
13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”
July 29-31, 2015, Santo Domingo, Dominican Republic ISBN: 13 978-0-9822896-8-6 ISSN: 2414-6668
DOI: http://dx.doi.org/10.18687/LACCEI2015.1.1.264

 Relevant Aspects in Model-Driven Development for
Mobile Applications

Estevan R Gómez T.1
1 Universidad de las Fuerzas Armadas “ESPE”, Ecuador, ergomez@espe.edu.ec

Abstract– When we build software must consider that this is
not an easy task, especially if its complexity is high. To succeed in
developing software should have a high commitment of the
development team, expensive resources, highly trained specialists
and processes and increasingly formal methods. The models at
different levels of abstraction arise in order to expedite the process
of building software, which is focused movement on the use of
models at different levels of abstraction.

There are some important proposals in this regard those as
Model Driven Architecture and Model Driven Software
Development .This paper reviews the literature about these two
proposals. Describe the fundamental principles aimed at shaping
the theoretical basis of the two proposals and the main tools that
implement model-driven development for mobile application
development work. Describe the fundamental principles aimed at
shaping the theoretical basis of the two proposals and the main
tools that implement model-driven development for mobile
application development work. Also analyzed the importance of
Metamodels and possible transformations to generate auto code.

Keywords— Model Driven Development, Model Driven
Architecture, Mobile Applications, Context aware.

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2015.1.1.264
 ISBN: 13 978-0-9822896-8-6
ISSN: 2414-6668

 1

 Relevant Aspects in model-driven development for

mobile applications

 Estevan R Gómez T.

Universidad de las Fuerzas Armadas “ESPE”, Ecuador

E-mail: ergomez@espe.edu.ec

Abstract–

When we build software must consider that this is not an easy task,

especially if its complexity is high. To succeed in developing

software should have a high commitment of the development team,

expensive resources, highly trained specialists and processes and

increasingly formal methods. The models at different levels of

abstraction arise in order to expedite the process of building

software, which is focused movement on the use of models at

different levels of abstraction.

There are some important proposals in this regard those as Model

Driven Architecture and Model Driven Software Development .This

paper reviews the literature about these two proposals. Describe the

fundamental principles aimed at shaping the theoretical basis of

the two proposals and the main tools that implement model-driven

development for mobile application development work. Describe

the fundamental principles aimed at shaping the theoretical basis

of the two proposals and the main tools that implement model-

driven development for mobile application development work. Also

analyzed the importance of Metamodels and possible

transformations to generate auto code.

.

Keywords-- Model Driven Development, Model Driven

Architecture, Mobile Applications, Context aware.

I. INTRODUCTION

It is critical to consider how the constant progress of

technological developments have changed the traditional way

of performing certain daily habits. One example is the use of

the phone; far has left the notion of simply use your phone to

make calls and today has become a device with computing

power, considered an indispensable means of contact,

information and entertainment

There is great (ever growing) number of applications for

mobile devices that give them endless useful and convenient

services to users, allowing them access to any content

anywhere and maintaining communication with others in the

most varied forms, breaking geographical barriers and time.

Following this new concept in mobile services, arises the well

known mobile computing, ubiquitous features -always is

available at any moment, custom-each user consumes and

suitable information according to their interests, geolocation -

capable of the location of users to provide products and

services acording-, context sensitive, among others. In this

sense, any information that characterizes the situation in which

the user interacts with an application, it is called context.

When we refer to context-sensitive mobile computing refers to

applications that consider the contextual information from the

environment where the user is located and act accordingly,

providing relevant and adequate information to the context

where the user is immersed done. The geographical position is

a context information, perhaps the most important in this type

of applications. This last feature is in full expansion giving rise

to positioning based services (location-based services, LBS).

Positioning based services refer to applications using the

geographical position of a mobile device to provide services

based on such information. Such services include assistance in

navigation, identification in case of emergencies or disasters,

social networks to find friends, location of points of interest in

maps and more.

To successfully use the LBS services requires proper

positioning technology, geographic information system to

identify areas and fundamentally interoperable mobile devices

and adequate network infrastructure that enables connection

wherever the user is.

Driven development model aims to free the engineer of the

technological aspects (programming) to center in the

engineering (architecture, modeling and design). In a similar

manner as COBOL freed to programmers of the minutiae of

Hardware [1]

The current trend is that systems are becoming more complex

and heterogeneous, further each day the number of users of

mobile devices increases, which demand high efficiency in

response times, and applications that enable them to carry out

their activities through the re-use of resources, robust and

adaptive systems.

Portable devices increasingly used in a wide range of mobile

applications orientation. Typical examples are the guides of

urban areas, museum guides and aids exhibitions. The

application refers to the provision of specific services of the

context in which the context is typically identified by

combining data on the location, time, user profile, the device

profile, network conditions and usage scenario [74]

 Reference [74], defined context as any information

characterizing a situation concerning the interaction between

users, applications and the surrounding environment.

