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Abstract - This paper is concerned with Project – Based Learning 

regarding the nature of the application of finite difference analysis in 

studying impulse response and vibration that occur in earthquakes. 

During many natural phenomena, oscillations occur that can be 

modeled by a second order differential equation. The finite difference 

technique has been implemented to determine the response of a spring-

mass system, a mathematical model of one-degree-of-freedom frame 

structure, subjected to an impulsive force similar to one produced by an 

earthquake ground motion. Some attention has also been given when 

considering the application of various finite difference techniques; it is 

realized that the centered difference method is the best approach with 

the smallest error in analyzing the response of a vibrating system. 

Finally, a MATLAB script can be developed to generate impulsive 

response based on a finite difference numerical approach.    
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I. INTRODUCTION 

At its core, engineering has always been about the application of 

science and mathematics to innovate on century-old solutions, or 

to solve new age problems. In many cases, mathematical models 

have been constructed to describe the phenomena that is 

occurring, often resulting in complex second-order differential 

or partial differential equations.  Obtaining meaningful solutions 

to these equations in closed – form solutions, often is not 

practical, whether it be known phenomena such as the heat 

equation, the wave equation or even describing a simple 

harmonic oscillator equation analytically. With one of the more 

important goals of engineers being to make things faster, more 

efficient and more accurate, it is important to have a medium 

through which students are exposed to a problem that allows 

them to make connections and demonstrate their knowledge 

while also improving their critical thinking skills with hands-on 

experience. With Project – Based learning this need is addressed, 

where complex real world problems can be tackled by students 

with oversight but still maintain the independent learning 

students will encounter in the workplace. For the purposes of this 

paper, we undertook a Project – Based Learning assignment 

using MATLAB to study vibration, and impulses occurring in 

earthquakes, while using finite difference analysis to simplify 

and study the mathematical description of this phenomenon. 

Finite difference analysis provides an easy and effective 

alternative to analytical solutions. Having first modeled a 

situation with a governing equation and knowing all the 

variables except for the one which is being solved, the equation 

can be converted into a finite difference equation. Using simple 

equations derived from the Taylor’s series involving forward, 

backward, and centered difference analysis, the governing 

equation can be converted into one that can be solved 

numerically using a MATLAB program. The simple nature of 

this conversion is probably one of the greatest advantages of this 

method as the resulting new equation does not need to be 

reformulated despite certain changes in specification, such as 

mass. The following is a direct application of finite difference 

technique to a second order differential equation governing 

impulse forces on a 1 – D mass which can be considered 

equivalent to those observed in earthquakes. 

II. MOTIVATION OF GOVERNING EQUATION 

 

 

 

 

Figure 1 represents a 1 – D mass – spring system which consists 

of, 
𝑚 − 𝑀𝑎𝑠𝑠 (𝑘𝑔)  

𝑘 − 𝑆𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑎𝑛𝑡 / 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 (
𝑘𝑔

𝑚
)   

𝑐 − 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (
𝑁−𝑠𝑒𝑐

𝑚
) 𝑓(𝑡) −

𝐼𝑚𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑜𝑟𝑐𝑒 (𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑡𝑖𝑚𝑒) (𝑁) 

𝑥(𝑡) −
𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑡𝑖𝑚𝑒) (𝑚)  

From Newton’s 2nd Law of Motion,  

∑ 𝐹 = 𝑚𝑎;                 Eq. 1 

 

Figure 1 Mass - Spring Force Diagram 

mailto:nicholas.kumia@vaughn.edu
mailto:christopher.chariah@vaughn.edu
mailto:hossein.rahemi@vaughn.edu


2 
 

Examining the forces acting on the mass, the following can be 

observed, 

𝐹𝑠 ∶ 𝐹𝑜𝑟𝑐𝑒 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑠𝑝𝑟𝑖𝑛𝑔  

𝐹𝐷 ∶ 𝐹𝑜𝑟𝑐𝑒 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑑𝑎𝑚𝑝𝑖𝑛𝑔  

𝐹(𝑡) ∶ 𝐼𝑚𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑜𝑟𝑐𝑒  

Considering the x – direction to be positive pointing to the right, 

expansion of Equation 1 can be as follows, 

−𝐹𝑠 − 𝐹𝐷 + 𝐹(𝑡) = 𝑚𝑎 

−𝑘𝑥 − 𝑐�̇� + 𝑓(𝑡) = 𝑚�̈� 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝑓(𝑡) 

𝑑2𝑥

𝑑𝑡2 +
𝑐

𝑚

𝑑𝑥

𝑑𝑡
+

𝑘

𝑚
𝑥 =

𝑓(𝑡)

𝑚
        Eq. 2 

Equation 2 represents the governing equation that will be 

analyzed using finite difference methods to approximate the 

solution. Although, the problem is being analyzed in one 

dimension, there is still an inherent complexity regarding the 

forces acting on the mass. The main idea to be gleaned from this, 

is that earthquake ground motion produces an impulsive force on 

engineering structures similar to what we implemented in our 

analysis of mass-spring system. 

