
14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for

Global Sustainability”, 20-22 July 2016, San José, Costa Rica.

Experiences Designing and Validating a Gamified

Development Environment for Learning Programming

 Jeisson Hidalgo-Céspedes, M.Sc
1
, Gabriela Marín-Raventós, Ph.D

1
, and Vladimir Lara-Villagrán, Ph.D

1

Universidad de Costa Rica, Costa Rica, jeisson.hidalgo@ucr.ac.cr, gabriela.marin@ucr.ac.cr, vladimir.lara@ucr.ac.cr

Abstract– Learning to program in a programming language is a

difficult task for Computer Science students. Vygotsky's

constructivism theory states that learning is unavoidably done

through association of new concepts with existing ones. Based on

this theory, students must build upon life experience concepts,

abstract computer concepts (like memory indirection and execution

threads), and programming language concepts (like pointers and

threads). We hypothesize that we can ease the association process

and improve the learning of abstract concepts by using metaphors,

letting students program them directly through gamified

development environments. We propose a methodology to design

gamified development environments supporting the concept

association principle. We provide an example of a gamified

development environment idea using metaphors for learning

abstract programming concepts reported as difficult to learn in a

student survey. The gamified development environment idea was

validated by Programming II (CS2) professors through two focus

groups with slightly positive results.

Keywords—Learning; programming language; video

game; metaphor.

Digital Object Identifier

(DOI):http://dx.doi.org/10.18687/LACCEI2016.1.1.182

ISBN: 978-0-9822896-9-3

ISSN: 2414-6390

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 1

Experiences Designing and Validating a Gamified
Development Environment for Learning Programming

 Jeisson Hidalgo-Céspedes, M.Sc1, Gabriela Marín-Raventós, Ph.D1, and Vladimir Lara-Villagrán, Ph.D1
1Universidad de Costa Rica, Costa Rica, jeisson.hidalgo@ucr.ac.cr, gabriela.marin@ucr.ac.cr, vladimir.lara@ucr.ac.cr

Abstract– Learning to program in a programming language is
a difficult task for Computer Science students. Vygotsky's
constructivism theory states that learning is unavoidably done
through association of new concepts with existing ones. Based on
this theory, students must build upon life experience concepts,
abstract computer concepts (like memory indirection and execution
threads), and programming language concepts (like pointers and
threads). We hypothesize that we can ease the association process
and improve the learning of abstract concepts by using metaphors,
letting students program them directly through gamified
development environments. We propose a methodology to design
gamified development environments supporting the concept
association principle. We provide an example of a gamified
development environment idea using metaphors for learning
abstract programming concepts reported as difficult to learn in a
student survey. The gamified development environment idea was
validated by Programming II (CS2) professors through two focus
groups with slightly positive results.

Keywords—Learning; programming language; video game;
metaphor.

I. INTRODUCTION

In order to obtain their Computer Science degree, students
must demonstrate proficiency in several programming
paradigms, and deep knowledge in at least one programming
language [1]. Nevertheless many students find this difficult
and an unpleasant activity [2]. Several universities worldwide
have reported a 33% failure rate in the first two programming
courses [3]. There is also evidence of students who approve
their courses without basic knowledge of programming [4].

To understand why learning to program is a difficult task,
we looked into several influential learning theories, and found
that Vygotsky's constructivism theory provided a plausible
explanation. Vygotsky's constructivism states that learning is
done by association of new concepts with existing ones.
Nobody can learn a concept without associating it with
something [5]. When learning to program a computer, students
must mentally construct abstract concepts like pointers,
streams, and execution threads, by associating them with other
concepts acquired in their life experience. Professors very
seldom explore students' previous concepts to explain
programming concepts. The objective of this research is to
evidence the theoretical importance of previous real world
concepts to learn programming, and to propose a methodology
to ease the association process of abstract programming
concepts with ordinary concepts though metaphors.

Vygotsky's constructivism, discussed in section II,
provides a theoretical framework to guide the teaching-
learning process. We reviewed existing game based tools for
learning a programming language in section III. Following the

theoretical guidelines, we propose in section IV, a
methodology to create gamified development environments
using metaphors for representing abstract concepts. Section V
includes the results of a survey done to students asking them
to isolate the topics they consider as difficult and useful.
Section VI presents Puppeteer++, a gamified development
environment idea that proposes metaphors for those topics. It
is validated in section VII through a focus group with CS2
professors.

