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Abstract– When payment for a good (or service) is not
required to be done inmediately after its delivery, collection
in full may not be possible. This is critical for post-paid
billing systems such as mobile phone, water, electricity, and
other utility service providers. In order to maximize their
revenue, firms of these characteristics must not focus solely
on increasing sales; instead, more importantly, they should
focus on increasing collection. Thus, pricing should consider
not only the good’s demand elasticity, but also market’s
payment capacity—or its willingness to pay. We propose a
linear programming model that can be used to maximize a
firm’s revenue collection over a one-period decision horizon.
Our model works by segmenting customers based on their
consumption level and assumes that customer’s willingness
to pay is similar within each segment. Prices are, then, found
for each customers’ segment. A case study is provided and
its solution analyzed to develop further insights about the
model.
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I. INTRODUCTION AND LITERATURE REVIEW

When payment for a good (or service) is not done immedi-
ately after its delivery, it may not be possible to fully collect
the debt. According to Zeng et al. in [1] the two main factors
for invoice-payment risk are customer’s financial capabilities
and their willingness to pay. In their work, willingness to pay
is defined as the maximum amount that someone is willing to
pay to purchase a good or service.

Under these circumstances if a firm wants to find a price for
a good or service that maximizes its revenue, the pricing model
should not focus solely on increasing demand. The reason for
this is that selling a good or service may not result in revenue
if the customer decides not to pay the bill. The previous
observation becomes more critical when the billing process
follows a post-paid billing system, as in the case of mobile
phone, water, electricity, and other utility service providers.

Moreover, the behavior of customers for post-paid goods
is not exclusively related to the per unit fee, as in a regular
price elasticity demand relationship. This has been confirmed
empirically in the work presented by Inglesi-Lotz and Blignaut
in [2], where a panel data study was conducted to assess
electricity price elasticity in different sectors. The study con-
cludes that the industrial sector was the only sector showing
price elasticity for electricity; in sectors such as agriculture,
transportation, and mining, the price of electricity did not
affect its consumption.

The effect of price for post-paid goods or services can be
understood by noting that the purchase decision and payment

decisions are taken at different moments in the acquisition
process, as shown in Figure 1. In pre-paid billing systems,
a customer decides to purchase a good just after the price
is known, hence that decision is directly affected by price
elasticity of demand. On the other hand, in post-paid billing
systems the customer decides to pay just after the good has
been consumed, and the bill received. As a result, the decision
to disburse is affected by the customer’s willingness to pay.
Our model aims to define a price that increases a firm’s
collected revenue, therefore, focusing on the payment decision
made by the customer.

Fig. 1: Acquisition process for post-paid goods.

The effect of trade credit within a supply chain has been
study by Fabbri and Klapper in [3], where they offer insights
of how market power and financial constraints affects a firm’s
financial decisions and credit conditions for its customers.
However, the effect of debt delinquency was not studied.

Credit policies have also been included in lot-sizing models,
like in the one presented by Shinn in [4], where the retailers
profit depends on the product price and credit terms offered
by the seller. Abad and Jaggi in [5] presented a model where
the unit price and the credit length are the decision variables,
and analyze the model under the assumption of cooperative
and non-cooperative structures. Chang et al. in [6] included
a permissible delay in payment based on the order quantity
in their lot-sizing model, where the market demand was price
sensitive.

The previous models assume that payment will occur in a
specified period of time. However, in practice, the payment
may never occur, and therefore the actual profit is reduced.

We propose a one-period pricing model that can be used
to maximize a firm’s revenue, assuming that the firm offers
a post-paid billing system to its customers. As in practical
scenarios, customers may decide to pay the entire amount
billed or only a portion of it. This decision depends on the
total indebted amount and customer’s financial capability. In
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this paper, we are not including the consequences of debt
delinquency for customers—such as, service interruption or
late payment fees—since we are only focusing on the firm’s
revenue during one period.