Earthquakes result when sections of the earth, that normally 

move smoothly, stick to each other and cause energy to be stored.  

When the stored energy is finally great enough to break the two 

sections of earth free, the energy is released in seismic pulses to 

the surrounding areas.  This energy can be considered 

comparable to the applied force 𝑓(𝑡) in the mass – spring system.  

The seismic pulse effects of the earthquake are eventually 

damped out due to the energy dissipation which is analogous to 

the damping force of the mass – spring system.  As a seismic 

wave propagates through the earth during an earthquake, the 

wave passes through the crust forcing it to rapidly accelerate and 

decelerate from the Primary waves, which cause vertical 

movement and Secondary waves that cause horizontal 

movement that you see in the Figure 2 [1]. The oscillations 

caused by these waves can be tracked by a similar harmonic 

oscillating system, such as the mass – spring system shown in 

Figure 3 [1], a fact backed up by the mass – springs system’s use 

as seismographs to measure the intensity of earthquakes.   

 

 

 

 

 

 

 

 

 

In order to replicate earthquake ground motion we will analyze 

the impulsive response of a one story frame structure seen in 

Figure 4, which will be subjected to very sharp changes in force 

over short periods of time.   

From the graph in Figure 4, a piecewise function can be 

constructed to represent the impulsive force present,  

  17800(0.5 −  𝑡)      𝑓𝑜𝑟   𝑡 ≤ 0.5  

   −33375(𝑡 − 0.5)   𝑓𝑜𝑟   0.5 < 𝑡 ≤ 0.7 

  −22250(1 − 𝑡)       𝑓𝑜𝑟   0.7 < 𝑡 ≤  1.0   

26700(𝑡 − 1)          𝑓𝑜𝑟   1.0 < 𝑡 ≤  1.5  

        𝑓(𝑡) =               13350(2.5 − 𝑡)      𝑓𝑜𝑟    1.5 < 𝑡 ≤ 2.5 

0        𝑓𝑜𝑟    2.5 < 𝑡 ≤ 10 

10000 ∗ (10 − 𝑡)   𝑓𝑜𝑟    10 < 𝑡 ≤ 10.5 

              10000 ∗ (10 − 𝑡)   𝑓𝑜𝑟  10.5 < 𝑡 ≤ 11 

0                                 𝑓𝑜𝑟  𝑡 > 11 

 

 

 

 

 

 

 

 

III. DERIVATION OF FINITE DIFFERENCE APPROXIMATIONS 

First Order Forward in Velocity and Backward in Response 

(FVBR) 

From Equation 2, the governing equation can be seen as, 
𝑑2𝑥

𝑑𝑡2 +
𝑐

𝑚

𝑑𝑥

𝑑𝑡
+

𝑘

𝑚
𝑥 =

𝑓(𝑡)

𝑚
  

Figure 2 Earthquake Events Diagram 

Figure 3 Impulse Graph 

Figure 3 Seismograph Mass –  
Spring system 

Figure 4 One Story Frame 
Structure 
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Decomposing Equation 2 into a series of first order derivatives, 

it can be simplified to, 
𝑑

𝑑𝑡
(

𝑑𝑥𝑖

𝑑𝑡
) +

𝑐

𝑚

𝑑𝑥𝑖

𝑑𝑡
+

𝑘

𝑚
𝑥𝑖 =

𝑓(𝑡)

𝑚
            Eq. 3 

The Forward Difference approximation of the 1st Derivative 

(derived in Appendix A) is, 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖+1)−𝑓(𝑥𝑖)

ℎ
+ 𝑂(ℎ)           Eq. 4 

Applying Equation 4 to Equation 3,  

𝑑

𝑑𝑡
(

𝑥𝑡(𝑖+1)
−𝑥𝑡(𝑖)

ℎ
) =  

𝑓(𝑡𝑖)

𝑚
−

𝑐

𝑚

𝑑𝑥𝑡(𝑖)