II. THEORETICAL BACKGROUND

Learning is the biological capability of the brain to
change its structure in order to adapt itself to the environment
and ensure the survival of the species [6]. Constructivism
states that apprentices do not reproduce knowledge, but they
mentally reconstruct it by associating each new concept with
existing ones [5]. For example, if we ask you to read the
remaining of this section and then say what you remember,
you will use your own words to build similar ideas. This
evidences that the mind does not reproduce the text, but
reconstructs it using previous knowledge. Each reader will use
different words because he or she has a different life
experience to make associations with. [5]

According to Vygotsky's constructivism, learning is a
process of construction of concepts associating them with
existing ones, and forming concept systems that can be applied
to new situations, for example, to solve problems. We derived
from [5] the following steps for a recommended teaching-
learning process.

1. Motivation. The mind is unable to make associations in
passive condition. Educators should first turn student's
minds in active state through motivation to allow the
creation and association of concepts. Several techniques
can be used. For example, structuring the class to keep
students doing activities and collaborating with others;
making them understand the importance and utility of the
new topic (or the risks of ignoring it); using emotive
situations like existential problems, games, and stories.
[5], [8]

2. Conceptual contraposition. New concepts must be built
using existing concepts. As stated previously, nobody can
construct a concept without associating it with something.
When old notions do not help construct new concepts, the
conceptual contraposition technique is useful. It consists
in making students realize that their old abilities and
notions are insufficient or contradictory to reach the
objectives they are motived to reach. It creates a cognitiveDigital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2016.1.1.182

ISBN: 978-0-9822896-9-3
ISSN: 2414-6390

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 2

uncertainty state in the student's mind that can only be
overcome by reorganizing old concepts and constructing
new ones. New concepts are desired and welcome by
students in order to surpass the uncertainty and reach a
gratification state of equilibrium. [5]. The conceptual
contraposition technique produces an intrinsic motivation
in the learner that does not require an external
reinforcement [8].

3. Concept assimilation. When the student's mind is
requiring a new concept, the professor can present it,
explaining it by using other concepts in the apprentice's
knowledge base. Under normal conditions, students will
not appropriate of a new concept immediately, it will be
only temporary associated in short-term memory. An
iterative analysis-synthesis-application process is required
to gradually establish the connections in long-term
memory. All iterations must keep the new concept
fundamental principle and vary its non-essential aspects.
[5]

4. Concept application. Once assimilated in abstract
thinking, the new concept should be applied to practical
situations, otherwise it will not add any meaningful
change to student's life experience. Problem solving and
artistic education are two rich scenarios to apply concepts.
Both require a general method or process to get a solution
or product. [5]

5. Habit acquisition. A habit is developed as consequence of
the refinement of a method through its repeated
application to several distinct situations sharing the same
fundamental principle. Students feel confused during the
first concept applications, requiring analysis-synthesis
processes. Since each iteration keeps the concept's
fundamental principle, a natural connection is made with
the previous iteration, reducing the analysis-synthesis
effort. When this effort is almost inexistent, the habit has
been acquired. The goal of teaching is to provide a formal
method or process in the conscious phase before the habit
is acquired. [5]

6. Concept systems. Vygotsky states that knowledge is not
constructed by isolated concepts, but systems of
associated concepts that reflect the relationships to objects
and real life phenomena. According to him, professors
should organize the learning material to reflect a natural
hierarchy. After learning a new concept, students should
solve more comprehensive problems that require
associating the new concept with previous ones; that is,
constructing concept systems. Evaluating a just learnt
concept is insufficient It is necessary to evaluate that
concept systems are stable over time and that students
apply them to new situations. [5]

An individual can learn by his/her direct interaction with

objects. But the most natural and effective learning is by
interacting with other people. Vygotsky's Social
Constructivism theory states, that what an individual learns

becomes his/her reality. Each individual implicitly evaluates
his/her notions against the knowledge from others. The
validated notions in the mind of several individuals conform
the collective knowledge, the reality. Collaboration is the
richest learning environment because allows learning and
validating from others in a natural way. [9]

A. Discussion
Vygotsky's theory places great importance in using

existing concepts to create, associate and apply new concepts;
that is, to learn new concepts. When students learn to program,
they must formalize and apply ordinary concepts like
sequence, condition and repetition. But other computer
concepts are abstract, like memory segments, pointers and
execution threads. Students cannot construct these concepts by
associating them directly to concrete objects, because they
cannot be sensed. They must resort to imagination in order to
have something to associate them with, and this process can be
a source of wrong or weak connections.

Students must apply abstract computer concepts to solve
real life problems, through their representation in a selected
programming language. Therefore students must build a least
three levels of associations: (1) life experience concepts with
abstract computer concepts, (2) abstract computer concept
with its representation in the programming language (rules,
syntax), and (3) programming concepts with the problem to
solve.

