
14
th

 LACCEI International Multi-Conference for Engineering, Education, and Technology: “Engineering Innovations for 

Global Sustainability” 

July 20-22, 2016, San José, Costa Rica    1 

Manuscript received April 1, 2015; revised May 15, 2015 and June 

1, 2015; accepted July 1, 2015. Date of publication July 10, 2015; date 

of current version July 31, 2015.  

Corresponding author: S. Mburu (e-mail: smburu@umd.edu).  

Color versions of one or more of the figures in this paper are availa-

ble online at http://ieeexplore.ieee.org. 

Digital Object Identifier (inserted by IEEE). 

 Atom Probe Tomography Analysis of the Local 

Chemical Environment at the Austenite/Ferrite Inter-

faces of Cast Duplex Stainless Steels* 
Sarah Mburu

1
, R. Prakash Kolli

1
, Daniel E. Perea

2
, Samuel C. Schwarm

1
, Arielle Eaton

2
, Jia Liu

2
, Shiv Patel

1
, Jonah 

Bartrand
2
, and Sreeramamurthy Ankem

1 

1
Department of Materials Science & Engineering, University of Maryland (UMD), College Park, Maryland 20742 

2
Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352 

 

                                                           
*
 This work is supported by the Department of Energy (DOE) Nuclear Energy University Programs (NEUP), contract number DE-NE0000724. Ms. Mburu 

is partially supported by the National Science Foundation (NSF) Louis Stokes Alliances for Minority Participation (LSAMP) under Grant No. 0833018. Mr. 

Schwarm is supported by Department of Energy: Office of Nuclear Energy (DOE-NE) Integrated University Program (IUP) fellowship program. 

Abstract– Cast duplex stainless steel piping in light water reac-

tors experience thermal aging embrittlement during service at elevat-

ed temperatures. Interest in extending the service life to 80 years 

requires an increased understanding of the microstructural evolution 

and corresponding changes in mechanical behavior. We character-

ized the statically cast CF–3 and CF–8 stainless steels employing 

state-of-the-art atom-probe tomography (APT). The microstructure 

and mechanical properties of the steels that are isothermally aged to 

4300 h at 400 °C are compared to the unaged steels. The results illus-

trate that spinodal decomposition, G–phase precipitation, carbide 

formation, and interfacial segregation of elements between phases 

influence thermal aging embrittlement.  
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I.  INTRODUCTION  

Cast duplex stainless steels (CDSS) are used in cooling wa-

ter piping of light water reactors (LWRs) due to their combina-

tion of strength, good ductility, good impact toughness, corro-

sion resistance, castability and weldability. We have character-

ized the mechanical properties and the microstructure of statical-

ly cast CF–3, [Fe, 0.02 C, 1.07 Mn, 0.98 Si, 19.69 Cr, 8.4 Ni, 

0.28 Mo (wt.%)], and CF–8, [Fe, 0.06 C, 0.99 Mn, 0.97 Si, 

19.85 Cr, 8.3 Ni, 0.35 Mo (wt.%)] steels at multiple length 

scales, employing state-of-the-art atom-probe tomography 

(APT) and energy-dispersive x-ray spectroscopy (EDS) for 

chemical analysis at finer scales. The steels have a duplex mi-

crostructure of face-centered cubic (f.c.c.) γ–austenite and body-

centered cubic (b.c.c.) δ–ferrite phases. The ferrite phase is pre-

sent in volume fractions less than approximately 13%. These 

alloys experience thermal aging embrittlement during operation-

al service due to spinodal decomposition of the δ–ferrite phase 

into chromium-rich (Cr-rich) α’–domain and iron-rich (Fe-rich) 

α–domain, and nucleation and growth of intermetallic nickel-

silicides G–phase precipitates [1], [2]. Microstructural evolution 

and concomitant changes in macroscopic (bulk) mechanical 

properties lead to increased hardness, a loss of ductility, and a 

reduction in impact toughness. Interest in extending the opera-

tional life of these power plants to 80 years requires examining 

the complex phase decomposition and corresponding mechani-

cal property changes of these stainless steels by employing ac-

celerated isothermal aging at elevated temperatures, e.g. 400 
o
C, 

relative to the operational temperatures. This requires detailed 

compositional characterization of the unaged stainless steels in 

order to provide a baseline reference to quantify the temporally 

evolving concentration profiles and phase decomposition at the 

different temperatures. Additionally, the γ–austenite/δ–ferrite 

heterophase interface must be characterized, as possible hetero-

geneous nucleation and growth of intermetallic precipitates or 

carbides at this location will significantly influence the local 

elemental concentration profiles and bulk mechanical properties. 