𝑑𝑡
−

𝑘

𝑚
𝑥𝑡(𝑖)

   Eq. 5 

Simplification of Equation 5 leads to, 

𝑑𝑥

𝑑𝑡 𝑡(𝑖+1)

= ℎ ∗ [ 
𝑓(𝑡𝑖)

𝑚
−

𝑐

𝑚

𝑑𝑥𝑡(𝑖)

𝑑𝑡
−

𝑘

𝑚
𝑥𝑡(𝑖) ] +

𝑑𝑥𝑡(𝑖)

𝑑𝑡
       Eq. 6 

The Backward Difference approximation of the 1st Derivative 

(derived in Appendix B) is, 

𝑥′(𝑡𝑖) =
𝑥(𝑡𝑖)−𝑥(𝑡𝑖−1)

ℎ
+ 𝑂(ℎ)        Eq. 7 

Applying Equation 7 to the 
𝑑𝑥

𝑑𝑡
 in Equation 6, the finite difference 

approximation is finalized at, 

𝑥𝑡(𝑖+1)
= ℎ2 ∗ [ 

𝑓(𝑡𝑖)

𝑚
−

𝑐

𝑚
𝑣𝑡(𝑖)

−
𝑘

𝑚
𝑥𝑡(𝑖) ] + ℎ ∗ 𝑣𝑡𝑖

+ 𝑥𝑡(𝑖)
   Eq. 8 

Equation 5 also becomes the function to calculate 𝑣𝑡𝑖
, 

𝑣𝑡(𝑖+1)
= ℎ ∗ [  

𝑓(𝑡𝑖)

𝑚
−

𝑐

𝑚
𝑣𝑡(𝑖)

−
𝑘

𝑚
𝑥𝑡(𝑖) ] + 𝑣𝑡(𝑖)

      Eq. 9 

Because Equation 9 is derived from the Forward Difference 

approximation for the 1st derivative, it inherently needs an initial 

condition [2] (𝑣0).  However, since Equation 8 contains two 

finite difference approximations, it needs two initial conditions.  

It turns out that one of the initial conditions overlaps because 

Equation 9 is imbedded within Equation 8. 

Centered Difference Method 

The centered difference method is very similar to the first 

method in that the derivation process is exactly the same.  

However, the two methods vary in their final formulas and their 

order of error. 

Starting from Equation 2, the governing equation is the same, 

𝑑2𝑥

𝑑𝑡2 +
𝑐

𝑚

𝑑𝑥

𝑑𝑡
+

𝑘

𝑚
𝑥 =

𝑓(𝑡)

𝑚
  

However, substitute Equation 4 with the centered difference 

formula for 1st and 2nd derivatives (derived in Appendix C), 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖+1)−𝑓(𝑥𝑖−1)

2ℎ
+ 𝑂(ℎ)         Eq. 10 

𝑓′′(𝑥𝑖) =
𝑓(𝑥𝑖+1)−2𝑓(𝑥𝑖)+𝑓(𝑥𝑖−1)

ℎ2 + 𝑂(ℎ2)  Eq. 11 

Substituting Equations 10 and 11 into Equation 2, the following 

relationship is formulated, 

𝑥𝑡(𝑖+2)
=

1

1+
𝑚

ℎ𝑐

[ 
𝑚

ℎ𝑐
(2𝑥𝑡(𝑖+1)

− 𝑥𝑡(𝑖)
) −

𝑘ℎ

𝑐
(𝑥𝑡(𝑖+1)

) +
𝑓(𝑡)ℎ

𝑐
+

𝑥𝑡(𝑖+1)
] Eq. 12 

As one can see, the final form of the centered difference method 

is completely unlike that of the forward difference method, and 

backwards difference method. The principal difference between 

the two methods is that the Forward-Backwards (FVBR) method 

allows for response and velocity to be calculated, whereas the 

centered difference approximation only evaluates for response.  

Due to this fact, it is also known that the initial conditions vary.  

For the FVBR method, an initial position and an initial velocity 

are needed.  In contrast, as seen in Equation 12, the centered 

difference method needs the first two positions, and no velocity 

condition. 

APPLICATION OF FINITE DIFFERENCE METHODS 

Based on Equations 8 and 9, a MATLAB script can be written 

as follows to calculate the response as well as the velocity of the 

system being studied using the Forward in Velocity Backwards 

in Response Method, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4 Forward in Velocity / Backward in Response Script 

Simply ask the user for the 

specifications of the system.  