This complex system of associations can be one of the
factors that explain the programming learning difficulties
reported by several students. We propose to aid this
association process by using metaphors, or high-level systems
of metaphors called allegories.

Associations of type (1), previously stated, can be
strengthen by representing abstract computer concepts with
some colloquial concepts that share most of the characteristics
and relationships. For example, the abstract concept of nodes
in a linked list can be represented by wagons of a train, and
the locomotive represents the head of the list. When a wagon
must be inserted to some point of the train, the operator must
travel from the locomotive to that point, untie the wagons and
attach the new wagon among them.

Teachers can naturally use metaphors in lessons when
introducing abstract programming language concepts, for
example, using toy wagons for illustrating the linked list. But
this is a behaviorist approach. Constructivist suggests that
students work directly with the metaphors. That is, students
should play with a wagon train, and they should deduce the
rules for building linked lists.

Playing with toy wagons can help students deduce
properties of linked lists. But when they must implement
linked lists, they must take a long leap from the wagon toys to
the programming language concepts. We want to also
undertake associations of type (2), letting students play with
the metaphors directly in the programming language.
Therefore metaphors must be both, familiar to students and

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 3

operable by the computer. Our proposal is to confluence both
requirements into a gamified development environment.

Associations of type (3), related to solving real life
problems by applying abstract programming concepts, are the
most challenging to address. Gamified development
environments must provide a rich set of situations where the
programming concepts can be applied. We suggest designing
the gameplay of the gamified development environments to
support the learning process presented in section II.

III. RELATED WORK

A gamified development environment is defined in this
paper as a software tool designed following gamification
principles to help students learn to program using a specific
programming language. Some systems reported as video
games, can be classified gamified development environments.
The following list describes existing video game or gamified
systems designed to help students learn a programming
language.

1. Robocode (2001) is a tank battle simulator. Students must

create their own tank by inheriting from a Java class
(Robot) and build in some survivor and attack logic, in
order conquer battles against tanks trained by other
programmers. [10]

2. Greenfoot (2003) is an IDE (Integrated Development
Environment) based in BlueJ. It provides sceneries with
graphic and event handling capabilities for building
graphic intensive applications in Java, such as
visualizations and video games. [11]

3. Bomberman (2008) is actually a system that presents
slides containing C programming information, examples
and exercises. Students must solve graphical exercises
inspired in the original Bomberman game created by
Hudson Soft in 1983 [12]. This system was designed
under the programmed instruction principle of
behaviorism theory.

4. CodeCombat (2013) is an online strategy game. Players
must train their troops by writing strategy logic in
JavaScript, in order to conquer multiplayer battles.

5. CodeSpells (2013) is a role-playing video game. Players
are apprentice wizards that create magic spells in Java,
and use them to help villagers. [13], [14]

In all of these systems, game concepts are not metaphors

of abstract concepts of a programming language, their
properties and relationships. For example, a tank object in
Robocode tries to resemble a real battle tank, its properties,
actions, limitations and relations with others tanks in the battle
scenery. But a tank does not represent an abstract
programming concept. It does not try to explain a node, a
reference, or a function call, nor its properties and
relationships.

Two exceptions can be remarked. First, a code block is
represented as a magic spell in CodeSpells. This metaphor
helps students associate the concept of program with a more
familiar concept, but some properties are missing, like
debugging. Second, visual objects in Greenfoot must be
inherited from World or Actor, and relationships are
diagrammed using arrows.

Our proposal suggests creating gamified development
environments where objects represent simultaneously both
worlds: a familiar real life concept and an abstract
programming concept. So, when students follow natural
gameplay rules for the objects, they automatically infer and
learn abstract programming rules.

IV. PROPOSED METHODOLOGY

We propose the following steps to develop gamified
development environments that represent abstract concepts
with colloquial concepts (metaphors).

1. Choose the abstract concepts that students must learn.

Describe their fundamental properties: attributes,
behaviors and relationships.

2. Look for some colloquial concepts (a family of concepts)
that share similar properties with abstract concepts. Map
their attributes, behaviors and relationships. If more than
one family of concepts is found, choose the family that
shares most properties with abstract concepts.

3. Propose one game idea built upon the colloquial concepts.
Structure its gameplay following a learning theory, like
the steps derived from Vygotsky's constructivism (section
II). Players must program in order to overcome the game
challenges. The product of this step is a gamified
programming environment.

4. Determine if the gamified programming environment idea
can support other abstract concepts.

5. Validate the gamified programming environment idea
with experts.

6. Implement the gamified programming environment
following a software or game development process.

7. Evaluate the gamified programming environment under a
learning environment.

V. SURVEY RESULTS

A programming language has many abstract concepts that
can be represented with gamified metaphors. In order to
choose the programming language and its abstract concepts to
implement (step 1 in the proposed methodology), we surveyed
our students at our School of Computer Science, the target
population of our proposal. We asked them for the
programming language they use the most, and the topics they
consider difficult and useful.