Nowadays, the advance of communications networks globally

contribute to the way people communicate, do business and

innovation of learning methods, thus it is transforming the

world and getting closer to the people, through the innovation

in global communications; this makes changes occur in all

areas of human activity, eg competitiveness, product exchange,

trade agreements between countries, employment and quality

of life.

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”
July 29-31, 2015, Santo Domingo, Dominican Republic ISBN: 13 978-0-9822896-8-6 ISSN: 2414-6668
DOI: http://dx.doi.org/10.18687/LACCEI2015.1.1.264

 2

The use of mobile applications contribute to removing barriers

of approaching knowledge and technological advances make

an easy way to reach a wider audience; For this reason, the

Internet has penetrated all spheres of society, revolutionizing

the way the information is received and involving more people

in the use of them; as a result there is more business

opportunity.

The desire to have access to information from anywhere,

anytime, and through a mobile device, it is a reality. The

global Internet economy, built around a desktop, now expands

to a galaxy of smaller, simpler devices: cell phones,

smartphones, PDAs, handheld devices, information systems

and other devices in vehicles access at home.

These factors make it imperative that a development model for

mobile applications is coherent, consistent, and versatile.

The first attempts to use the models in the development

process began with diagrams proposed in structured analysis

and design [2] This practice evolved with the emergence of

Object-oriented analysis and design and the subsequent

introduction of the Unified Modeling Language (UML) [19],

[20]. Though, the first practices modeling were guided

primarily to document the system itself. The notion of software

development driven models, is a true milestone in the history

of software development, as it aims to incorporate the models

as an essential part of the entire development process.

Leading promoters of this idea are the Object Management

Group (OMG) [8] and a global movement of theoretical and

practical researchers grouped into what is called "Software

Development Guided by Models" MDSD also known as

"Model-Driven Development" MDD [8], [9].The fundamental

principle of these two line of thought is to use models to

develop software, and its main purpose is to build practical

tools and concepts leading to the automation of software

development.

For implementing the principle of abstraction levels, MDA has

identified three models to describe the system [15]:

Independent Computer Model CIM, Platform Independent

Model PIM and Platform Specific Model PSM. Level of

abstraction is a CIM and it represents the business model from

the point of view of the user. PIM is a conceptual model that

represents the point of view of the user interpreted by the

software engineer. PSM is a model of the writing system in

order to move to a specific technology platform. By their hand

OMG , has developed a set of standards, evolving, called

MDA [21] " Model Driven Architecture" The fundamental

principles of MDA for building software are: use of models

throughout the development process definition a model for

each level of abstraction and model transformations. These

principles help automate the software development process

holistically, from its initial stages to obtain executable code.

Often traditional computing applications are static and

inflexible.

They are designed to run on a specific device, providing a set

of predetermined user and have integrated functions contextual

dependencies on them. Such application models are not

adequate to operate in a ubiquitous computing environment,

which is characterized by its rich context, mobility of users

and devices (PDAs, smartphones, ...) and the appearance and

disappearance of resources over time

Today, where ubiquitous (pervasive) computing, based on

sensitivity to context takes an important place in everyday life,

the development of context-aware applications that provide

appropriate services for users is necessary, considering its

multiple contexts

II. DIFFERENCE BETWEEN MDA AND MDSD

A. General characteristics

Although MDA and MDSD are different communities share

the same purpose: the use of models for developing software.

While MSDS deals with models using software development,

MDA focuses on defining standards for software development

models intensive use. You could say that MDA is the

standardization of MDSD

The difference between MDA and MDSD has been shown by

several authors and researchers. According to [14] suggests

that MDA can be seen as a set of standards whose practical

application is the development of model-driven software, and

MDSD main activity is the construction of tools that favor the

development by using models. According to [64] states that

methods and tools that support both MDA as MDSD should

specify automatic transformations between different models,

differentiating the two terms

Referring to [27], suggests that model driven development of

software, has to do with the models used by architects and

programmers to feed code generators are techniques that are

also under the framework of MDSD, but can´t be properly

called MDA.

In conclusion, although MDA and MDSD are different

approaches, both privilege the use of the model as

development language'. MDSD has existed much earlier than

MDA and development practice as research to generate

methods, techniques, tools and theoretical constructs based on

models. MDA for its part has made a great effort to

standardize the wide but patchy activity driven software

development models MDSD

B. GENERAL THEORETICAL FOUNDATIONS

MDA and MDSD are complementary approaches using

the model as a guideline for development. MDA to be a set of

standards promoted by OMG, is characterized by strong

theoretical bases, while MDSD for being an initiative in the

hands of a large research community, focuses primarily on the

development of tools that facilitate the automation of

development. At the same time, reducing development budgets

and a difficult economic environment necessary to make

highly efficient use of resources for development. With

designs increasingly complex integrated products and reduced

 3

product life cycles, efficient development has become

essential. The emergence of model-driven development

(MDD) has made it possible to accelerate the development

process. With the model-driven development (MDD) software

engineers can understand and analyze more clearly the needs,

define design specifications, test case generation system and

automatic code generation

C. MDA IN THE CONTEXT OF STANDARDS OMG

In this environment, platform independent models that

include OMG modeling standards can be developed using

open or proprietary platforms such as CORBA, Java, .NET,

XMI / XML and web-based platforms (see Fig 1).