Each variable is clearly 

described by its respective input 

message 

Define the start of the three 

variables that need to be 

tracked, x, v and t, response, 

velocity and time respectively 

Compute the correct forcing term which is based on time.  Each of 

the five intervals of the piecewise function is expressed as a 

condition for a conditional statement to compute a different forcing 

term based on the given impulsive force 

Calculate the next term in each of the response, velocity and time 

sequences respectively.  As one can see, the finite difference method 

is applied here 

Display the data to the user and plot time versus response.   
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The FVBR script calculates both the response and velocity of the 

column due to the earthquake.  The script is driven by the 

incrementing of ‘i’ to calculate new terms while saving the 

previous points in a matrix.  At the end, each matrix holds data 

from t = initial value to t = final value.  The finite difference 

method derived in the previous section is defined by lines 34 and 

35 of the script. 

Based Equation 12, a MATLAB script can be written as follows 

to calculate the response of the system being studied using the 

Centered Difference Method which can be seen in Figure 6. 

The Centered Difference script calculates only the response of 

the column of the one story structure during the earthquake.  The 

script is driven by the incrementing of ‘i’ to calculate new terms 

while saving the previous points in a matrix.  At the end, each 

matrix holds data from t = initial value to t = final value.  The 

finite difference method derived in the previous section is 

defined by lines 37 and 38 of the script. 

 

 

 

 

MATLAB FINITE DIFFERENCE RESULTS 

Referring back to the problem shown in the ‘Motivation of the 

Governing Equation’ section, let us apply the equations to this 

situation.  

Table 1 Initial Conditions 

Case 2 – Average Step Size Case 3 – Smallest Step Size 

  
 

The conditions in Table 1 describe a column with a stiffness 

constant of 12,000 kg/m that is initially displaced 0 m and at rest.  

A sudden earthquake occurs with the impulse force shown in 

Figure 4.  The column is studied from the time of impact to 20 

seconds later. 

Mixed (Forward in Velocity – Backwards in Response) Finite 

Difference 

Table 2 Response values for Specific Time Mixed Difference 

Time (s) 

Response 

from 0.001 

time 

interval (m) 

Response 

from 0.0001 

time 

interval (m) 

Velocity 

from 0.001 

time 

interval (m) 

Velocity 

from 0.0001 

time 

interval (m) 

     

 

 

 

 

 

 

 

 

 

 

 

Calculate the next term in each of the response and time 

sequences respectively.  As one can see, the finite 

difference method is applied here 

Figure 5 Centered Difference Script 

Simply ask the user for 

the specifications of the 

system.  Same as 

Previous Script 

Define the start of the two 

variables that need to be 

tracked, x and t, response 

and time respectively 

(Note: there are two initial 

positions)  

Compute the correct forcing term which is based on 

time.  Same as Previous Script 

Figure 6 FVBR Method 
(0.001 time step) 

Figure 9 FVBR Method (0.0001 
time step) 

Figure 10 FVBR Method 2 
(0.001 time step) 

Figure 11 FVBR Method 2 
(0.0001 time step) 

Display the data to the user and plot time versus response.   
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Centered Finite Difference 

 Table 3 Response values for Specific Time Centered Difference 

Time (s) 

Response 

from 0.01 

time interval 

(m) 

Response 

from 0.001 

time interval 

(m) 

Response 

from 0.0001 

time interval 

(m) 

    
 

 

 

 

 

 

 

 

 

 

 

 

This data reveals that the column would need to be able to sustain 

a response range of about 18 m (given no energy absorption into 

the column) in order to withstand an earthquake this size.  The 

graphs in Figures 7, 8, 11 and 12 display the response needed by 

the column in the first 20 seconds of the earthquake using two 

difference finite difference methods with two step sizes.  Figures 

9, 10, 13 and 14 examine the response needed in the first 2.5 

seconds of the earthquake. All of the graphs are approximately 

the same which shows the overall accuracy of the finite 

difference methods; however, from the data in Tables 2 and 3, it 

is evident that there is some error.  Figure 15 shows a typical 

acceleration vs. time graph for an earthquake4. Acceleration is 

simply the second derivative of response.  Since the graph of 

acceleration can be represented as sine’s and cosine’s, the form 

of acceleration and response should follow suit. The graph in 

Figure 15 has a longer earthquake impulse force; nevertheless, 

the response is similar.  Using the 1940 El Centro Earthquake 

Graph [4] as an experimental reference, the finite difference 

seismic graphs and the actual seismic graphs can be related 

proving the data from the finite difference methods as accurate 

representations of the proposed situation. 

