementation will of an interactive system that
allows graphically manipulate the states of the algorithm under
test.

Phase IV: Evaluate methodologically as is the performance
of the student.

This fourth phase has not been carried Just because the
language is in testing phase, besides being necessary to the
development of this phase right people in the theme of
pedagogy.

V. RELATED WORK

This section briefly reviews proposals that can be applied
to obtain the best learning for students at the first year of
computer science and engineering. Although are many tools, the
main solutions that occurred in the beginning to this problem
are the use of animation to minimize the difficulties of students.
Others only show the lively performance of a specific algorithm.
However, students cannot make any changes or test different
algorithms.

Alice is a development environment for drag and drop, for

novice programmers. The primary objective is to prevent
students commit syntax errors. Alice was originally designed as
a tool to improve the increase in risk-capacity undergraduate
computing students to succeed in first-year courses in racing
computer science and related fields. It is currently used in
hundreds of schools and colleges secondary [8], [9].

Scratch is a learning environment programming language

via a simple graphical interface. Scratch Programming is based
on a metaphor of building blocks influenced by previous
systems as Lego Blocks, which allows beginners to learn to
write correctly programs. It is notable for handling and
multimedia-based media that are of interest in youth
programming, allows the creation of animated stories, games,
and interactive presentations [10]–[12].

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica.
 7

Greenfoot is a highly specialized for developing interactive
graphics applications in educational environment. It is based on
the use of the Java programming language. The secondary
school students can interactively develop interesting, such as
games and simulations. They can implement algorithms as
quickly and easily as they learn fundamental programming
concepts [11], [13].

One of the principal tools is SICAS. SICAS simulates the

algorithm and shows the results using animation. Moreover, the
students can analyze how the algorithm works in detail, at their
pace identifying and fixing eventual errors. SICAS does not
include theoretical contents, instead it consists in an
experimentation environment that permits detect errors and
correct them, and learning based on activities. There were some
tests made to verify that students who used SICAS have built
better algorithm than students who did not use SICAS [14].

According to [2], [15], models are the base of the

knowledge. If the instructor does not explain well the concept
to the students, they can form the wrong model representation
out of it. Authors in [2], [16] describe the first year of
programming study the students creates the model to solve
problems and the programming language is introduced, in
particular, cases. One of the principal solutions to the problem
was the use of animation to reduce to the minimum the
difficulties of the students. The first tools were only made to see
an algorithm built and running. By watching the algorithm run
the students starts to create the model in their heads [15].

Another issue is when the students try to acknowledge a

language syntax. In many cases, the differences with the natural
language can generate problems. An example referenced by [6]
is the beginners think about the while buckle is evaluated in
every expression and no only one time per iteration.

The problems with those tools are the focus for what they
were developed. They focus more on teaching the concept by
examples or with animations and are good, but for a level of
teenagers. Besides, they take a lot of responsibilities while
doing algorithm. The idea is to do an application that focuses in
create the models by programming but didn’t take the
responsibility of doing to the students.

CONCLUSIONS

This paper describes a proposal to improve strategies in the
learning process of mitigating the hard programming code. The
main purpose is to use a programming language supported in an
activity diagram to get a problem solved algorithmically. Thus,
the learning process aim is to solve a problem and not to know
a programming language high level.

Thanks to FlowUmi, the new strategy facilitates student
“learns to learn”, allowing them to be part of learning, rather
than learning only what is told to learn.

A prototype was built in a first stage, with the established
functionality. The application allows to create activity diagram
based algorithms to represent algorithms.

REFERENCES
[1] Esteves, Micaela, Benjamim Fonseca, Leonel Morgado, and Paulo

Martins. ”Improving teaching and learning of computer programming
through the use of the Second Life virtual world.” British Journal of
Educational Technology 42, no. 4 (2011): 624-637.

[2] Winslow, Leon E. ”Programming pedagogya psychological overview.”
ACM SIGCSE Bulletin 28, no. 3 (1996): 17-22.

[3] Meerbaum-Salant, Orni, Michal Armoni, and Mordechai Ben-
Ari. ”Learning computer science concepts with scratch.” Computer Science
Education 23, no. 3 (2013): 239-264.

[4] Fleury, Ann E. ”Encapsualtion and reuse as viewed by java students.” In
ACM SIGCSE Bulletin, vol. 33, no. 1, pp. 189-193. ACM, 2001.

[5] Lister, Raymond, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John
Hamer, Morten Lindholm, Robert McCartney et al. ”A multi-national study
of reading and tracing skills in novice programmers.” In ACM SIGCSE
Bulletin, vol. 36, no. 4, pp. 119-150. ACM, 2004.

[6] Ala-Mutka, Kristi. ”Problems in learning and teaching programming.”
Codewitz Needs Analysis (2012).

[7] Eckerdal, Anna. ”Novice students’ learning of object-oriented
programming.” (2006).

[8] Resnick, Mitchel, Yasmin Kafai, and John Maeda. ”A networked,
mediarich programming environment to enhance technological fluency at
afterschool centers in economically-disadvantaged communities.” (2005).

[9] Cooper, Stephen. ”The design of Alice.” ACM Transactions on Computing
Education (TOCE) 10, no. 4 (2010): 15.

[10] Maloney, John H., Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and
Natalie Rusk. ”Programming by choice: urban youth learning programming
with scratch.” ACM SIGCSE Bulletin 40, no. 1 (2008): 367-371.

[11] Fincher, Sally, Stephen Cooper, Michael Klling, and John Maloney.
Comparing alice, greenfoot scratch. In Proceedings of the 41st ACM
technical symposium on Computer science education, pp. 192-193. ACM,
2010.

[12] Resnick, Mitchel, et al. ”Scratch: programming for all.” Communications
of the ACM 52.11 (2009): 60-67.

[13] Klling, Michael. ”The greenfoot programming environment.” ACM
Transactions on Computing Education (TOCE) 10.4 (2010): 14.

[14] Bravo, Crescencio, Maria Jose Marcelino, Anabela Jesus Gomes, Micaela
Esteves, and Antonio Jose Mendes. ”Integrating Educational Tools for
Collaborative Computer Programming Learning.” J. UCS 11, no. 9 (2005):
1505-1517.

[15] Robins, Anthony, Janet Rountree, and Nathan Rountree. ”Learning and
teaching programming: A review and discussion.” Computer Science
Education 13, no. 2 (2003): 137-172.

[16] Deek, F. P., McHugh, J. A., & Roxanne Hiltz, S. (2000). Methodology and
technology for learning programming. journal of Systems and Information
Technology, 4(1), 23-35.

[17] Roberts, Eric, Kim Bruce, James H. Cross II, Robb Cutler, Scott Grissom,
Karl Klee, Susan Rodger, Fran Trees, Ian Utting, and Frank Yellin. ”The
ACM Java task force: Final report.” In ACM SIGCSE Bulletin, vol. 38, no.
1, pp. 131-132. ACM, 2006.

[18] Parr, T. (2013). The definitive ANTLR 4 reference. Pragmatic Bookshelf.
[19] MySQL [Online] https://www.mysql.com.
[20] Themeroller [Online] http://jqueryui.com/themeroller