Fig. 1 Model Driven Architecture(OMG).

However, the dominant trend for dependent platform

model is the use of java, because the resources and facilities of

this platform. Additionally, as new technologies emerge, MDA

quickly implements the relevant specifications, so as to

facilitate the integration process. It is concluded that MDA is

more than a middleware provides a structured and

comprehensive solution for interoperability and portability of

applications in the future [29], [30].

Standards that form the core of MDA, the Common

Warehouse Model CWM requires special attention because it

provides guidelines for data management and integration, as

shown in the next section.

III. COMMON WAREHOUSING MODEL CWM

It is an OMG standard for data warehousing, defining the

specification for metadata modeling, non-relational,

multidimensional, relational and other objects of the data

warehouse environment. It covers the entire lifecycle of

design, construction and management of applications and

management support life cycle [13].

CWM specifies the interfaces that enable metadata

exchange of data warehousing and business intelligence from

data warehousing appliances, in heterogeneous distributed

environments, such as tools, platforms and repositories [11],

[12], [13].

Fig. 2 Model Driven Architecture (OMG).

CWM is based on three standards that forms the core of

the architecture of the OMG metadata repository [14].

Unified Modeling Language (UML). Primarily graphical

language for defining and representing models and meta-

models of the system design models and information models.

• Meta-Object Facility (MOF). It is a standard that defines

metadata models and models of models. Provides tools with

programmable interfaces for storing and accessing metadata in

a repository.

• XML Metadata Interchange (XMI). Standard for

exchanging metadata submitted as files in XML format.

A CWM specification includes basic components and a

set of metamodels. The basic components of CWM are shown

in Figure 2 and are as follows: CWM metamodel, metadata

interchange format for shared warehousing (CWM DTD)

interchange format for the metamodel (CWM XML) and API

access to metadata shared warehousing (CWM IDL) [13]

IV.META MODELS

The metamodel is the architecture of the conceptual

information that classifies information we can use to build

solutions, understanding problem domains, and create

practices that ensure we build the system we build.

The definition of a "model solution" is actually a symptom

of why modeling approaches have not reached the level of care

they deserve.

The way to model the problem may be related to how the

model of the functional specification and yet not related to

how to build the solution. The modeling is good, but too much

of it can be difficult to get everyone involved.

That's why "focus on the metamodel with which it will

build the solution." This is the greatest ROI. You can use it to

create a model solution, but it may be too much work. What is

 4

it trying to carve out a pragmatic path to successful model

driven engineering, without eliminating the modeling.1

Fig. 3 Basic Steps

Basically, what is proposed is that if a solution metamodel

that includes elements of "application" (containing the solution

behavior in relation to the metamodel) essentially has

"scrambled" created the model solution (for free). The

application element must not contain any invocation or

platform specific library. This is the key point you have to

understand, if you create a metamodel without implementation

1 http://www.ebpml.org/blog/130.htm

elements and try to save the metamodel own behavior is most

likely not going to work well.

Then and only then, you should begin to understand how

(and) can model the problem domain and possibly tying them

with the solution model. Successful model-driven engineering

(steps 1 to 7) approach is then proposed:

A. ISSUES IN THE TRANSFORMATION IN THE

APPROACHES FOCUSED ON MODELS

The transformation of models allows developers to build

models with the problem representation and transform on up to

a computer system that works. This promise made in the most

recent methodological approaches greatly enhances the

possibilities of reusing elements of software development,

such as objects, components, patterns and frameworks [44] for

almost automatic generation of software applications. A

typical transformation strategies is based on building a system

based on a metamodel of origin that apply transformation rules

defined model, and transformed into a model that is based on a

target metamodel [18]

V. MODEL DRIVEN DEVELOPMENT AND ITS

APPLICATION TO MOBILE APPLICATION

DEVELOPMENT

The software for Android is rapidly gaining market share

with their applications for a variety of devices such as

smarthphones, tablets, televisions and entertainment systems.

[1] The variety of market segments, an increase in the number

of new devices and demand for different users are forcing

device manufacturers and application providers to introduce

innovative high quality products in shorter timeframes.

PC WORLD says "Starting in May, a new chip install this

platform will allow more types of personal devices2

Competition from Android continues to expand. Far from

settling for the market of smartphones, starting next May, an

embedded within other personal devices, chip enable install

the operating system Google. These devices find from media

players to MID (Mobile Internet Devices or internet access

devices) through drivers for leisure or medical monitoring

tools.

This is a chip developed by the company that makes

installing Embedded Alley Android based Au1250 chip,

developed by RMI systems. Specifically managed to carry the

current mode of implementation of Java engine that

incorporates Android (instead of having the JME standard has

its own virtual machine, called Dalvik) to MIPS instructions,

so that they are compatible with the drivers, for example, for

Nintendo Wii, etc."