II. METHODOLOGY 

Figure 1 partially depicts the experimental flowchart. Me-

chanical properties from tensile tests, Charpy impact tests, Vick-

ers Micro-hardness tests, and Nanoindentation measurements 

were performed in accordance with their respective ASTM 

standards. Volume fractions were measured from optical mi-

croscopy. Chemical analysis was performed by EDS and APT, 

where the concentration profiles were derived from proximity 

histogram of a 4.5 at.% Ni isoconcentration surface at the heter-

ophase interface. The elemental concentrations of individual 

phases were derived from integrated counts of the EDS spectra 

from scanning electron microscope (SEM) and Transmission 

electron microscope (TEM). Specimens with a needle-shaped 

geometry necessary for APT analysis were fabricated using a 

FEI Helios dual-beam focused ion beam in the SEM (SEM/FIB) 

instrument following standard lift-out and sharpening proce-

dures [3] as shown in Fig. 2. 

III. RESULTS AND DISCUSSION 

 Table 1 shows the ferrite, austenite, and carbide concentra-

tions. Chemical mapping by EDS and APT illustrated chemical 

partitioning of Cr to the ferrite phase and Fe & Ni to the austen-
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ite phase. The carbide at the CF–8 heterophase interphase is 

enriched in C and Cr, which causes a local depletion of Cr in the 

ferrite phase. There is synergy between the carbide and spinodal 

decomposition in the ferrite phase of the unaged CF–8 steel be-

cause the carbides locally 

deplete the ferrite phase of 

Cr – one of the two elements 

involved in diffusion during 

spinodal decomposition, as 

discussed above. Correlative 

TEM studies confirmed the 

Cr depletion zone in the fer-

rite phase and the presence of 

f.c.c. superlattice diffraction 

spots is indicative of a M23C6 

carbide phase. The γ–

austenite phase is not affected 

during aging to 4300 h. The 

CF–3 steel, with three times 

less carbon than CF–8, does 

not have carbides. Figure 3 

and Table 1 show that G–

phase precipitates, as repre-

sented with 5.5 at.% Ni iso-

concentration surfaces, exist 

only in aged samples for both 

alloys. 

IV. CONCLUSIONS 

 There is a trend for lower 

impact toughness with corre-

sponding higher yield 

strength, tensile strength and hardness as the steels are thermally 

aged. The carbides in CF–8 also provide solid-solution strength-

ening as compared to CF–3. Spinodal decomposition was ob-

served in the unaged and aged steels. As spinodal progresses, 

more chemical partitioning occur in the ferrite to form G–phase 

precipitates. 
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Fig. 1. Experimental procedures across multiple length scales leading to atomic level analysis: APT reconstruction of 

unaged CF–3, depicting 30% of the Cr ions (magenta), and 100% of Ni (green) and C (black) ions for clarity. 

Fig. 2. (a) The in situ site-specific lift-out of an APT sample at the δ–ferrite/γ–austenite heterophase interface (dashed 

yellow line) using a SEM/FIB instrument. (b) Series of images illustrating annular milling of a specimen into needle 

morphology with subsequently decreasing tip diameter necessary for APT analysis. (c) The APT reconstruction of 

unaged CF–8, depicting 30% of the Cr ions (magenta), and 100% of Ni (green) and C (black) ions for clarity. 

 
TABLE 1 

 COMPOSITIONS (at. %) OF PHASES IN APT SPECIMENS 

  Ferrite Austenite Carbide G–phase 

  Cr Ni Cr Ni Cr C Ni Si Mn 

Unaged 
CF–3 29 3.5 23 8.5 NAa NA 

CF–8 25 3 23 8.5 49 12 NA 

400 oC 
CF–3 28.5 3.5 23 8.5 NA 23 8 7 

CF–8 27 4 23 8.5 - 24 8 9 
a 
Not Applicable 

 
Fig. 3. The APT reconstructions of CF–3 and CF–8 steels’ ferrite 

phase that are unaged (δ) and thermally aged (α+α’) to 4300 hours at 

400 oC illustrate G–phase precipitates in the aged samples. 

 