The survey was conducted to all the students that
completed the five courses listed in Table 1. These courses are

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 4

highly related to programming topics, and they range from
second to fourth year of our Computer Science Bachelor.
Students were not surveyed twice.

TABLE 1.
PROGRAMMING RELATED COURSES THAT WERE SURVEYED

Acr. Name Year Req.

CS2 Programming II 2.I CS1

DSA Data Structures and Algorithms 2.II CS2

DB1 Data Bases I 3.I DEA

SE1 Software Engineering I 3.II DB1

SE2 Software Engineering II 4.I SE1

The anonymous self-administered questionnaire was

answered by 144 students. There were two incomplete
instruments and one student that did not report sex. Men
answered 114 cases (81%) and women 27 cases (19%).
These response rates reflect the gender distribution of the
student population.

The Programming I course (CS1) teaches Java and
Programming II (CS2) teaches C++. We asked students the
approximate usage percent of these and other programming
languages. In average, C++ was reported as the most used
programming language (51%), followed by Java (33%). The
usages vary through courses mainly due to the professors'
preferences for assignments as shown in Figure 1. Professors
of Data Structures and Algorithm Analysis (DSA) prefer C++,
and professors of Software Engineering (SE) prefer Java. As
expected, the usage of other programming languages –such as
SQL, JavaScript, Lisp, and C#– increases as students advance
through the major.

We asked the students to grade the learning difficulty they
experienced with several C++ programming topics, using a
scale ranging from 1, meaning not difficult at all, to 10,
meaning the highest difficulty. They also graded the perceived
usefulness of the topics. The findings are summarized in
Figure 2. Since we did not want to address very difficult topics
that were not useful, and vice versa, we multiplied the

usefulness by the learning difficulty of each topic, and called it
learning relevance. Figure 2 is ordered clockwise by this
metric. Parallel/concurrent programming was considered as
the most difficult topic to learn, with a utility of 7,8 of 10.
Memory handling was the second most useful (8,9 of 10), and
at the same time, as difficult (6,0 of 10). In the next section we
will propose a gamified development environment idea for
addressing these two topics.

VI. GAMIFIED DEVELOPMENT ENVIRONMENT IDEA

Survey results reported that C++ is the most used
programming language by our students, and that
"parallel/concurrent programming" and "memory handling"
are considered the two most relevant topics to learn. In this
section we design a gamified development environment that
supports abstract programming concepts for these two topics,
following the proposed methodology in section IV.

Step 1: choose the abstract concepts to represent with

metaphors
The abstract concepts to implement are the main concepts

from the selected programming topics. They are listed in
Table 2 with a brief description.

Step 2: find colloquial concepts that resemble abstract

ones
Let's begin with memory segments. They resemble areas

to store objects. Segments are size limited except heap, which
is huge. An execution thread resembles a worker. Workers
could be interested in accomplishing some tasks, but their
working area is limited (stack segment). In order to have

Figure 2. Utility and learning difficulty of some C++ topics

0,00#

1,00#

2,00#

3,00#

4,00#

5,00#

6,00#

7,00#

8,00#

9,00#

Concurrent
programmi

ng

Memory
handling

GUI
programmi

ng

Debugging

Inheritance
and

polymorphi
sm

Testing Templates

Exception
handling

Operator
overloading

Files

C++
standard

library

U"lity'(7,8+-1,2)' Difficulty'(5,3+-1,4)' Relevance'

Figure 1. Programming language usage through courses

43#

26#
32# 33#

41#

49#

65#

54#

40#

31#

8#
11#

14#

25#
29#

10#

20#

30#

40#

50#

60#

70#

CS2# DSA# DB1# SE1# SE2#

U
sa
ge
&

Java# C++# Other#

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 5

access to the big area they require a special mechanism (a
pointer). Two or more workers can access simultaneously
objects in the huge area, but each worker does not share its
own direct working area (stack segment).

TABLE 2.
MAIN ABSTRACT PROGRAMMING CONCEPTS TO SUPPORT

Concept Description
Execution
thread

A set of instructions that can be run independently from other
running instructions.

Shared
memory

Some memory that can be accessed simultaneously by two or
more running threads.

Memory
segment

Program's memory is distributed in segments like code, data,
stack and heap. All of them are very limited in size except
heap. Pointers are mandatory for accessing the heap. Threads
of a same program share all segments except their stacks.

Pointer
An integer variable that stores the address of an object
allocated in another place of the memory. Its value allows
accessing the pointed object.