Our model can be used, not only within commercial envi-
ronments, but also from a social perspective. Policy makers
interested in defining the price for social goods or services,
may offer price differentiation by taking into account the
willingness to pay of social sectors that can only assume low
debt levels. As a result, the model can maximize the actual
revenue, and reduce the negative impact of outstanding debt
and service disruption.

The remainder of this paper is organized as follows. Section
II describes the main assumptions about customer’s consump-
tion and payment behavior. Section III presents the pricing
model, where the revenue function is maximized. Section IV
shows numerical results obtained from the model implementa-
tion, and Section V summarizes our work and discusses future
research directions.

II. CUSTOMER’S CONSUMPTION AND PAYMENT
DESCRIPTION

In this section we give a mathematical description of
customer’s consumption and payment behavior for a particular
good (or service). In what follows we will use the term product
implying, either, good or service.

The quantity q consumed of a product is considered as
a random variable with a probability distribution Fq , and
expectation defined as E[q] = µ.

We define f(q) as the fee charged for the qth unit consumed.
Fee f(q) may be affected by internal or external factors.
For example, when the consumption of a good needs to be
regulated, f(q) can be increasing in q. On the other hand, if
economies of scale are present, then f(q) can be decreasing
in q.

Fee f(q) is not necessarily a continuous function. Particu-
larly, in this paper we are interested in defining a fee schedule,
where f(q) is defined as a stepwise function and customers
are grouped into subsets Rm’s, for m ∈M = {1, . . . ,M}. In
order to create the groups, we define breakpoints rm ∈ R+,
where rm−1 < rm. A client consuming rm−1 < q ≤ rm
is then assigned to subset Rm. In Appendix A we show a
procedure for obtaining breakpoints rm from data. Figure 2
shows an example of such a fee schedule.

Fig. 2: Stepwise fee function.

The total amount billed to a customer consuming q units is
thus given by

B(q) = (q − rm−1)fm +

m−1∑
j=1

(rj − rj−1)fj ,

for q ∈ Rm. In Figure 2, the shaded area corresponds to the
total amount billed B(q), for q ∈ R3.

We assume that the amount paid by a customer depends on
the amount billed B(q). The proportion of the bill payed is
a random quantity λq ∈ [0, 1], with expectation E[λq] = πq .
Note that πq depends on q.

The collected amount Cq for a consumption of q units is,
thus, given by

Cq = B(q)λq,

where 0 ≤ Cq ≤ B(q). Due to its construction, note that Cq
is a random variable.

For a particular value of q, the expected collected amount
E[Cq|q] is given by

E[Cq|q] = B(q)πq.

Assuming that there are N customers whose consumption
levels are independent, we may express the set of individual
consumptions qn for n ∈ N = {1, . . . , N} as an i.i.d. random
sample QN = {q1, . . . , qN}, where qn ∼ Fq .

The total amount collected from all customers within a
sample Q, defined as T (Q), is given by

T (Q) =
∑
q∈Q

Cq

=
∑
q∈Q

B(q)λq.

We may compute the expectation of the total amount
collected, given a random sample QN , E[T (Q)|Q = QN ],
as

E[T (Q)|Q = QN ] =
∑
n∈N

E[Cq|q = qn]

=
∑
n∈N

B(qn)E[λqn ]

=
∑
n∈N

B(qn)πqn .

In this paper, we are interested in defining a fee schedule
model that maximizes the expected total amount collected
E[T (Q)|Q = QN ], assuming that the individual consumptions
are known. The expression for the unconditional expectation
E[T (Q)] when the individual consumptions are unknown is
discussed in Appendix B.

III. FEE SCHEDULE MODEL

In this section we present a linear programming model for
the design of a fee schedule that maximizes our expected total
amount collected and that includes a price differentiation based
on volume consumed. The model considers a product with
inelastic demand.