2 http://www.pcworld.com.mx/Articulos/3984.htm

 5

VI PROCESS FOR GENERATING APPLICATIONS ANDROID

The process should allow Android applications generate

from NDT methodology. NDT define transformations that tell

you how to get every model from requirements definition, ie in

the first place the CIM model specification defines the

requirements, then the Platform Independent Model (PIM) is

designed. NDT models are defined with UML Profiles in EA

modeling tool allowing the development stages including the

requirements model, content model, navigation model and

process model.

Once defined the PIM model transformation will take

place towards the PSM model, and then a model

transformation is performed text.

De facto standard language model transformations text for

design is called MOF Model to Text Transformation Language

(mof2text). Some advantages of mof2text language is that not

only enables the generation of code for many different

platforms based on the same model, but also allows the

automatic generation of any textual representation of the

model.
MD² = Model-driven Mobile Development

The development of the framework MD² consisted

basically three steps. First overall architecture has to be

specified.

Based on the architecture had to be written language. The

language offers, together with a grammar that modelers must

meet the metamodel application models that can be modeled

with MD². This metamodel is required for the third step, which

is the development of generators.

To develop generators, was chosen based on the prototype

approach. This means that we first develop prototype

applications directly to Android and iOS. These prototypes

must be representative and comply with the overall

architecture. Later these prototypes will be used to develop

generators. Therefore, we first analyzed the prototypes of

interdependent parts of a given model and will always be the

same. We move these parts to libraries. The other parts build

the basis for the development of the generators. We take part

after another and transform them into buildable code by

identifying parts depending on the model and allow them

SHALL be generated based on the input model.3

VII DEVELOPMENT TOOLS

Tools that can be used are Eclipse to develop Android

applications, and Xcode 4 for iOS Apps, you can also use the

Framework of NDT

3 http://wwu-pi.github.io/md2-web/res/MD2-Documentation.pdf
4 https://developer.apple.com/xcode/

The advantages of Xtend 5 are better integration with

Xtext 6 framework that is more flexible because the templates

and behavior are handled in the methods and Xtend uses a

Java like language that offers many features to facilitate

construction of the generator. Disadvantages are no support for

handling generated code using a general purpose language that

leads to a frame not standardized.

The decision to be taken is the tool to develop generators.

They have two options. Conveniently we could use Xtend or

Acceleo7.

The benefits of Acceleo on the other hand are a good

integration into Eclipse and support development functionality

such as debugging, tracking and tracing, support for protected

areas that allow easy manipulation of the generated code,

construction of the native generator and MOF model applies to

standard text transformation as specified by the OMG. Acceleo

disadvantages are that it is static and which is based on a

template and is difficult to integrate into a multi-environment

model.

VIII A METHODOLOGICAL PROPOSAL NDT

It is based on a set of metamodels, which are transparent

to the development group, which supports the development

process.

Take care of requirements traceability from capture to

analysis, providing a systematic development process based on

formal transformations described with QVT leading to

implementation.

Working with UML, is a proposal that can be easily

incorporated into other methodological environments such as

Metric.

NDT has had and is having a great practical applicability

in companies and real projects.

In recent years, the NDT methodology has evolved to

permit their use in practical environments, being now one of

the best methodology to address the development of any

software project proposals, particularly software projects

oriented to WEB.8

A. LIFE CYCLE OF NDT

Android Generate code to benefit from the proposed

methodology NDT, with NDT-Tool Suite 9 (Currently

Enterprise Architect) help improve productivity and time to

market and reducing development costs. NDT provide a very

comfortable environment, thereby obtaining a unique

relationship model-code NDT-Android. Using the

methodology connect the requirements, design and code also

5 http://eclipse.org/xtend/
6 https://eclipse.org/Xtext/
7 https://eclipse.org/acceleo/
8 http://www.iwt2.org/web/opencms/IWT2/ndt/?locale=es
9 http://www.sparxsystems.com/products/ea/12/index.html

 6

thanks NDT-Suite also can automatically generate

documentation and testing.

Fig. 4 NDT LIFECYCLE 10

This initiative opens a new line of research in the IWT2

group (Engineering and Testing Web and Early) which is

aligned with current trends in international research

framework. NDT is today a development methodology

internationally recognized and also very applied in the

business world, as has been assumed by different companies.

B. Details of NDT and Android.

NDT is a proposal supported on the paradigm of model-

driven engineering11 (MDE) and provides a useful and simple

environment that is based on a set of metamodels, which are

transparent to the development group, which supports the

process

C. Methodology NDT

The NDT process focuses on a detailed engineering phase

requirements guided by objectives, which includes both

capture, as the definition and verification requirements [8].

The process starts by defining the objectives and based on

these, a process that can capture and define the different

system requirements described.

These are classified and treated depending on the type to

which they belong.

D. Requirements Division with NDT.

Storage requirements, functional actors, and non-

functional interaction. Once validated these requirements, the

NDT process aims to generate three models: the conceptual

model, represented by a class diagram the static structure of

the system; navigation model that represented by a set of class

diagrams how you can navigate the system; and abstract

interface model, which through a series of assessable

prototypes allow to show how it will interact with the system.