Function
call

Action of running a function or method providing values for its
parameters and waiting for its result.

A number of families of colloquial concepts can be fitted

to the previous descriptions. We propose one related to
puppetry (Figure 3). Puppets are unanimated characters that
act in the scenery (heap segment) controlled by puppeteers
(execution threads). Puppeteers are not supposed to act,
therefore they never appear in scenery. They work over a
platform (stack segments) at the top of the theatre, hidden
from the audience. A puppeteer controls its puppet in the
scenery through strings (pointers). Puppeteers animate their
marionettes following step by step a script (code segment).

A puppeteer could control several puppets, but not at the
same time. Switching from one puppet to another introduces a
visible delay. Also the puppeteer requires a "handle line rack"
(stack segment) to hold inactive puppets (Figure 4). A
puppeteer could perform several different tasks (function
calls), depicted as several stacked handle lines in Figure 4.
Puppeteer only works with the topmost line. If several puppets

must act simultaneously in the same scene, several puppeteers
must work together (concurrence), as depicted in Figure 4. A
large puppet, for example a Chinese dragon, requires several
coordinated puppeteers (shared memory).

Step 3: build a gamified idea with colloquial concepts
We follow the constructivist principles suggested in

section II (Theoretical background). Principle 1 states that
through motivation the gamified development environment
must get student's mind in active condition in order to learn.
The game story must challenge the students to arouse their
intrinsic motivation, and the gameplay must propitiate that
they stay active. The game story will show short videos of
entertaining theatre plays and leave an open question: Do you
want to create your own play?

The gamified idea empowers students to build their own
theatre plays. Players are active playwrights. The welcome
screen in Figure 5(a) shows the available plays. Students can
create new plays by pressing the "plus" button. Initially they
will not know how to write theatre plays, which follows the
principle 2 of conceptual contraposition. They need
scaffolding to construct the concept systems required to write
scripts (programming).

After selecting a play in Figure 5(a), the game shows its
scenes depicted using cinema claps in Figure 5(b). "Training"
play scaffolds students by providing a story in natural
language (English) that students must translate to the dialect
that puppeteers understand (C++). Initially each scene is
incomplete, not translated, which is represented by an open
clap in Figure 5(b). Completed scenes can be played in
sequence by pressing the play button at the top right of Figure
5(b).

Scenes are grouped in acts. Following principles 3
through 6, the learning material must be logically organized.
In "Training" play each act introduces a new concept. For
example, Act 1 introduces method calls. Scene 1-1
automatically places a puppet in the scenery, and asks students
to greet the audience (say hello world by calling a method).
Scene 1-2 asks to move the puppet around scenery, and so on.

Figure 3. Paper prototype of a puppet theatre game

���������	
���
�������������	
���
�
���������
����������������
����
������������������
��������
���������������� !��
����������������"�			"��

������#��������
���������$��
#��������

�������
�
�
�����
���%

�����������$��
#���#��������
����
�������������
��#�����
����������������
!��
���%
%�

������	�
���������

���������

���

Figure 4. Two puppeteers controlling several puppets

���������	�
�

��
�
��
�
�

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 6

Act 2 introduces the concept of creation and removal of
puppets in the scenery (heap segment).

Each scene applies several learning principles. For
example, scene 2-1 directly asks students to create a puppet, to
say some words to the audience, and to remove it. Students
trying to construct their own theatre play, realize that puppet
creation is important. But at this point, they are facing
cognitive uncertainty due to a conceptual contraposition,
"how a puppet is created?" They are requiring a new concept.
By pressing the question mark button in Figure 3, the game
provides some short visual information about object creation
and some examples (principle 3 of concept assimilation). The
given information will only be associated in short-term
memory. Students return to the scene in order to apply the new
concept (principle 4, concept application).

If for some reason students create a local object in scene
2-1, for example the C++ declaration Dog dog in Figure 3, the
puppet will appear in the puppeteer's handle line (stack
segment), the audience will not see it, and the scene's goal is
not accomplished. Students will have an immediate visual cue
of the problem. They are still facing a conceptual
contraposition; their old notions contradict new ones. Using
metaphors solving the theatrical defect naturally leads to
fixing the code. According to principle 1 (motivation), the
gamified development environment could also give an
explication of the problem and encourage students to try a
different approach.

When students use dynamic memory in scene 2-1, for
example Dog* dog = new Dog(), a puppet will appear in the
scenery as expected. The puppeteer will hold in his hands a
handle named dog connected to the new puppet by some
strings. The scene 2-1 is not complete yet. After getting the
curtain closed, cleaning the scenery is mandatory in order to
finish any scene. When students finally remove the puppets
(with the delete operator) the scene will be completed, and
they will receive the applause from the audience. The praise
for the success is immediate (principle 1, motivation).