In our model we will consider that the product fee is
increasing in the volume consumed. This can be the case for
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scarce products, when the supplier is interested in moderating
customer’s consumption. Note, however, that if a supplier is
willing to offer price reduction due to economies of scale, our
model can be easily modified to consider such decreasing fees.

We want to maximize the total amount billed, denoted by
z = E[T (Q)|Q = QN ]. With this in mind, we define our
linear programming model as

max
fm

z (1a)

s.t.

z ≥ K + k
∑
q∈QN

q, (1b)∑
q∈Rm

B(q)πq ≥ z · αm, for m ∈M (1c)

fm − fm−1 ≥ δmL , for m ∈M (1d)
fm − fm−1 ≤ δmU , for m ∈M (1e)

fm ∈ R+, for m ∈M. (1f)

Here the parameters are:

N Number of customers
qn Quantity of product consumed by customer n ∈

N . We assume that qn ≤ qn+1 for n ∈ N
K Fixed cost incurred by the supplier
k Variable cost per unit, incurred by the supplier
M Number of subsets of customers aggregated by

consumption
αm Fraction of the total amount collected from cus-

tomers in subset Rm for m ∈M
δum Upper bound for the difference in the fee between

customers in subset m− 1 and m, for m ∈M
δlm Lower bound for the difference in the fee between

customers in subset m− 1 and m, for m ∈M
πq Expectation of the proportion of the bill payed

by a customer that consumes q units of product
rm Break point defining subsets Rm, such that q ∈

Rm iff rm−1 < q ≤ rm, for m ∈ M. We define
r0 = 0, and rM = maxn∈N qn,

and the variables are:

fm Fee per unit of product consumed for customers
with consumption level q ∈ Rm, where m ∈M.
We define f1 ≥ f , and fM ≤ f .

We want to maximize the revenue obtained by the supplier
after debt collection, defined in Section II. The constraint
defined in (1b) guarantees that the total amount collected
covers the fixed and variables costs for the firm. Note that,
if (1b) is not satisfied, the firm will have a deficit and may
decide not to supply the product. Constraint (1c) makes sure
that the percentage of the total revenue collected from each
subset of customers is at least equal to αm. Note that αm
can be set equal to zero, when there is no lower bound in
the revenue that has to be collected from a subset Rm. The
set of constraints (1d) and (1e) guarantee that the increase in
the product fee does not exceeds the upper and lower bound

defined by the supplier. Finally (1f) define the model variables
as continuous and non-negative.

IV. NUMERICAL TEST

In this section we provide a numerical case study for
designing the fee schedule of an electricity provider firm. This
case study shows the implementation of the proposed model.
Additionally, we provide an analysis of the case study and
its solution to develop further insights about the model. The
case study uses monte-carlo simulation to generate a dataset
of monthly consumptions.

A. Generating the Dataset

We generate N = 1, 000 data points corresponding to
individual electricity consumption qn, given in kWh. An expo-
nential distribution was used to generate the amount consumed
monthly, with mean value 289.25 kWh/month.

The consumption range is subdivided into four subsets
R1, . . . , R4, as shown in Figure 3. The first subset R1 is
defined to contain the bottom 40% of the customers in terms
of their consumption. The second subset R2, is defined to
contain the next lowest 35% of the customers in terms of
their consumption. Likewise, for R3 and R4 we used the next
20%, and 5%, respectively.

Fig. 3: Histogram of generated consumptions.

Points rm were defined analytically as the 0.4, 0.75, 0.95,
and 1 quantile of the exponential distribution, respectively. The
resulting rm points, as well as the corresponding consumption
within each subset Rm, are shown in Table I.

TABLE I: Generated consumption

m rm # of customers in subset Consumption within subset
1 153 429 30,387.39
2 416 359 93,524.05
3 899 170 99,804.07
4 maxi{qi} 42 46,929.03

B. Definition of Model Parameters

In this section we present the parameters used in our
numerical case study. The parameters used were chosen to
emulate a realistic scenario.

