
Applying Classical Control Theory to an Airplane

Flap Model on Real Physical Hardware

Edgar Collado Alvarez, BSIE, EIT, Janice Valentin,

Jonathan Holguino ME.ME in Design and Controls

Polytechnic University of Puerto Rico, ecollado@pupr.edu,, janicenvt@gmail.com, jholguino@pupr.edu

Mentor: Prof. Bernardo Restrepo, Ph.D, PE in Aerospace and Controls

Polytechnic University of Puerto Rico Hato Rey Campus, brestrepo@pupr.edu

Abstract — For the trimester of Winter -14 at Polytechnic University of Puerto Rico, the course Applied Control Systems was

offered to students interested in further development and integration in the area of Control Engineering. Students were required to develop

a control system utilizing a microprocessor as the controlling hardware. An Arduino Mega board was chosen as the microprocessor for the

job. Integration of different mechanical, electrical, and electromechanical parts such as potentiometers, sensors, servo motors, etc., with the

microprocessor were the main focus in developing the physical model to be controlled. This paper details the development of one of these

control system projects applied to an airplane flap.

After physically constructing and integrating additional parts, control was programmed in Simulink environment and further

downloads to the microprocessor. MATLAB’s System Identification Tool was used to model the physical system’s transfer function based

on input and output data from the physical plant. Tested control types utilized for system performance improvement were proportional (P)

and proportional-integrative (PI) control.

Key Words — embedded control systems, proportional integrative (PI) control, MATLAB, Simulink, Arduino.

I. INTRODUCTION

During the master’s course of Mechanical and

Aerospace Control System, students were interested in

developing real-world models with physical components

and parts to be controlled and analyzed with tools and

concepts discussed in class. Therefore, a special topic

course was offered for that purpose as a continuation of

what was already learned. As it is known, theory can

slightly be different from what is observed in a real-life

application: non-linearities, noise, windup, constraints, and

unpredictable perturbations (behavior) are always present

and observed when controllers are tested against a reacting

system.

For this course, students developed components

and integrated physical electromechanical parts to set up

models in which control was embedded by use of the

Arduino Mega microprocessor. Our experimentation,

integration, and learning process have been more complex

than expected and documented in this paper. The real

hardware experience was tested in an airplane flap and it is

detailed in the following sections.

II. FIRST PHASE - POTENTIOMETER AND SERVO

MOTOR CONTROL

The team started in the development of a potentiometer and

servo motor control circuit. The purpose is to be able to

apply it to the control and movement of an airplane flap. A

circuit consisting of 2 potentiometers and 2 servomotors can

be observed below.

Figure 1. Two potentiometer-two servomotor control circuit physical

connection.

After physical connection is complete one must configure

the Arduino compiler to the settings needed to give the code

instructions to the selected board. In this case, board

mailto:ecollado@pupr.edu
mailto:janicenvt@gmail.com
mailto:jholguino@pupr.edu

selection is achieved by choosing Tools> Board> Arduino

Mega2560 or Mega ADK as shown in figure 2.

Figure 2. Selection of Arduino board type.

Then, COM port where the Arduino board communicates

with the computer must be selected. This is achieved by

selecting Tools> Serial port and choosing the available

COM port. Arduino C++ code for this circuit can be found

in the appendix section as _2servos2potsprogram.ino.

After this, a second circuit was mounted where 2

potentiometers and 1 servo motors were involved. Physical

Setup is shown in Figure 3.

Figure 3. Two potentiometer, one servomotor control circuit physical

connection.

This type of circuit is ideal for our wing span control

application. Therefore, a schematic of this was developed

using Fritzing Arduino and electronic board software. This

is observed below:

Figure 4. Fritzig software sketch for one potentiometer, one servomotor

control circuit.

Arduino code for this application can be found in the

appendix section as _1servos2potsprogram.ino.

These codes were tested to verify that the signals from the

potentiometers and the servomotors were communicating

effectively with the Arduino microprocessor. The team

decided as a next task to implement this code’s logic in the

Simulink environment because the block diagram approach

in control theory is better for teaching and learning.

III. PHASE II - POTENTIOMENTER AND SERVO

MOTOR CONTROL

A 3D printed model of an airplane flap was constructed

using the Department of Mechanical Engineering’s very

own 3D printer. The conceptual design of this wing was

done using CREO modeling software. Individual parts

were drawn and later assembled as shown in Figure 5. \

Figure 5. CREO modeling software sketch for airplane wing instructional

model.

The physical construction of the model can be observed in

Figure 6(a). A potentiometer is located on one side which

acts as the feedback sensor of the flap angle. At the other

side, the servo motor is the actuator responsible for

minimizing the difference between the desired and actual

flap angle. In Figure 6(b), it can be observed the physical

flap integrated with the control circuit.