10 http://www.iwt2.org/web/opencms/IWT2/ndt/?locale=en
11 http://www.sparxsystems.com/bin/MDA%20Tool.pdf

The highlight of the process proposed by NDT feature is

that the transition from requirements specification to these

models is done systematically and independently.

It is a systematic way because NDT defined algorithms

that tell how to get each model from requirements definition.

And it is independent because, although there are relationships

among model, a fact that is unavoidable since all refer to the

same system, it is not necessary to achieve the conceptual

model to get the navigation model or abstract interface. Three

processes from the requirements that allow achieving these

three models are defined. These models are achieved in a

systematic way are called basic models. The highlight of the

process proposed by NDT feature is that the transition from

requirements specification to these models is done

systematically and independently.

It is a systematic way because NDT defined algorithms

that tell how to get each model from requirements definition.

And it is independent because, although there are relationships

among model, a fact that is unavoidable since all refer to the

same system, it is not necessary to achieve the conceptual

model to get the navigation model or abstract interface. Three

processes from the requirements that allow achieving these

three models are defined. These models are achieved in a

systematic way are called basic models. Thus the conceptual

basic model, basic navigation model and the basic model will

abstract interface. These basic models should be studied by the

group of analysts and may be changed if deemed appropriate.

However, a change in any of these models can be the

source of an error or inconsistency committed during the

requirements engineering can generate changes in other

models. Therefore, after the generation of the basic models,

NDT offers a guide with all the changes that can be made and

to what extent they affect other models of the system or the

definition of requirements.

E. Influence of Android

The power of the Android application framework that lies

in the way of translating the Web on mobile applications [2].

This does not mean that the platform provided a powerful

browser, which is limited to JavaScript and server-side

resources, but is the basis of their performance and user

interaction with the mobile device are focused on navigation

models. How to navigate a mobile user in the platform is

critical to your business success. The platforms that reproduce

the desktop experience on a mobile device are accepted by the

users. To facilitate code reuse and streamline the development

process, Android applications are based on components.

The components can be of 4 types:

Activities. They are visual interfaces expecting some user

action. The visual content of each activity is provided by a

series of objects derived from the View class. Android

provides many of these predesigned as buttons, switches,

menus objects.

 7

Services. Services do not have GUI. An example would

be playing a song. For a rendering application we could have

several activities to show playlists or player with buttons, but

the user will expect the song to keep still ringing when exiting

the application (end activity), so that this application must

control a service so the music is played.

Fig. 5
Event Receivers. These components are simply listening

to certain events occur (low battery, change the language of

the device, downloading a new image ...)

Content providers. Allows an application to put certain

data available to other applications.

In addition, all Android applications must have a

AndroidManifest.xmldonde file all application components as

well as the permissions required, or librearías resources and

uses are defined.

NDT define transformations on how to:

Get every model from requirements definition, ie in the

first place the CIM 12model specification requirements, then

the Platform Independent Model (PIM) is designed.

NDT models are defined with UML Profiles in EA

modeling tool allowing the development stages including the

requirements model, content model, navigation model and

model and processes. Once defined the PIM model

transformation will take place towards the PSM model, and

then a model transformation is performed text.

E. Conclusions

1) It will be necessary to choose the tool to achieve

efficient development and allows the use of Paradigm Model

Driven Development.

2) To create Android applications will be essential to

work with the definition of: Activities, Services and Event

Receivers

3) To develop a new project is necessary to define a team

which will work in parallel on Android Apps, like iOs.

12 http://www.sparxsystems.com/bin/MDA%20Tool.pdf

4) Although the models centered approaches are still

maturing, organizations are beginning to reap real benefits and

manufacturers are showing their interest in this area, so that the

tools are getting better. This situation has led to models

centered approaches are being used on several fronts

5) NDT emerges as valid to consider for automating

transformations alternative because it has a full suite that can

be used in future research

REFERENCES

[1] FRANKEL, David. Model Driven Architecture -Applying MDA to

Enterprise Computing. USA:Wiley Publishing, Inc. 2003.

[2] LAUDON, Kennet and LAUDON, Jane. Sistemas de información

Gerencial: Administración de la Empresa Digital. Pearson Ed. 2008.

[3] Beery D. Holstein, “Speed delivery of Android devices and applications

with Model-Driven development,” Senior Manager, Rhapsody Product

Development, IBM, 06-Jun-2011

[4] Deepak. ALUR, John. CRUPI, and Dan. MALKS, Core J2EE Patterns:

Best Practices and Design Strategies, Sun Microsystems Press, 2001.

[5] Wolfgang. EMMERICH, Mikio. AOYAMA, J. SVENTEK. The impact

of research on middleware technology. ACM SIGSOFT Software

Engineering Notes, Vol. 32, No. 1, 2007.

[6] ROSS, Jeanne; WEILL, Peter; ROBERTSON, David. Enterprise

architecture as strategy: creating a foundation for business execution.

Harvard Business Scholl Press, 2010.