Scene 2-2 asks students to create different types of
puppets. Scene 2-3 asks them to create a puppet and animate it
by calling some of the methods used in Act 1. Scene 2-4 asks
the students to create two puppets and animate one before the
other. And so on. Each scene keeps the fundamental principle
of object creation and removal. It is incrementally applied to
several situations helping establish the associations according
to principle 4 of concept application. After creating and
deleting objects over and over, the diffuse and slow first
reactions become almost mechanical by the end of the Act,
leading to the acquisition of a habit (principle 5).

Act 3 introduces the concept of concurrence: two or more
puppeteers animating puppets. Concepts from Act 1 and 2 are
reapplied in Act 3. Thus, new notions will be associated with
existing ones forming a concept system (principle 6). Act 4
asks students to create their own puppets. Act 5 helps students
create their own sceneries. After completing the Training play,
students can apply their learning to build a real theatre play

under the generic title of "A real play" in Figure 5(a). They
have finally acquired the basic concept system to build their
own theatre plays. Creating a theatre play is a laborious task if
done individually. More elaborated theatre plays can be built
in collaboration. The game can support Vygotsky's social
constructivism theory letting a team of students work with a
theatre play simultaneously.

Step 4: support other abstract concepts, if applicable
The puppet theatre idea can also support "debugging" and

"inheritance and polymorphism". These are the fourth and
fifth most relevant topics according to the survey results
(Figure 2). Debugging is a methodical process of detecting
and correcting defects. Each time a script is in action, the
running line is remarked. Students can pause the run, and
execute the script line per line. When something is wrong,
graphical feedback is natural and not overwhelming as in
traditional debuggers. For example, in Figure 3 the pointer in
stack memory to the cat puppet was lost when its method
finished executing, but the pointed object was not deleted (a
memory leak). The strings tying the handle with the cat are
just visually cut. Inheritance and polymorphism is required
when students want to create their own puppets and sceneries.
They have to inherit from Puppet and Scenery classes, and
override some functionality.

The puppet theatre metaphor can also support some
advanced programming challenges. For example, puppeteers
follow the script literally. If students place some decisions
based in random variables, it will provide different courses of
events each time the play is run. In some real theatre plays,
actors invite people from audience to participate in the play. In
the game context, the audience can be the real users in front of
the computer.

Step 5: Validate the gamified development environment

idea with experts
A validation of the gamified development environment

idea is presented in the following section.

��������
�����

���	�
��
��
����

��� ���

���������������

��������������	

����
 ����� �����

�
���

���
��������

Figure 5. (a) Selecting a play. (b) Selecting a scene

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 7

VII. GAMIFIED DEVELOPMENT ENVIRONMENT IDEA
VALIDATION

Before implementing the gamified development
environment idea, the metaphors involved must be tested. The
process of testing the ludic metaphor system is as important as
its creation process.

 In order to validate the strengths and weaknesses of the
proposed idea, and try to predict its impact, all our professors
of CS2, except one of the authors of this article, participated as
experts in a focus group. This group of seven professors is
heterogeneous in teaching experience and CS2 involvement.
The youngest has nine years of teaching experience and the
oldest 34. The professor that has taught CS2 the most has done
it for 28 semesters, and there is one professor that is teaching
it for the first time. Due to schedule restrictions two focus
groups were conducted, with four and three professors
respectively. Sessions were organized with the following
protocol, where explanation activities are shown within
parenthesis:

1. (Introduction) Why is learning difficult in CS2?
2. (Learning theories and metaphors) What metaphors have

you used in your classes? Have they been useful?
3. What characteristics do you believe make a good or bad

metaphor for the programming learning process?
4. (Presentation of the game idea) What strengths and

weaknesses do you find in the puppetry metaphor to
teach/learn memory management and concurrency
concepts?

5. What would you improve?
6. Any alternative metaphors for learning memory

management and concurrency concepts?
7. Do you believe that playing with the proposed tool will

positively or negatively impact the learning or motivation
of students? Please list the reasons.

Questions were displayed on overhead slides. The

moderator made a short introduction or presentation before
questions 1, 2 and 4, indicated in parenthesis in the previous
list. Participants individually wrote down their answers for
questions 4 and 7 before discussing them, to ease their
posterior recall and avoid pollution from other professors´
opinions. Professors were informed that the discussion would
be recorded and they agreed. Both sessions lasted one hour
and 15 minutes each.