(a)

(b)

Figure 6. Physical construction of the airplane flap model. Servomotor and

potentiometer attached to the flap are appreciated. Connection of these

with Arduino board is also shown (bottom).

IV. PHASE III – TWO POTENTIOMETER AND

SERVOMOTOR CONTROL

From class theory [1], the team learned that a closed loop

control system is modeled by the following block diagrams.

(a)

(b)

Figure 7. Model of a controlled closed loop feedback system block diagram

(a). Model of a closed loop feedback system block diagram with PID

control (b) PID flow is detailed.

The smaller case letters in Figure 7(a) represent the

following:

 r – input signal or setpoint.

 e – error.

 u – output signal of the controller, input to the

plant.

 y – output or system response to input.

The upper case letters represent the following:

 C – Controlling element

 P – Plant or model of the system

 F – Feedback element (sensor or in this case,

potentiometer2)

The purpose of a PID controller is to add the characteristics

of proportional, integral and derivative controller types so

that a system or process (the airplane flap) responds to

disturbances or changes in the set-point as required or

desired. The team concentrated on making fine tuning of

the proportional (P), proportional integrative (PI), and

proportional integrative derivative (PID) control for this

project. See Results section V for further details.

Final Simulink Diagram for the control of the airplane flap

is shown in Figure 8.

Figure 8. Simulink Block Diagram controlling the airplane wing using

Arduino as the acting agent of control.

The input signal from the potentiometer is read by the

Arduino. The Subsystem block in Figure 8 is a custom

block. It represents the conversion of Arduino read input

signal from an encoded digital value to an angle 𝜃𝑃𝑜𝑡1 in

degrees. This permits to visualize the physical angular

position of the potentiometer. See figure 9 for details of

components of this block.

Figure 9. Subsystem block exploded view.

The conversion rate to map the digital input signal with the

angle was found to be 180/1023, which gives the value in

degrees. The saturation block in Figure 9 is placed to

ensure that the range of values given by the potentiometer is

between 0 to 180 degrees. This is a preventive measure due

to the possibility of physically turning the knob of the

potentiometer to these values with use and abuse of the

hardware.

Subsystem1 (Sensor) block in Figure 8 is detailed in Figure

10. It is another custom block that represents the conversion

of signal from an encoded digital value read by Arduino to

an angle 𝜃𝑃𝑜𝑡2 in degrees. It is worthwhile to mention that

this potentiometer is physically connected to the airplane

flap by a shaft between them. The shaft serves as the

feedback element, connecting the servo with the sensor

(potentiomenter2) to give signal data to the Arduino for

further processing/conversion on Simulink.

Figure 10. Subsystem1 block exploded view.

The conversion rate was found to be 180/611, because the

range of the potentiometer operate by the servomotor (180

degrees) does not complete a full revolution (1023 signal).

The final value after the conversion rate is displayed in

degrees.

The important variable values gained from the simulation

are: set-point (input “r”), error, sensor, and control signal

(output “u”).

V. RESULTS

The behavior of the airplane flap with the open loop plant is

shown in Figure 11.

Figure 11. Airplane wing system response for No Control Type.

The set-point value of Potentiometer 1 was placed at 80

degrees. The plant output measured by the sensor is

unstable. Therefore, the system is unstable by itself (no

controller).

Adding proportional and integral control (I =1) to the

system, the system response improved as shown in Figure

12.

Figure 12. Airplane wing system response for P=1 and I = 1 Control Type.

Set-point value for this case was placed around 35 degrees.

After the controller tracks the set point value, the error

signal starts to fluctuate around 0. This occurs around the

12 seconds mark and continuous for the rest of the

simulation. Also note that the set-point and sensor signals

have a difference around 0 around this time. Though not a

perfect 0 difference (no error), this may be due to the

controller constants are not tune to completely mitigate the

oscillation of the interaction of the electromechanical parts.

Increasing proportional constant to 1.5, the system response

observed in Figure 13.

Figure 13. Airplane wing system response for P = 1.5 and I = 1 Control

Type.

Set-point value was placed at 32 degrees. Error signal starts

to fluctuate around 0 until 28 seconds. Also note that the

set-point and sensor signals have a difference around 0

around this time. Overshoot is observed for the sensor

signal. Compared to the last simulation, this increase in

proportional gain has caused a fast system response (rise

time around 6-7 seconds vs. 12 seconds before). In this

case the overshoot was around 68% compared to

approximately 14% from a before set-point of 35 degrees.

Decreasing proportional constant to 0.1, the system response

observed is shown in Figure 14.

Figure 14. Airplane wing system response for P= 0.1 and I = 1 Control

Type.