 

 

 

 

 

ERROR ANALYSIS 

From the derivation of each finite difference method, it was 

shown that each approximation contains their share of error.  

Both the Forward and Backwards Difference Methods had an 

error in the order of h while the Centered Difference has an error 

in the order of h2.  The response studied in this application 

contains very sensitive data which changes in the hundredths 

place.  As a result, a small step size had to be chosen in order to 

accurately represent the response of the column to the 

earthquake.  Looking at the difference between the response 

from a 0.01 time step, a 0.001 time step and a 0.0001 time step, 

it can be seen that the data eventually converged to the actual 

value as a smaller time step was considered. 

There is no analytical data to compare to the finite difference 

data.  Nevertheless, knowing that the data should represent the 

actual analytical data, an approximate error can be calculated to 

examine the error between the two finite difference methods. 

Approximate error can be calculated as follows, 

% 𝐸𝑟𝑟𝑜𝑟 = | 
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒1−𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒2

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒1
| ∗ 100%        

Eq. 13 

Applying this equation to the 0.0001 time step data for response 

for both methods provides the following results, 

    Table 4 Error Analysis between Step Sizes 

Time (s) 

1 - Centered 

Method 

Response from 

0.001 time 

interval (m) 

2 - Centered 

Method 

Response from 

0.0001 time 

interval (m) 

Approximate 

Error (%) 

between 

1 and 2 

   

00.000 

-0.787 

0.317 

1.516 

-1.797 

-0.008 

-1.046 

3.041 

-0.077 

Figure 16 Typical Earthquake response graph 

Figure 12 Centered Difference 
0.001 time step 

Figure 13 Centered Difference 
0.0001 time step 

Figure 14 Centered Difference 2 
(0.001 time step) 

Figure 15 Centered Difference 2 
(0.0001 time step) 
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Table 5 Error Analysis between Finite Difference Methods 

Time (s) 

FVBR Method 

Response from 

0.001 time interval 
(m) 

Centered Method 

Response from 

0.0001 time 
interval (m) 

Approximate 

Error (%) 

   

0.000 

-0.023 

-0.003 

0.101 

-0.283 

-0.057 

-1.469 

1.339 

-0.233 

Note: The 0.0001 time step data was used in error calculated 

because it most accurately represents the true data. 

 

Both methods present very accurate data with an error 

percentage of under 2% for the smallest time step.  Table 4 shows 

that the 0.01 time step provided a very large error of 104.3% 

which is beyond unacceptable, especially for an application such 

as earthquake.  Because the impulsive force is so short and the 

oscillations are so close, a very small time step needs to be 

chosen to account for the high frequency.  There is a tradeoff 

between accuracy and efficiency when considering step sizes.  

For example, the 0.01 step size created 2000 data points for 20 

seconds, whereas the 0.0001 step size created 200,000 data 

points.  For a more complex application, considering all three 

dimensions of motions, such calculations would become 

memory consuming and inefficient for a computer; thus, the 

need to choose a larger time increment.  Table 5 demonstrates a 

small error proving the accuracy of both methods. 

REAL WORLD APPLICATION: GROUND MOTION AND 

BUILDING FREQUENCIES  

When studying the effects the produced impulsive forces have 

on engineering structures, we see certain characteristics emerge 

that have a large influence on building response. These 

characteristics include duration, amplitude (of displacement, 

velocity and acceleration) and frequency of ground motion.    

As it can be imagined, the 

motions of the building are 

very complex, almost as 

complicated as the ground 

motion itself. The primary 

issue engineers worry about 

however, is the building's 

tendency to vibrate around 

one particular frequency, 

known as its natural or fundamental frequency. Generally 

speaking, the frequency buildings vibrate at have a lot to do with 

their height. The shorter a building is, the higher its natural 

frequency. The taller the building is, the lower its natural 

frequency which can be seen in Figure 16. 

This means that a short building with a high natural frequency 

also has short natural period. A very tall building with a low 

frequency has a long period. However, in reality, these numbers 

are quite short where a typical one story building has a period of 

0.1sec. Although the natural period of buildings tend not to 

change, other factors such as loose ground soil, and cracking 

structures can have the effect of amplifying waves. Now you 

may be inclined to think that these waves alone result in large 

movements that cause huge amounts of damage. This is only 

partially true. In reality, the movement of the ground and 

buildings during an earthquake is not much regardless of 

earthquake size. So it is not the distance that the building moves 

that causes damage, it is the sudden force that causes the building 

to shift quickly that causes the damage. In other words, the 

damaging force is acceleration. During an earthquake, the speed 

at which both the ground and building are moving will reach 

some maximum. The more quickly they reach this maximum, the 

greater their acceleration, the greater the damage.   