For overhead costs K we used $ 11, 934.73, and for variable
costs k we used 0.038 $/kWh. Using these parameters, the total
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cost for generation and distribution is obtained as K+k
∑
i qi

which is $ 22, 316.65.
Table II shows the numerical values used for the difference

of the fees δum and δlm, the fraction αm of the total amount
collected for customers in subset Rm, as well as the proportion
of the bill payed πm for each customer in subset Rm.

TABLE II: Used parameters

m δlm δum αm πm
1 -2 2 0.2 0.4
2 -2 2 0.6 0.9
3 -2 2 0.5 0.8
4 -2 2 0.3 0.7

We used an inverted “U” shape for the parameters πm, as
shown in Figure 4, assuming that customers in the low range of
consumption will be more likely to have financial difficulties,
and therefore, the proportion of the bill payed will be low;
while customers in the high range of consumption defaults
often.

Fig. 4: Proportion πm of bill payed for each subset Rm.

C. Results and Analysis

The linear programming model, for these particular choice
of parameters, proofs to be feasible and provides the fee
schedule fm, for m = 1, . . . , 4. The results are presented in
Table III.

TABLE III: Results

m fm Total Billed for Rm Total collected from Rm

1 1.08 $ 32,818.38 $ 13,127.35
2 3.08 $ 178,022.24 $ 160,220.02
3 2.00 $ 223,861.02 $ 179,088.82
4 2.00 $ 81,484.34 $ 57,039.03

Total $ 516,185.99 $ 409,475.23

The total aggregated amount billed to all the customers
was $ 516, 185.99. Because of the willingness to pay, only
$ 409, 475.23 was collected. It can readily be checked that
the amount collected, $ 409, 475.23, covers the generation and
distributions costs $ 22, 316.65 by a large margin.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Pricing models often focus on the effect of price on the
product demand, without taking into consideration the actual
amount collected. The effect of debt delinquency becomes

more critical under post-paid billing systems, where the cus-
tomer may decide not to pay the bill in full, even after the
product has been consumed.

We propose a pricing model that finds the optimal fee
schedule to increase a firm’s collected revenue. Our model
assumes that customers are aggregated by consumption and
bill payment behavior, and finds the optimal unit fee for each
subset of customers.

By including information about the expected proportion of
the bill payed by the customers, our model allows the seller
to define fees that guarantee that amount collected will be at
least equal to the total cost. Also, in a way, this model can
ensures a fair fee definition, since subset of customers with
known risk of debt default can be identified and controlled.

As future research, we would like to consider the values
for the breakpoints rm, that define the fee function, as model
variables. In this way, the model will define how the customers
will be aggregated. Also, we would like to extend our model to
a finite number of periods, and therefore, include the collected
amount from customers with late payments. A multi-period
model will further allow us to evaluate the efficiency of our
pricing decisions, making sure that initial investment costs and
operational cost are covered over the considered time horizon.

APPENDIX A
ESTIMATION OF THE PROPORTION PAYED BY EACH

CUSTOMER

Here we will show a procedure to estimate the proportion
payed πq of the total bill B(q). The procedure assumes that
we have a dataset containing historical billed amounts B(qn)
and their corresponding collected amounts Cqn , for n ∈ N .

Our estimation approach seeks to minimize the divergence
between observed and predicted values. To measure this di-
vergence we use the sum of the absolute differences, and
formulate the following optimization problem

min
πqn

∑
q∈QN

|Cq − E[Cq]|

s.t.: 0 ≤ πqn ≤ 1, for n ∈ N ,

where E[Cq] = B(q)πq .
This problem can be cast as a linear programming problem

as

min
πqn

∑
n∈N ε

+
n + ε−n

s.t.: Cqn −B(qn)πqn ≤ ε+n , for n ∈ N
B(qn)πqn − Cqn ≤ ε−n , for n ∈ N

πqn ≤ 1, for n ∈ N
πqn , ε

+
n , ε
−
n ≥ 0, for n ∈ N ,

and can be trivially solved by

πqn =
Cqn
B(qn)

, for n ∈ N .