[7] MENTZAS, Gregoris y FRIESEN, Andreas. Semantic Enterprise

Application Integration for business processes. Service-Oriented

Frameworks. USA: Business Sdence Reference IGI Global. 2010

[8] OMG Object Management Group. Model-Driven Architecture Home

Page, 2011 , http://www.omg.org/mda/index.htm

[9] POOLE, John. Model-Driven Architecture: Vision, Standards and

Emerging Technologies, 2001 ,http://www.cwmforum.org/Model-

Driven+Architecture.pdf

[10] MILLER, Frederic; VANDOME, Agnes. Common Warehouse

Metamodel CWM. VDM Verlag, Alphascript Publishing, 2010.

[11] CWMFORUM. What is the Common Warehouse Metamodel CWM,

2011, http://www. cwmforum.org/about.htm

[12] KIMBALL, Ralph y ROSS, Margy. Model-Driven Data Warehousing.

New York: John Wiley & Sons Inc. 2011.

[13] BARRY, Douglas K. Common Warehouse Metamodel CWM, 2011,.

http://www.service-architecture.com/web-services/articles/common

warehouse meta-model cwm.html

[14] POOLE, John; CHANG, Dan; TOLBERT, Douglas y MELLOR, David.

Common Warehouse Metamodel Developer's Guide. New York: John

Wiley & Sons Inc. 2008.

[15] AKHTER, N. y TARIQ, N. Comparison of Model Driven Architecture

(MDA) based tools. Estocolmo: Institute of Technology-Karolinska

University Hospital, 2005. [Links]

[16] ANDROMDA. 10 steps to write a cartridge]. 2006

http://andromda.org/index.php?option=com_content&view=category&lay

out=blog&id=35&Itemid=77[consulta: 06-07-2010] [Links].

[17] BALMELLI, L. et al. Model-driven system development. IBM System

Journal, 2006, vol. 45, núm. 3, pp. 569-585. [Links]

[18] BÉZIVIN, J. In search of a basic principle for model driven engineering.

Upgrade. 2004, vol. 5, núm. 2, pp. 21-24. [Links]

[19] BOOCH, G.; ROMBAUGH, J. y JACOBSON, I. El proceso unificado

de desarrollo de software. Madrid: Addison Wesley, 1999. [Links]

[20] BOOCH, G.; ROMBAUGH, J. y JACOBSON, I. El lenguaje unificado

de modelado. Madrid: Addison Wesley, 2002. [Links]

[21] CALIC, T.; DASCALU, S. y EGBERT, D. Tools for MDA Software

Development: Evaluation Criteria and Set of Desirable Features. 5°

International Conference on Information Technology: New Generations,

Reno, CSE Department, University of Nevada, 2008. [Links]

javascript:void(0);
http://andromda.org/index.php?option=com_content&view=category&layout=blog&id=35&Itemid=77
http://andromda.org/index.php?option=com_content&view=category&layout=blog&id=35&Itemid=77
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

 8

[22] CHITCHYAN, R. et al. Survey of analysis and design approaches .

AOSD, 2005. http://www.aosd-europe.net/deliverables/d11.pdf [consulta:

26012010].

[23] CZARNECKI, K. y HELSEN, S. Feature-based survey of model

transformation approaches. IBM System Journal, 2006, vol. 45, núm. 3,

pp. 621-645. [Links]

[24] DEN HAAN, J. 8 Reasons Why Model-Driven Approaches (will) Fail .

2008. http://www.infoq.com/articles/8-reasons-why-MDE-fails [consulta:

19032015].

[25] DE LARA, J. AToM3 A Tool for Multi-formalism Meta-Modelling].

2006. http://atom3.cs.mcgill.ca/ [consulta: 672010] [Links].

[26] DREY, Z. et al. Kermeta language Reference manual. s. l.: IRISA, 2010.

[Links]

[27] DUMAS, M. Case study: BPMN to BPEL Model Transformation. 5th

International Workshop on Graph-Based Tools - GraBaTs. Zurich, 2009.

[Links]

[28] EMIG, C. ; WEISSER, J. y ABECK, S. Development of SOA-

BasedSoftware Systems - an Evolutionary Programming Approach. s. l.:

Universitat Karlsruhe, 2006. [Links]

[29] EMIG, C. et al. Model-Driven Development of SOA Services. s. l.:

Universitat Karlsruhe, 2007. [Links]

[30] FORRESTER CONSULTING. Modernizing Software Development

Through Model-Driven Development. A commissioned study conducted

by Forrester Consulting on behalf of Unisys. s. l., 2008. [Links]

[31] FORWARD, A. y LETHBRIDGE, C. Problems and opportunities for

model-centric versus code-centric software development: a survey of

software professionals. Proceedings of the 2008 international workshop

on Models in software engineering, Leipzig: Association for Computing

Machinery, 2008. [Links]

[32] FRABCE, R. y RUMPE, B. Model-Driven Development of Complex

Software: A Research Roadmap. En: Future of Software Engineering

2007 at ICSE. Minneapolis: IEEE, 2007, pp. 37-54. [Links]