 

 

 

 

 

Dynamically this is related to Newton’s second law and 

D'Alembert's Principle, which states that a mass acted upon by 

an acceleration tends to oppose that acceleration in an opposite 

direction and proportionally to the magnitude of the acceleration 

as shown in Figure 17. This in layman’s terms means the larger 

the mass and/or the greater the acceleration, the larger the 

resulting force. When this force F is imposed upon the building's 

structural elements, beams, columns, load-bearing walls, floors, 

as well as the connecting elements that tie these various 

structural elements together, if they are large enough, cause the 

building's structural elements to suffer damage of various kinds.  

 

 

 

 

 

 

In Figure 18 we see an example of the damage that can result 

from the acceleration caused by the earthquake ground motion. 

Assuming the free standing block is simply sitting on the ground 

without any attachment to it, the block will move freely in a 

direction opposite to the ground motion, with a force 

Figure 18 Dynamic Analysis 

Figure 19 Support Types Figure 17 Building Comparison 
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proportional to the mass and acceleration of the block [5]. If the 

same block, however, is solidly grounded and no longer able to 

move freely, it must in some way absorb the inertial force 

internally.  In Figure 18, this internal uptake of force is shown to 

result in cracking near the base of the block. As mentioned 

earlier this has a tendency to amplify waves which increases the 

severity of the damage, especially when the natural frequency of 

the building is equivalent to that of the earthquake, which causes 

resonance to occur along with a continuous absorption of energy 

until the structure collapses.  The reason resonance is so 

destructive is the transfer of large amounts of energy causes large 

increases in the amplitude of a given wave, resulting in a 

structure that is unable to dampen the oscillations effectively and 

thus vibrating until the energy in the system forces a collapse. 

 

The potential damaging effects of resonance can be seen in the 

oscillations of the famous Tacoma Bridge collapse. Opened on 

July 4, 1940 the bridge during its four months of active life was 

observed to have many transverse modes of vibration. A 

maximum crest to trough amplitude was observed to be about 

5ft; the frequency of vibration at that time was 12 vib/min. On 

the morning of November 7 the wind velocity was 40 to 45 mph, 

Traffic was shut down and amplitude of about 3ft was observed. 

At about 10:00 a.m., the main front began to vibrate torsionally 

in 2 segments with a frequency 14 vib/min.  The amplitude of 

the torsional vibration quickly built up to about 35 vib/min in 

each direction from the horizontal peaking, until just after 11 am 

when the left side of the bridge was 28ft higher than the right. At 

this point the bridge twisted and broke.  In this situation, the 

applied force, caused by the wind, continually added energy to 

the system allowing for zero damping until the structure failed.  

The net outcome from the bridge demonstrates the destruction 

oscillations can cause [6]. 

 

When studying structural natural frequencies, we see that it is 

important that we have a good idea of the regional natural 

frequencies of earthquakes.  As evident from the Tacoma bridge 

collapse, knowing the potential oscillation of any natural 

phenomena, and avoiding potential resonance can not only 

prevent disasters but save lives. Mathematically, these 

frequencies can be modeled as eigenvectors and eigenvalues 

from second order differential equations using finite difference 

technique. Although the application of this is beyond the scope 

of this paper this is just one more area where finite difference 

technique can be used to glean useful information applicable to 

earthquake motions effects on buildings.  

 

 

 

 

 

Figure 20 Tacoma Bridge Collapse [7] 

CONCLUSION 

Knowing more about the dangers of earthquakes and the 

potential hazards that they create for us we now can see why it 

is important for us to have useful methods for analysis of 

engineering structures. With the use of finite difference methods 

for analysis we are able to replicate the impulsive forces 

produced by earthquake ground motion and as a result generate 

useful data for how they act on engineering structures using a 

simple mass-spring system. Although potentially far more 

complex than our analysis seen here for 1D motion, this 

technique has useful applications in 3D motion as well as in 

eigenvalues and eigenvectors modeling the frequencies during 

which destructive resonance can occur. Although those 

applications are beyond the scope of this paper, it can be seen 

that finite difference has many useful real world applications 

allowing otherwise numerically challenging models to be 

accurately approximated using simple forward, backward and 

centered differences.  The MATLAB code solidifies this theory 

by allowing for fast, reliable and continual computations. 
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