Note that, since Cqn ≤ B(qn), then 0 ≤ πqn ≤ 1.
However, having the value of πqn for each customer n with

a specific consumption level qn is not useful when we are
trying to define a general fee schedule.
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We now consider the setting in which customers have been
classified into different subsets Rm, for m ∈ M, depending
on their amount consumed. If customers’ willingness to pay is
similar within each subset Rm, we may then assume that there
is a single πm for clients in Rm. The resulting optimization
problem is now

min
π1...,πM

∑
n∈N

ε+n + ε−n

s.t.:
Cqn −B(qn)πm ≤ ε+n , for m ∈M, and {n : qn ∈ Rm}
B(qn)πm − Cqn ≤ ε−n , for m ∈M, and {n : qn ∈ Rm}
πm−1rm−1 = πmrm−1, for m ∈M \ {1}

πm ≤ 1, for m ∈M
πm ≥ 0, for m ∈M

ε+n , ε
−
n ≥ 0, for n ∈ N .

The problem above can be used to estimate the expected
payed amount, πm, for customer within each subset Rm, for
m ∈M.

APPENDIX B
UNCONDITIONAL EXPECTATION OF THE TOTAL AMOUNT

COLLECTED

We denote a random sample containing the consumption
of N customers by Ω = {q1 . . . , qN} ∼ FNq . We find the
unconditional expectation E[T (Ω)] as

E[T (Ω)] = E [E[T (Ω)|Ω = QN ]]

=
∑
q∈QN

E [E[Cq|Ω = QN ]]

=
∑
q∈QN

E [E[B(q)λq|Ω = QN ]]

= E

 ∑
q∈QN

B(q)πq|Ω = QN


= N [B(µq)πµq ] +N · COV [B(q), πq].

We consider that there is a dependency between the amount
billed to a customer and the proportion of that bill actually
payed, i.e., B(q) and πq are regarded as dependent random
variables. In general, however, we are not able to attribute
COV [B(q), πq] a particular value, since the exact relationship
between B(q) and πq cannot be generalized. Furthermore,
even if the value for COV [B(q), πq] can be found, its value
may be different among different regions. This is attributed to
the non-monotonic shape of πq as the one shown in Figure 4.

ACKNOWLEDGMENT

The authors would like to thank to the anonymous reviewers
for their helpful comments and useful suggestions.

REFERENCES

[1] S. Zeng, P. Melville, C. A. Lang, I. Boier-Martin, and C. Murphy,
“Using predictive analysis to improve invoice-to-cash collection,” in
Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2008, pp. 1043–1050.

[2] R. Inglesi-Lotz and J. N. Blignaut, “Estimating the price elasticity of
demand for electricity by sector in south africa,” South African Journal
of Economic and Management Sciences, vol. 14, no. 4, pp. 449–465,
2011.

[3] D. Fabbri and L. F. Klapper, “Trade credit and the supply chain,” 2009.
[4] S. Shinn, “Determining optimal retail price and lot size under day-terms

supplier credit,” Computers & industrial engineering, vol. 33, no. 3, pp.
717–720, 1997.

[5] P. L. Abad and C. K. Jaggi, “A joint approach for setting unit price and
the length of the credit period for a seller when end demand is price
sensitive,” International Journal of Production Economics, vol. 83, no. 2,
pp. 115–122, 2003.

[6] H.-C. Chang, C.-H. Ho, L.-Y. Ouyang, and C.-H. Su, “The optimal pricing
and ordering policy for an integrated inventory model when trade credit
linked to order quantity,” Applied Mathematical Modelling, vol. 33, no. 7,
pp. 2978–2991, 2009.

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”
July 29-31, 2015, Santo Domingo, Dominican Republic

5