[33] GAMMA, E. et al. Design patterns, elements of reusable object-oriented

software. Boston: Addison-Wesley, 1995. [Links]

[34] GARCÍA, J. et al. Un estudio comparativo de dos herramientas MDA:

OptimalJ y ArcStyler. Murcia: Departamento de Informática y Sistemas,

Universidad de Murcia, 2004. [Links]

[35] GREENFIELD, J. y SHORT, K. Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools. New York:

Wiley, 2004. [Links]

[36] GRǾNMO, R. y OLDEVIK, J. An empirical study of the UML model

transformation tool (UMT). INTEROP-ESA. First International

Conference on Interoperability of Enterprise Software and Applications,

Suiza, 2005. [Links]

[37] HAYWOOD, D. MDA in a Nutshell]. En: The Server Side, 2004.

http://www.theserverside.com/news/1365166/MDA-Nice-idea-shame-

about-the [consulta:06-07-2010] [Links].

[38] HILL, J. et al. Magic quadrant for business process management suites

[document en línea]. 2009.

http://mediaproducts.gartner.com/reprints/lombardi/article2/article2.html.

[Links]

[39] INFORMATION SOCIETY TECHNOLOGIES (IST). Modelplex:

MODELling solution for comPLEXsoftware systems]. European

Commission, 2006. http:// www.modelplex.org/ [consulta: 09-08-2010]

[Links].

[40] INTERNATIONAL BUSINESS MACHINES (IBM). IBM Rational

Rose XDE Modeler]. 2004.

http://www.uml.org.cn/UMLTools/pdf/IB2M.pdf [consulta: 06-07-2010]

[Links].

[41] JÉZÉQUEL, J. Model Transformation Techniques]. Universidad de

Rennes, 2006.

http://www.irisa.fr/prive/jezequel/enseignement/ModelTransfo.pdf

[consulta: 06-07-2010] [Links].

[42] KING'S COLLEGE LONDON, UNIVERSITY OF YORK. An

Evaluation of Compuware OptimalJ Professional Edition as an MDA

tool. York, 2003. [Links]

[43] KLEPPE, A.; WARMER, J. y BAST, W MDA explained: The practice

and promise of model-driven architecture. New York: Addison-Wesley,

2003. [Links]

[44] LARMAN, C. UML y patrones: introducción al análisis y diseño

orientado a objetos. 4a ed. Madrid: Prentice Hall, 2005. [Links]

[45] LO GIUDICE, D. The State of Model-Driven Development], 2007.

http://www.forrester.com/rb/Research/clarifying_options_for_application

_development_teams/q/id/41357/t/2[Consulta: 06-07-2010] [Links].

[46] LOPEZ, H. et al. Estado del arte de lenguajes y herramientas de

transformación de modelos. Montevideo: Instituto de Computación,

Universidad de la República, 2009. [Links]

[47] MENS, T. y van GORP, IP A taxonomy of model transformation and its

application to graph transformation. Electronic Notes in Theoretical

Computer Science. 2006, núm. 152, pp. 125-142. [Links]

[48] MENS, T. et al. Applying a model transformation taxonomy to graph

transformation technology. Electronic Notes in Theoretical Computer

Science. 2006, núm. 152, pp. 143-159. [Links]

[49] MOHAGHEGHI, P. et al. MDE adoption in industry: challenges and

success criteria. New York: Springer, 2009. [Links]

[50] MOHAGHEGHI, P. y AAGEDAL, J. Evaluating quality in model-

driven engineering. Proceedings of the International Workshop on

Modeling in Software Engineering 2007. International Conference on

Software Engineering. IEEE Computer Society, Washington, DC, 2007.

[Links]

[51] NORTHROP, L. Software product line essentials. s. l.: Software

Engineering Institute, Carnegie Mellon University, 2008. [Links]

[52] OASIS. Web Services Business Process Execution Language Version

2.0]. 2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[consulta: 06-06-2010] [Links].

[53] OBJECT MANAGEMENT GROUP! Model Driven Architecture

(MDA) Guide vl.0.1]. 2003a. http://www.omg.org/cgi-bin/doc?omg/03-

06-01.pdf [consulta: 06-07-2010] [Links].

[54] OBJECT MANAGEMENT GROUP Common Warehouse Metamodel

(CWM) Specification vl.0.1]. 2003b.

http://www.omg.org/spec/CWM/L1/PDF/ [consulta: 06-97-2010]

[Links].

[55] OBJECT MANAGEMENT GROUP. Meta Object Facility (MOF) Core

Specification v2.0.]. 2006. http://www.omg.org/spec/MOF/2.0/PDF/

[consulta: 06-07-2010] [Links].

[56] OBJECT MANAGEMENT GROUP. MOF 2.0 / XMI Mapping,

v2.1.1]. 2007a. http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm

[consulta: 06072010] [Links].

[57] OBJECT MANAGEMENT GROUP. Object Constraint Language

v2.2]. 2007b. http://www.omg.org/spec/OCL/2.2/PDF [consulta:

06072010] [Links].