Set-point value was placed around 138 degrees. The system

was sluggish in tracking the set point but all the oscillations

were mitigated. Also note that the set-point and sensor

signals have a difference around 0 around this time. No

overshoot is observed for the sensor signal. This means that

the response of the systems is closed to overdamped

behavior. Also note that the rise time for this system occurs

for when steady state time is achieved (around 50 seconds,

too).

VI. CONCLUSION

The team was excited on all phases of design for applying

control system theory to a mechatronic system. The

learning experience acquired in this project has been of

great value to all of us, as control was achieved using both

Arduino C++ code and Simulink commands on a

microprocessor. The results related to proportional (P) and

proportional integrative (PI) control have been consistent

with what was learned in the classroom. Slight variability

in system stability around the set-point values were due to

the behavior of the integration between electrical and

mechanical components, which is imperfect by nature. It is

desired for the team to develop a new paper explaining the

use of the system identification technique employed in this

work. Also, the team looks forward to write another paper

where other control strategies such as optimal or adaptive

control applied to be explained.

VII. REFERENCES

[1] Ogata, K., 2002, Modern Control Engineering, 4
th

 Ed.

Prentice Hall, pp. 219-294

[2] Napolitano M., 2012, Aircraft Dynamic from Modeling

to Simulation, John Wiley & Sons.

[3] Ljung, L., 1999, System Identification: Theory for the

User, 2
nd

 Ed. Prentice Hall.

[4] Banzi, M. 2011, Getting Started with Arduino, 2
nd

 Ed.,

Maker Media.

[5] Nuruzzaman, M., 2005, Modeling and Simulation in

Simulink for Engineers and Scientific, AuthorHouse.

[6] Kurniawan, A., 2013, Getting Started With Matlab and

Arduino, PE Press.

Appendix A: Arduino C++ code programs

A.1 _2servos2potsprogram.ino

#include <Servo.h>

 Servo myservo; // create servo object to control a servo

Servo myservo2;

 int potpin = 0; // analog pin used to connect the potentiometer

int val; // variable to read the value from the analog pin

int potpin2 = 7; // analog pin used to connect the potentiometer

int val2; // variable to read the value from the analog pin

void setup()

{

 Serial.begin(9600);

 myservo.attach(9); // attaches the servo on pin 9 to the servo

object

 myservo2.attach(8); // attaches the servo on pin 9 to the servo

object

}

void loop()

{

 Serial.print("PotVal is ");

 Serial.print(val);

 Serial.println("PotVal is ");

 Serial.print(val2);

 val = analogRead(potpin); // reads the value of the

potentiometer (value between 0 and 1023)

 val = map(val, 0, 1023, 0, 180); // scale it to use it with the

servo (value between 0 and 180)

 myservo.write(val); // sets the servo position according

to the scaled value

 delay(15); // waits for the servo to get there

 val2 = analogRead(potpin2); // reads the value of the

potentiometer (value between 0 and 1023)

 val2 = map(val2, 0, 1023, 0, 180); // scale it to use it with the

servo (value between 0 and 180)

 myservo2.write(val2); // sets the servo position

according to the scaled value

 delay(15);

}

A.2 _1servos2potsprogram.ino
int error=0;

int angulo=0;

#include <Servo.h>

Servo myservo; // create servo object to control a servo

//Servo myservo2;

 int potpin = 0; // analog pin used to connect the potentiometer

int val; // variable to read the value from the analog pin

int potpin2 = 7; // analog pin used to connect the potentiometer

int val2; // variable to read the value from the analog pin

void setup()

{

 Serial.begin(9600);

 myservo.attach(9); // attaches the servo on pin 9 to the servo

object

 //myservo2.attach(8); // attaches the servo on pin 9 to the servo

object

}

 void loop()

{

 val = analogRead(potpin); // reads the value of the

potentiometer (value between 0 and 1023)

 val = map(val, 0, 1023, 0, 180); // scale it to use it with the

servo (value between 0 and 180)

 //myservo.write(val); // sets the servo position

according to the scaled value

 //delay(5); // waits for the servo to get there

 val2 = analogRead(potpin2); // reads the value of the

potentiometer (value between 0 and 1023)

 val2 = map(val2, 0, 1023, 0, 180); // scale it to use it with the

servo (value between 0 and 180)

 //myservo2.write(val2); // sets the servo position

according to the scaled value

 //delay(15);

 error = val2 -val;

 angulo=error;

 angulo=map(angulo,-180, 180, 0,180);

 myservo.write(angulo);

 delay(20);

 Serial.print("Val es \t");

 Serial.println(val);

 Serial.print("Val2 es \t");

 Serial.println(val2);

 Serial.print("El error: \t ");

 Serial.println(error);

 Serial.print("El angulo: \t ");

 Serial.println(angulo);

}