A. Data analysis
We followed the same analysis process indicated by [15].

Recordings were listened several times while authors took
notes. Notes were analyzed and grouped into themes. A
paragraph briefing the main idea was written for each theme.
Paragraphs were translated from Spanish to English for this
article. The following subsections show each discussed theme.

1. Learning difficulty in CS2
The most mentioned reasons were: learning deficiencies

in the previous programming course (CS1), the complexity of
the programming language (C++), immaturity of students,
their lack of discipline and studying strategies.

2. Metaphors used by participants in their lessons
Most participants expressed metaphors are important for

learning. They use mainly visual metaphors, i.e. drawing
abstract geometric figures in the blackboard like rectangles for
variables and arrows for pointers. They expressed that other
professors use dramatized metaphors. A few metaphors for
explaining mechanisms were cited: C++ templates are like
rubber stamps or copy-paste-search-replace processes, and
computational machine is like the human mind.

3. Characteristics of good metaphors for learning
Participants cited the following characteristics for good

metaphors:

1. Familiar, relevant for students.
2. Graphical, visual, or dramatized.
3. Abstract, simple, like the program visualization

application Jeliot 3. Hide unnecessary details such as
standard or third party library internals.

4. Didactic. For example draw complex structures like
linked lists, trees or iterators, similar to how books
illustrate them.

5. Simple to be able to measure its possible impact (for
experimentation purposes).

4. Strengths and weaknesses of puppetry metaphor
Participants cited some strengths and no debate was

generated about them:

1. Puppetry metaphor is clear, mainly for illustrating
instance creation and method calls.

2. It is graphic, visual.
3. It is entertaining; therefore, it will raise students' interest.
4. It is easy to use.
5. It provides immediate feedback.
6. It increases student motivation.

Extensive discussions were hold on its weaknesses. The

following list is ordered from the most discussed weakness to
the least one.

1. It does not illustrate collections, indexes and iterators.
2. It does not support C++ complicated declarations and

their usage, such as pointers to pointers, or pointers to
vector of instances.

3. Metaphor is not self–explanatory. Students must invest
time understanding the metaphor, afterwards
understanding the reality (the machine).

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 8

4. Limited coverage of CS2 course topics.
5. Scenery capacity is too limited for lots of actors, for

example 101 Dalmatians.
6. Is it ludic?
7. Only a subset of C++ is supported, therefore students can

build only limited programs. For example, not all C++
programs require heap allocation.

8. It is not clear on sending and receiving messages between
objects (puppets) and sharing information.

5. Improving puppetry metaphor
The following ideas were suggested to enhance the

puppetry metaphor:
1. Collaboration and reuse of resources. Several students can

create different puppets separately, then import those
puppets to build the complete play in a similar way a
director does. An official repository of puppets would
allow students to share or hire actors, speeding up
playwriting.

2. Simplify the metaphor. Remove some scenery distractors
like shrubs and curtains.

3. Allow students to run sentences without a full compilation
process (code interpretation).

6. Alternative metaphors
Participants of the second focus group suggested as an

alternative metaphor any scenario where resource
management (memory handling) and quick task completion
(concurrency) are required, for example, a building
construction such as Minecraft (2011). Students must manage
simultaneously several workers (execution threads), such as
carpentries and bricklayers; and resources like materials and
money.

The four professors of the first focus group, which have
had more experience teaching CS2, were more conservative.
They suggested a visual symbolic debugger that shows an
abstraction of the computational machine. Jeliot 3 has this
idea, but it is very limited, for example, it does not didactically
illustrate data structures such as stacks or trees. The new
metaphor should overcome limitations of Jeliot 3.

7. Impact of the puppetry metaphor
Three of the seven professors expressed that the game

idea would positively impact the learning and motivation of
students; one professor said there would be both positive and
negative effects; and three professors were unsure. Professors
expressed that they would require empirical results to be
convinced. Five participants emphatically suggested using a
simplified visual model of the machine, for the empirical
evaluation.

B. Validation results
Focus group results show a divided position between

positive and unsure impact of the proposed gamified

development environment idea. Almost no negative impacts
were predicted. Findings strongly claim for empirical
evaluation on students considering three treatments:

1. The puppetry metaphor.
2. An abstract visualization of the machine.
3. Traditional learning (control group).

An abstract visualization of the machine is a metaphor

also, and it can be built following the proposed methodology
of section IV. This is part of our current work.

VIII. CONCLUSIONS AND FUTURE WORK

Learning theories show the importance of associating new
notions with previous concepts. Based on this principle, we
have proposed a methodology to design, and test before
implementation, gamified development environments. The
methodology focuses on the association process between
abstract programming concepts and ordinary concepts. We
hypothesize that letting students play with gamified
development environments based in this principle will lead to
better learning of underlying programming concepts.