[58] OBJECT MANAGEMENT GROUP. Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification v1.1]. 2009a.

http://www.omg.org/spec/QVT/1.1/Beta2/PDF [consulta: 06072010]

[Links].

[59] OBJECT MANAGEMENT GROUP. Business Process Modeling

Notation (BPMN) FTF Beta 1 v2.0]. 2009b.

http://www.omg.org/spec/BPMN/2.0/Beta1/PDF/ [consulta: 06072010]

[Links].

[60] OBJECT MANAGEMENT GROUP. OMG Unified Modeling Language

TM (OMG UML), Superstructure v2.3]. 2010.

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/ [consulta:

06072010] [Links].

[61] QUINTERO, J. y ANAYA, R. Marco de referencia para la evaluación de

herramientas basadas en MDA. Memorias del X Workshop IDEAS, 2007.

p. 225-238. [Links]

[62] QUINTERO, J.; CADAVID, J. y OSPINA, C. Estudio comparativo de

técnicas de modelado de negocio. En: Memorias del XI Workshop

IDEAS, 2008, pp. 309-314. [Links]

[63] QUINTERO, J. y PÉREZ, J. Estrategias para la definición de una

técnica de modelado para arquitecturas de referencia. Memorias del XII

Workshop IDEAS, 2009. [Links]

javascript:void(0);
http://www.infoq.com/articles/8-reasons-why-MDE-fails
http://atom3.cs.mcgill.ca/
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.theserverside.com/news/1365166/MDA-Nice-idea-shame-about-the
http://www.theserverside.com/news/1365166/MDA-Nice-idea-shame-about-the
javascript:void(0);
http://mediaproducts.gartner.com/reprints/lombardi/article2/article2.html
javascript:void(0);
http://www.modelplex.org/
javascript:void(0);
http://www.uml.org.cn/UMLTools/pdf/IB2M.pdf
javascript:void(0);
http://www.irisa.fr/prive/jezequel/enseignement/ModelTransfo.pdf
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.forrester.com/rb/Research/clarifying_options_for_application_development_teams/q/id/41357/t/2
http://www.forrester.com/rb/Research/clarifying_options_for_application_development_teams/q/id/41357/t/2
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
javascript:void(0);
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
javascript:void(0);
http://www.omg.org/
javascript:void(0);
http://www.omg.org/
javascript:void(0);
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
javascript:void(0);
http://www.omg.org/spec/OCL/2.2/PDF
javascript:void(0);
http://www.omg.org/
javascript:void(0);
http://www.omg.org/spec/BPMN/2.0/Beta1/PDF/
javascript:void(0);
http://www.omg.org/
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

 9

[64] SELIC, B. The pragmatics of model-driven development. IEEE

Software, vol. 5, núm. 20, pp. 10-25. [Links]

[65] SENDALL, S. y KOZACZYNSKI, W Model Transformation - the Heart

and Soul of Model-Driven Software Development. Geneva: Software

Modeling and Verification Lab., University of Geneva, 2003. [Links]

[66] SOMMERVILLE, I. Ingeniería de software. 7a ed. Madrid: Pearson

Addison Wesley, 2005. [Links]

[67] SUN DEVELOPER NETWORK. Java Metadata Interface (JMI)].

2002. http://java.sun.com/products/jmi/ [consulta: 06072010] [Links].

[68] THE ECLIPSE FOUNDATION. ATL User Guide]. 2006. http://wiki.

eclipse.org/ATL/User_Guide [consulta: 06072010] [Links].

[69] VÖLTER, M. y STAHL, T. Model-Driven Software Development

(Technology, Engineering, Management). New York: Wiley, 2006.

[Links]

[70] WANG, W. Evaluation of UML Model Transformation Tools. Viena:

Business Informatics Group, Vienna University of Technology, 2005.

[Links]

[71] W3C. XSL Transformations (XSLT). v1.0]. 1999.

http://www.w3.org/TR/xslt [consulta: 06072010] [Links].

[72] OMG. Model Driven Architecture (MDA), document number

ormsc/2001-07-01, 2001.

[73] Dey, A. K. (2001). Understanding and Using Context. Recuperado el 03

de 03 de 2014, de

http://download.springer.com/static/pdf/638/art%253A10.1007%252Fs0

07790170019.pdf?auth66=1394887856_f5f0d3c631e14d9f9dd616d5aea

a3852&ext=.pdf

[74] Lovette Tom, Eamon O'Neil. (2012). Mobile Context Awareness. New

York: Springer.

[75] Samyr Vale1, 2. (2013). Model Driven Development of Context-aware

Service Oriented Architecture. The 11th IEEE International Conference

on Computational Science and Engineering - Workshops.

[76] OMG. Enterprise Collaboration Architecture(ECA), document 04-02-

01, february, 2004.

javascript:void(0);
javascript:void(0);
javascript:void(0);
http://java.sun.com/products/jmi/
javascript:void(0);
http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/ATL/User_Guide
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.w3.org/TR/xslt
javascript:void(0);