We proposed a gamified development environment idea
named Puppeteer++ following the given methodology. It
associates abstract programming concepts considered as
difficult and useful by our students, with concepts from
puppetry. Puppeteer++ idea was validated by seven CS2
professors. In general, experts provided valuable suggestions
to improve the metaphoric associations. Experts recommended
empirically evaluating the proposed system, and incorporating
a visual symbolic debugger that shows an abstract model of
the machine as an extra treatment for the experiment.

We are working in enriching the proposed methodology
to incorporate visualizations. In the future we will try to test,
by a quasi-experiment, if using concrete metaphors for
abstract programming concepts in gamified development
environments or visualizations influence motivation and aids
the learning of those concepts. We hope to have found a
means to ease the learning curve of programming language
students.

ACKNOWLEDGMENT

This research is supported by the Centro de
Investigaciones en Tecnologías de la Información y
Comunicación (CITIC), the Escuela de Ciencias de la
Computación e Informática (ECCI), both from Universidad de
Costa Rica (UCR), and the Ministerio de Ciencia Tecnología y
Telecomunicaciones de Costa Rica (MICITT). We thank our
colleagues and CS2 professors for their valuable cooperation.

REFERENCES
[1] ACM and IEEE Computer Society, “Computer Science 2013: Curriculum

Guidelines for Undergraduate Programs in Computer Science,” 2013.
[2] F. W. B. Li and C. Watson, “Game-based concept visualization for

learning programming,” in Proceedings of the third international ACM

14th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for
Global Sustainability”, 20-22 July 2016, San José, Costa Rica. 9

workshop on Multimedia technologies for distance learning - MTDL ’11,
2011, p. 37.

[3] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” ACM SIGCSE Bull., vol. 39, no. 2, p. 32, Jun. 2007.

[4] M. McCracken, V. Almstrum, D. Diaz, L. Thomas, M. Guzdial, I. Utting,
and D. Hagan, “A multi-national, multi-institutional study of assessment
of programming skills of first-year CS students A framework for first-
year learning objectives,” ACM SIGCSE Bulletin, Volume 33 Issue 4, pp.
128–180, Dec-2001.

[5] D. N. Bogoyavlensky and N. A. Menchinskaya, “La psicología del
aprendizaje desde 1900 a 1960,” in Psicología y pedagogía, 4th ed.,
Sevilla: Ediciones Akal, 2011, pp. 119–188.

[6] S. Francis, El conocimiento pedagógico del contenido como modelo de
mediación docente. Coordinación Educativa y Cultural, 2012.

[7] W.-H. Wu, W.-B. Chiou, H.-Y. Kao, C.-H. Alex Hu, and S.-H. Huang,
“Re-exploring game-assisted learning research: The perspective of
learning theoretical bases,” Comput. Educ., vol. 59, no. 4, pp. 1153–1161,
Dec. 2012.

[8] M. Cecchini, “Introducción,” in Psicología y pedagogía, Sevilla:
Ediciones Akal, 2011, pp. 7–20.

[9] S. W. Harmon, “A Theoretical Basis for Learning in Massive Multiplayer
Virtual Worlds,” J. Educ. Technol. Dev. Exch., vol. 1, no. 1, pp. 29–40,
2008.

[10] J. O’Kelly and J. P. Gibson, “RoboCode & problem-based learning,” in
Proceedings of the 11th annual SIGCSE conference on Innovation and
technology in computer science education - ITICSE ’06, 2006, vol. 38, no.
3, p. 217.

[11] P. Henriksen and M. Kölling, “Greenfoot: Combining object visualisation
with interaction,” in OOPSLA ’04 Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming systems,
languages, and applications, 2004, pp. 73–82.

[12] W. Chang, Y. Chou, and K. Chen, “Game-based digital learning system
assists and motivates C programming language learners,” in 2010 Sixth
International Conference on Networked Computing and Advanced
Information Management (NCM), 2010, pp. 704–709.

[13] S. Esper, S. R. Foster, and W. G. Griswold, “On the nature of fires and
how to spark them when you’re not there,” in Proceeding of the 44th
ACM technical symposium on Computer science education - SIGCSE ’13,
2013, p. 305.

[14] S. Esper, S. R. Foster, and W. G. Griswold, “CodeSpells: Embodying the
Metaphor of Wizardry for Programming,” in Proceedings of the 18th
ACM conference on Innovation and technology in computer science
education - ITiCSE ’13, 2013, p. 249.

[15] J. Aberg, “Challenges with teaching HCI early to computer students,” in
Proceedings of the fifteenth annual conference on Innovation and
technology in computer science education - ITiCSE ’10, 2010, pp. 3–7.

